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Abstract— The presented work deals with classification of
garment categories including pants, shorts, shirts, T-shirts and
towels. The knowledge of the garment category is crucial for
its robotic manipulation. Our work focuses particularly on
garments being held in a hanging state by a robotic arm. The
input of our method is a set of depth maps taken from different
viewpoints around the garment. The depths are fused into a
single 3D point cloud. The cloud is fed into a convolutional
neural network that transforms it into a single global feature
vector. The network utilizes a generalized convolution operation
defined over the local neighborhood of a point. It can deal with
permutations of the input points. It was trained on a large
dataset of common 3D objects. The extracted feature vector is
classified with SVM trained on smaller datasets of garments.
The proposed method was evaluated on publicly available data
and compared to the original methods, achieving competitive
performance and better generalization capability.

I. INTRODUCTION

Visual perception of garments for their robotic manipula-
tion is a challenging task. Since common garments are made
mostly of soft, highly deformable materials, their appearance
can vary significantly based on their actual state. This makes
their recognition or pose estimation very difficult, as it is not
easy to specify features invariant to the deformations.

The presented work deals with classification of an un-
known deformed garment into several categories including
pants, shorts, shirts, T-shirts and towels. Knowledge of the
garment category is usually crucial for its robotic handling,
because it determines the selected manipulation strategy.

There are basically two approaches to classify a randomly
tossed garment (Fig. 1a). It can be perceived either passively
or actively manipulated by a robot for better perception.
The active approach usually consists of several steps [1].
A suitable grasping point is found on the surface of the
crumpled garment at first, which can be e.g. a wrinkle or
hemline. The garment is grasped and lifted by the robot
(Fig. 1b). Optionally, the lowest point of the hanging garment
is grasped with the other arm to reduce the space of its
possible configurations (Fig. 1c). E.g. the lowest point of
a hanging towel should always be its corner. The garment is
then perceived with a camera, stereo rig or RGB-D sensor.

The input of our method is a set of depth maps captured
from many viewpoints around the hanging garment (Fig. 2a).
It is obtained by rotating a wrist of the robotic hand holding
the garment around the vertical axis, while perceiving it with
a stationary RGB-D sensor. The depth maps are fused into a
single point cloud and the garment category is recognized.
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Fig. 1: Various states of towel: a) crumpled and laying on a table, b) grasped
at random point and hanging, c) regrasped for the lowest point.

The key contributions of the proposed work are:
• We introduce a novel convolutional neural network

(CNN) architecture for classifying an unstructured 3D
point cloud. It employs a generalized convolution over
a spatial neighborhood of a point. The CNN is trained
on a large dataset of 3D objects to learn extraction of
distinctive features transferable to various domains.

• The intermediate outputs of the network are used as
features for an SVM classifier of garment categories
that was trained on smaller datasets.

• Contrary to the existing methods for garments classifi-
cation that were only evaluated on their own datasets,
we compare our classifier on existing data. We achieve
competitive performance and better generalization.

II. RELATED WORK

A. Garments classification

Classification of a garment being held in a hanging state
(Fig. 1b, 1c) was pioneered by Kita et al. [2]. They build a
planar mass-spring model for each garment category that is
virtually grasped at different points and hung up. Silhouettes
of the garment perceived from two viewpoints are matched
to the simulated models. The method was improved [3] by
using more physically plausible cloth simulation included in
Maya 3D modeling software. The model is matched to a 3D
point cloud reconstructed by a trinocular camera system.

Willimon et al. [4] employ the active perception strat-
egy. An unknown garment is grasped repeatedly at various
random locations and perceived from two perpendicular
viewpoints. The extracted silhouettes and edges are matched
to annotated template images.

Li et al. [5] build an SVM classifier using quantized SIFT
features extracted from a depth map. It is trained on the
artificial dataset of hanging garments simulated in Maya
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software. An unknown garment is rotated and perceived from
150–200 viewpoints, each of them classified independently.
The final classification is obtained by majority voting. The
method was sped up by merging depth maps from individual
viewpoints to a volumetric representation [6], which is an
alternative to the point cloud representation used by our
method. The closest virtual model is found by minimizing
the weighted Hamming distance.

