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Abstract

The essential goal of this paper consists in extending the functionality of the bio-inspired intelligent HTM (Hierarchical Temporal
Memory) network towards two capabilities: (i) object recognition in color images, and (ii) detection of objects located in clutter
color images. The former extension is based on development of a novel scheme for application of three parallel HTM networks
which separately processes color, texture, and shape information in color images. For the latter HTM extension we proposed a
novel system in which HTM is combined with a modified model of computational visual attention. We adopted the results of
[1] and [2], and added new elements [3] for the calculation of image saliency maps. The proposed algorithm enables to locate
individual objects in clutter images automatically. For computer experiments a special image database has been created to simulate
ideal single object images and cluttered images with multiple objects on inhomogeneous background. The recognition performance
of the HTM alone and in combination with the salient-region detection method has been evaluated. We showed that the attention
subsystem is able to satisfactorily locate objects in clutter color images with inhomogeneous background. We have also carried out
benchmark calculations for two selected computer vision methods used for object detection in color clutter images. Namely, the
methods of cascade detectors and template matching have been used. Our study confirmed that the proposed attention system can
improve the HTM’s capabilities for object classification in cluttered images. The compound system of visual attention and HTM
outperformed the compared methods in both criteria (recall and correct detection rate). However, as expected, the system cannot
match the HTM’s recognition accuracy achieved on single object images and the further research is needed.
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1. Introduction

The tremendous rise of digital techniques for image acqui-
sition and ubiquity of web connections in recent decade evoked
the creation of an enormous number of image databases ac-
cessible to web users. A searching/retrieving of images from
such databases for various aims becomes an everyday task in
many application areas. Especially requested are the so-called
content-based image retrieval (CBIR) techniques and systems
[4, 5]. Although a number of image retrieving methods have
been proposed and explored up to now, no satisfying general
solutions still exist. The core problems are: i) choice of suit-
able image features for image content representation, and ii)
efficient image object detection/recognition in cluttered images
which are frequently occurring in CBIR tasks. In papers [6], [7]
several aspects of solving these two problems by application of
an bio-inspired Hierarchical Temporal Memory (HTM) system
have been addressed. This system is catagorized by [survey
od Rada] in to the class of deep learning algorithms. Pal et
al studied using a color histogram technique together with the
HTM model for retrieving the final images post classification of
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the query image. [7] focused on exploration of possibilities of
the HTM network to be applied to CBIR, when color features
are used. Application of HTM to CBIR tasks revealed, how-
ever, similar problems, as outlined above, because the training
images for HTM are characteristic by single centered objects,
placed usually at homogeneous background.

It appeared, that to overcome the limitations of bio-inspired
feed-forward models of visual cortex, their application to mul-
tiple object recognition tasks, requires a support of a computa-
tional model of visual attention. Several papers have been de-
voted to this research topic. In [8] a question was explored, to
what extent saliency-based bottom-up attention can extract use-
ful information about the location, size, and shape of objects
in cluttered scenes. The rigorous quantitative analysis of the
authors showed the usefulness of the synergy between recog-
nition and attention. Chikkerur et al [9] proposed a two-stage
approach to recognizing objects in clutter. In the first stage, a
Bayesian (feature-based) model of visual attention isolates the
target object while suppressing the clutter around it. The re-
sults are then fed to a hierarchical feed-forward model of object
recognition in the ventral stream. They showed that attentive
processing improves recognition in comparison to purely feed-
forward processing. An improvement of feed-forward object
recognition by biologically plausible saliency mechanism has

Preprint submitted to Elsevier November 7, 2017

https://doi.org/10.1016/j.neucom.2018.04.030


been explored and demonstrated in the paper [10]. Recently two
different models have been proposed in which saliency function
is directly combined with a network for object class recogni-
tion. In [11] a salient hierarchical model for object recognition
was proposed that is characterized by two contributions: (1) a
traditional saliency model is modified to achieve more robust
saliency estimation, and (2) this part is combined with the Hier-
archical Maximization architecture (HMAX) of immediate ob-
ject recognition in primate visual cortex.