Doumanoglou et al. [7] train a random forest on simple
features extracted from a depth map, including depth differ-
ence of two points or curvature estimated in certain point.
The classifier is used in partially observable Markov decision
process (POMPD) framework that decides whether the hang-
ing garment should be rotated and perceived from another
viewpoint for better confidence. In their later work [8], the
next best view is selected by the decision forest.

Instead of using handcrafted features, there have been
attempts recently to learn the whole classification pipeline
in the form of a CNN [9]–[12]. All proposed architectures
share similar properties. The input is a depth map depict-
ing the hanging garment. The networks are rather shallow,
comprising 3 convolutional followed by 3 fully connected
layers with hyperbolic tangent activations [9], [10], or 4 and
2 layers with ReLU activations [11], [12], respectively. The
networks are trained with SGD on thousands real samples
accompanied with significantly more depth maps generated
by a simulator. It may be, however, problematic to ensure suf-
ficient diversity of synthetic data. The accuracy is improved
by aggregating classifications from multiple viewpoints.

Classification of a crumpled garment laying on a table
(Fig. 1a) is even a more challenging task. Willimon et al. [13]
propose a multi-level architecture. They use a combination of
standard image features and depth features to train separate
SVM classifiers for the selected mid-level characteristics,
including presence of a collar or used material. These charac-
teristics are then used for high-level category classification.

Sun et al. [14] train SVM directly on the combination of
local and global depth features. In their related work [15],
the garment is grasped, shaken or flipped, and tossed again
after each perception stage, so that its configuration changes
before the next perception. The classification confidences are
modeled, tracked and updated by a Gaussian process.

Ramisa et al. [16] introduce their own descriptor called
FINDDD that was developed specifically for textiles. It is
based on quantized normals estimated from a depth map.
They build a bag-of-words feature vector on top and classify
it with an SVM model.

Yamazaki [17] filter the grayscale image of the crumpled
garment with Gabor filters to detect overlaps and wrinkles
at various scales and orientations. Their geometric properties
are measured, discretized and accumulated into histograms
to obtain descriptors that are classified with SVM.

B. Neural networks for depth and 3D data

There are basically three approaches how to employ
CNNs for depth data classification. First, a standard 2D
CNN known from image understanding can be applied on

a depth map [18]. This is used by the existing garment
classification methods [9]–[12], which further improve the
accuracy by voting over multiple viewpoints. The network
can eventually work with multiple views inherently [19],
building its internal 3D representation. We rather reconstruct
the 3D model explicitly by employing a well geometrically
formulated algorithm (Sec. III-A).

There are CNN architectures available that work with the
volumetric representation of an object [20], [21]. The main
advantage is the neighborhood of cells in the volumetric
grid is well defined and thus application of a discrete 3D
convolution is straightforward. The disadvantage is a sparsity
of the volumetric representation that makes the computation
expensive and increases the number of the network free
parameters. Moreover, the volumetric representation depends
on 3D pose of the object and discretization of the grid.

There have been also attempts to apply the convolution
on unstructured 3D point clouds [22], [23]. The point cloud
representation of an object is very compact, yet powerful.
Individual parts of the object can be, moreover, sampled with
different densities. The pioneering work called PointNet [22]
applies convolution on each point separately to deal with
their unknown permutation in the cloud. The convolutions
therefore serve as point-wise feature transformers only. The
architecture was later improved [23] by max-pooling the
features over neighboring points in a hierarchical manner.
In contrast, the proposed work generalizes the convolution
operation itself over the neighborhood of a point, enabling
computation of richer local features.

III. METHOD DESCRIPTION

Our method for category classification of hanging gar-
ments consists of the following three stages:

1) Depth maps depicting the hanging garment from vari-
ous viewpoints are fused into a single 3D point cloud.

2) The point cloud is processed by CNN that transforms
it to a single distinctive global feature vector.

3) The garment category is classified with SVM.

A. Reconstruction of 3D point cloud

It is assumed that the unknown garment was already
grasped by the robot, lifted up and it is now being held
in a hanging state (Fig. 1b, 1c). The proposed work does
not deal with the manipulation that was already described in
our previous paper [1]. It is assumed that the garment is per-
ceived from many viewpoints distributed around it (Fig. 2a).
It can be achieved by rotating the robotic wrist holding the
garment around the vertical axis, while perceiving it with a
sensor attached to the other arm [1]. It is finally assumed that
the wrist is rotated reasonably slowly, e.g. several seconds
per rotation, so that the configuration of the hanging garment
does not change by fluttering.

Our approach to garments classification is based purely
on depth data coming from an RGB-D sensor. This ensures
good generalization over all possible colors and textures. As-
suming that the sensor and robot are properly calibrated, it is
straightforward to segment the garment from its surroundings



(a) Input images and depths (b) Reconstructed point cloud

Fig. 2: a) The input depth maps acquired from multiple viewpoints around
the garment are segmented and fused. b) The reconstructed 3D point cloud
with the estimated sensor poses visualized as cones.

by keeping only the data from a properly sized cuboid or
cylinder below the gripper holding the garment. The cuboid
is defined manually in our experiments on existing datasets.

The segmented depth maps (Fig. 2a) are fed into Kinect
Fusion algorithm [24]. It fuses the depth maps from multiple
viewpoints into a single global dense surface model, while
tracking the sensor pose over time (Fig. 2b). The model is
represented volumetrically and refined incrementally. Each
cell holds a truncated signed distance function (TSDF) value
that is negative for the points inside the object and positive
for those outside. The reconstructed cloud contains the points
whose neighbors have an opposite sign of TSDF (Fig. 2b).

We use the optimized KinFu1 implementation of the fusion
algorithm in CUDA. It delivers real-time 3D reconstructions
on the low-level GPU Nvidia GT 730M. We use 2563

volumetric grid to represent the reconstructed cubical space
of edge length 200 cm. Density of the reconstructed 3D point
cloud is therefore 7.8 mm, which corresponds approximately
to the depth quantization step used by commonly available
RGB-D sensors. We have found out that it suffices to rotate
the garment once with 10◦ step between the individual
viewpoints to obtain a precise enough reconstruction.

B. Network architecture

The reconstructed 3D point cloud usually contains thou-
sands to tens thousands points. It is downsampled by select-
ing n = 1024 point randomly, which is enough for a suitable
representation of its original shape. The sampled cloud is
translated to zero mean and scaled to a unit ball. It is then
processed by the CNN.

The proposed network architecture (Fig. 3) is based on the
idea introduced by PointNet network [22]. In order to achieve
the invariance to permutations of the input points, the local

1KinFu library: github.com/Nerei/kinfu_remake
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Fig. 3: Proposed network architecture. The input 3D cloud consisting of
n points is searched for k-NN of each point. The convolutional layers
extract 512D feature vector from the local neighborhood of each point.
The local features are max-pooled to a single 512D global feature vector
that is classified by the fully connected layers.

features are computed for each point separately by the
network. Local features for all points are then aggregated to
a single global vector by applying a function symmetric in its
arguments, e.g. max pooling, average pooling or summation.

On contrary, our network computes the local features on
k nearest neighbors of each point. The k-NN relation and
the ordering of k-NN according to their distance is not only
invariant to permutations of points in the cloud, but also to
its translation, rotation and scaling. Knowing k-NN of each
3D point, the network is able to learn features that could not
be computed for isolated points, e.g. estimation of surface
normals or curvatures.

Fig. 3 shows the proposed network. Its input is n×3 tensor
of points. They are fed into KnnSearch(k) layer that builds
n×k tensor, containing for each input point the indices of its
k-NN sorted in ascending order according to their distance.
We use the convention that each point is included in its own
neighborhood, i.e. only k − 1 neighbors are found in fact.
The parameter k = 8 is chosen as the maximum size over
the neighborhoods used by all feature extraction layers. The
search computes all O(n2) point to point distances, which
is a sufficient solution, given that the distances are evaluated
and sorted in parallel on GPU.

The local features are extracted by a stack of convolutional
layers KnnConv(kl, dl, ml). The parameter kl denotes neigh-
borhood size for l-th layer, dl is dimension of input feature
vectors and ml is convolution kernels count. It holds d1 = 3
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Fig. 4: Schematic view of convolution over the nearest neighbors. a) Each
of n = 4 points is found its k = 3 spatially closest neighbors including
itself (arrows pointing to the neighbors). b) For each point, k feature vectors
of dimension d = 3 are concatenated and convolved with 1× kd = 1× 9
kernel (along the arrow).

and dl+1 = ml. The convolution over the nearest neighbors
is implemented as 1D convolution of n × kldl tensor with
1×kldl kernel (Fig. 4). The product kldl denotes the number
of channels in 1D convolution. The channels are formed
by concatenating dl-dimensional vectors corresponding to
kl-NN of the point in ascending order according to their
distance. The convolution outputs are batch normalized.
ReLU activation is applied at first two layers.

The output of the feature extraction module is n × 512
tensor, i.e. 512D feature vector for each of n input points.
The local feature vectors are max pooled over all n points
to obtain a single 512D global vector. It is classified by a
stack of three fully connected layers FC(cl), each containing
cl neurons. The first two layers are batch normalized and
use ReLU activation. The output layer uses the logarithm of
softmax function to predict the classification log probabilities
over c output classes.

The network contains 732k trainable parameters, of which
560k are weights in the convolutional layers and 172k in
the fully connected layers. The feature extraction part of
the network is able to learn efficient and robust global
representation of the input 3D point cloud (Sec. III-C, III-D).

C. Network training

The existing neural networks for garments classifica-
tion [9]–[12] were trained from scratch on datasets of
hanging garments. The issue of not having enough training
data is overcome partially by generating them with a cloth
simulation engine included in Blender [9] or Maya [11].
However, it is difficult to ensure sufficient diversity of the
synthetic data to avoid overfitting.

We rather train the network on ShapeNet [25], which is
arguably the largest publicly available dataset of annotated
3D shapes. It contains more than 42k 3D mesh models over
c = 55 common categories, including vehicles, household
equipment, electronics etc. We believe that by training our
network on such a variety of objects, the convolutional
layers learn to extract general enough features that can be
transfered to a new domain of garments. The dataset is
split to 90% training and 10% validation subset, which was
used to develop the network architecture and optimize its
hyperparameters.

Each 3D mesh model from ShapeNet is converted to a 3D
point cloud by sampling 2048 uniformly distributed points
on its surface. The clouds are normalized to be zero meaned

(a) Random point (b) Lowest point (c) Unfolding point

Fig. 5: Datasets of hanging garments used in the evaluation: a) randomly
grasped garments [10]; b) garments regrasped for the lowest point followed
by c) the first unfolding point [8].

and located inside a unit ball. Following augmentations are
employed in each training epoch. A subset of n = 1024
points is sampled randomly, which ensures that the same
cloud is almost never seen twice. Then it is rotated randomly
around the vertical axis in range [0, 2π).

The network is implemented in PyTorch2. It is trained with
Adam [26] algorithm, using the learning rate α = 0.001 and
the recommended values of hyperparameters β1 = 0.9 and
β2 = 0.999. The categorical cross entropy loss is minimized.
The network is trained for 100 epochs in batches of 32. The
training takes less than 10 hours on the single GPU Nvidia
Tesla K40m. The classification accuracy on the validation
subset of ShapeNet is 75%.

D. Classification of garment category

While transfering a pretrained network to a new domain,
a common approach is to freeze the weights in the feature
extraction layers and retrain the classification layers. Since
the available datasets of garments are rather small, we only
use the network to compute a global 512D feature vector
(Fig. 3) describing the garment. The vector is then classified
with linear SVM that has significantly less parameters than
the stack of fully connected layers.

We use the LIBSVM [27] implementation of SVM. The
multiclass classifier is trained with one-vs-all strategy, opti-
mizing a squared hinge loss. The regularization hyperparam-
eter C, which weights the error term in standard formulation
of SVM [27], is found by cross-validation on the training set.

IV. EXPERIMENTAL EVALUATION

The vast majority of existing works on garments classifica-
tion evaluate their methods on own data only. We rather use
the publicly available datasets to compare performance of
the proposed method to the original works. We acquired two
datasets of hanging garments, grasped either randomly [10]
or for the lowest point [8]. Both datasets contain images
and depth maps taken from multiple viewpoints around the
garment, which is needed to reconstruct the 3D point clouds
(Sec. III-A). All data were acquired by a low-cost RGB-D
sensor ASUS Xtion.

The datasets were only used for training in the original
works. The evaluation was performed on additional testing

2Implementation of the proposed network in PyTorch and weights trained
on ShapeNet: cmp.felk.cvut.cz/˜striajan/iros2018



Method Pants Shorts Shirts T-shirts Towels Overall
RF [7] 0.47 0.73 0.82 0.80 0.72 0.75
dCNN [9] 0.60 0.53 0.84 0.76 0.48 0.70
RF+dCNN [10] 0.56 0.67 0.88 0.90 0.78 0.82
Ours 0.89 0.70 0.91 0.84 0.39 0.82

TABLE I: Comparison of garment category classification accuracies evalu-
ated on the dataset of randomly grasped hanging garments [10].

datasets that are unfortunately no longer available [8] or do
not contain full sequences of viewpoints [10]. We therefore
use the original training datasets both for training and eval-
uation of our method and compare it to performance of the
competing methods reported on the original testing data.

The evaluation of our method is performed in leave-one-
out manner. One clothing item per each category is put
into the testing set and the SVM classifier (Sec. III-D) is
trained on the remaining items in each iteration. The process
is repeated as many times as there are unique garments
per category. The classification results are averaged. Cross-
validation of SVM hyperparameters is performed again in
leave-one-out manner on each training set independently.

A. Hanging garments grasped randomly

The dataset of randomly grasped garments [10] contains
16 unique items of 5 categories (Fig. 5a). Each garment was
grasped by a robot at various points on its surface and hung
up. The dataset comprises 3 pants × 59 grasping points,
3 × 74 shirts, 3 × 20 shorts, 4 × 56 T-shirts and 3 × 25
towels. That is 758 combinations in total, each perceived
from 180 viewpoints. We use only 90 views for 3D point
clouds reconstruction.

As described in Sec. II-A, the original work [9] applies
a CNN directly on the depth maps. To improve the clas-
sification accuracy, it was later combined [10] with the
approach based on random forests [7]. Predictions from
multiple viewpoints are aggregated, which can be considered
an alternative to our fusion of depths.

Tab. I shows the comparison of the classification results.
Overall accuracy of our method is 82% which is on par with
the current state of the art approach combining CNN and
random forest. The main source of our failures are towels that
have no distinguishable parts like collars or sleeves. Their
shape can, moreover, resemble shorts (Fig. 5a).

B. Hanging garments regrasped for the lowest point

The dataset [8] contains 4 clothing categories: pants, shirts,
shorts and T-shirts. Each category is represented by 6 unique
items. Each garment was grasped by a robot, lifted up
and regrasped for its lowest point (Fig. 5b). There is 1
possible lowest point for pants and shirts, 2 lowest points
for shorts and T-shirts. Each combination of item and the
lowest point occurs 20 times. This is 720 sequences in total,
each comprehending data from 40 viewpoints.

As stated in Sec. II-A, the original work [7] applies ran-
dom forest (RF) classifier on simple features computed from
a depth map. Information from more views is aggregated
by POMPD. The improved method [8] aggregates directly

True\Pred. Shirts Shorts Pants T-shirts
Shirts 0.88 0.01 0.02 0.09
Shorts 0.00 0.90 0.00 0.10
Pants 0.03 0.03 0.94 0.00
T-shirts 0.02 0.03 0.00 0.95

TABLE II: Confusion matrix for the proposed classifier evaluated on the
dataset of garments regrasped for the lowest point [8]. Rows correspond to
true garment categories, columns to predictions.

True\Pred. Shirts Shorts Pants T-shirts
Shirts 0.83 0.00 0.03 0.14
Shorts 0.00 0.85 0.02 0.13
Pants 0.06 0.02 0.89 0.03
T-shirts 0.07 0.03 0.03 0.87

TABLE III: Confusion matrix for the proposed classifier evaluated on the
dataset of garments being held for the lowest or unfolding point [8]. Rows
correspond to true garment categories, columns to predictions.

in the RF, which also selects the next best viewpoint. Only
several views are needed for a decision, compared to tens
views distributed uniformly around the garment required by
our method. On the other hand, time spent by rotating the
wrist holding the garment is negligible compared to other
manipulation steps [1].

We achieve 92% overall classification accuracy, consistent
over all classes (Tab. II), while both original works [7], [8]
claim perfect 100% accuracy. The RF approach, however, has
inferior performance on randomly grasped garments (Tab. I).
Since our method normalizes the input point cloud to a unit
ball, it distinguishes the garment category purely on its shape.
On contrary, the RF can learn to classify the garments based
on their size, since e.g. shorts usually occupy smaller portion
of the depth map than pants, which may not be desired
behavior. Moreover, due to normalization, our method is
arguably easier transferable to different robotic setups, where
a sensor with different resolution is used or its distance to
the garment varies over time.

The dataset [8] contains additional 360 sequences of
garments that have been already unfolded partially by rec-
ognizing and grasping a certain point, which is a shoulder
for shirts and T-shirts, and a waist corner for shorts and
pants (Fig. 5c). These data are not used for classification in
the original work [8], because the garment category must be
known before unfolding. We mixed these 360 sequences with
720 sequences for the lowest point. The resulting dataset
should therefore be more complex than the lowest point
one, but simpler than the one with random grasping points.
The achieved overall recognition accuracy 86% proves that.
Tab. III shows a confusion matrix for individual categories.

V. CONCLUSION

We proposed a method for classification of garments being
held in a hanging state (Fig. 1b, 1c). We showed that
instead of using handcrafted features, as suggested by the
majority of works, they can be learned efficiently by the
CNN. Our network is one of the first architectures taking
an unstructured 3D point cloud on its input and the first
such network used for garments classification. The network



is trained on the large dataset of general 3D objects to learn
distinctive features, instead of training it from scratch on
simulated garments as in the existing works.

The presented work is the first that evaluates its perfor-
mance on existing datasets and compares it to the original
methods. It achieves the accuracy comparable with the cur-
rent state-of-the-art. Moreover, it is more robust to variations
in sizes of the garments and arguably better transferable to
different robotic setups.

In future, we would like to extend our method to predict
which point on the surface of the garment needs to be
grasped next to unfold it. We believe that it is possible to
reuse the feature extraction part of the network, replacing
only the SVM category classifier with regression of the
grasping point. Another possible extension is modification
of the network to perform a semantic segmentation of the
garment parts to classes, e.g. sleeves, collars or pockets, that
could be used for better informed manipulation.
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[11] A. Gabas, E. Corona, G. Alenyà, and C. Torras, “Robot-aided cloth
classification using depth information and CNNs,” in Proc. Articulated
Motion and Deformable Objects (AMDO), 2016, pp. 16–23.
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