To our knowledge, the first attempt to combine the HTM
network model with an image saliency approach represents the
recent work of [12]. The authors proposed a supervised learn-
ing method for recognition of objects in different orientations.
Instead of conventional color image input vectors, the com-
bined model exploits a preceding saliency detection step that
isolates the region of interest, releasing the HTM learning pro-
cedure from redundant information. The proposed approach
has several limitations that hinder from its application to col-
ored clutter images containing many different objects located
anywhere in the image. Therefore, the basic motivation of our
research was to extend the possibilities of both parts of the com-
bination of the HTM system and some visual attention system
including saliency. We propose the novel version of such a
combination with the following contributions: (1) the saliency
of color images is calculated as a combination of a suppression
map with a contrast features, (2) then, a combined feature based
on discriminative local regions is calculated, (3) finally, instead
of the standard HTM implementation with gray-level images as
inputs, a system of three parallel HTM networks is proposed
- each HTM network processes a separate image feature map
and a coupled k-nn classifier is proposed for weighted super-
vised classification of belief vectors having been inferred by
individual HTM networks. Computer experiments incorporate
generation of multiobject images that simulate clutter images in
a similar way as in [9] (placement of individual objects at ran-
dom position and scale in a test multiobject image). In compar-
ison to the above mentioned combined models of feed-forward
processing and image saliency maps [11, 12], which are ap-
plied exclusively to images with one object dominated, in our
approach we attempt to solve a more sophisticated multiple ob-
ject recognition task in clutter images (simulated models). The
important goal of the paper is to prove a feasibility of the one-
level HTM network application to the task of object recognition
in multiobject clutter images.

This paper is organized as follows. In Section2 the basic
description of a memory-prediction HTM network is provided.
Also, a novel system of parallel coupling of three HTM net-
works is proposed that processes three separate image features
of edge, texture, and color. Section 3 is devoted to the descrip-
tion of image data set construction needed for implementation
of computer experiments with the proposed combined system.
Two classes of images are used, namely, partially cluttered and
fully cluttered images. In Section 4 the details of the proposal
of a novel color image saliency model are explained. This is
a key section in which the main contributions of our approach
to combination of the HTM network with color image saliency
mapping (ISM) model are presented. Section 5 is oriented to-

wards implementation of computer experiments. Two bench-
mark methods are selected and shortly described. The proposed
combined system of (ISM + HTM) is compared to cascade de-
tectors, and to template matching applied to the identical testing
images. In Section 6 the obtained results are presented and dis-
cussed. We used five different characteristics of object detec-
tion/recognition success: accuracy, overlap, recall, clutter, and
hits. Lastly, Section 7 presents the conclusions of our findings
and discusses the contributions and limitations of the proposed
approach, presented in this paper. Open issues of a further re-
search in this domain are also formulated.

2. Hierarchical Temporal Memory

2.1. Basic description

The HTM is a memory-prediction network proposed by [13,
14] and distributed initially by Numenta, Inc., as a free software
package NuPIC [15, 16]. Promising results in applications of
HTM have been achieved especially in the field of visual ob-
ject recognition/classification, e.g. [17], [18], [19], [20], [21],
[22]. It represents a hierarchical Bayesian network and can be
assigned to the class of Deep Belief Networks in artificial in-
telligence [23, 24], [25]. In more details, it can be described as
a hierarchy of several layers (levels) consisting of basic opera-
tional units called nodes.

The effective area from which a node receives its input is
called field of view or receptive field of the node. The individ-
ual levels are ordered in a hierarchical tree-like structure (see
Fig.1 as a prototypical HTM network). There is a zero sensory
level of the HTM which serves as an input to the first level of
nodes. In our case, zero level represents a visual field of im-
age pixels or feature maps derived from it. At the top level,
there is only one node that serves for classification. In this
role various classifiers can be used. Each HTM node works
in two modes – learning and inference. In the learning mode
the node performs two operations, spatial pooling and tempo-
ral pooling. Once these two steps are completed, the node is
switched to the inference mode. In practice, all nodes within
one hierarchy level are considered to be equivalent. Since the
use of smooth temporal dependencies of input spatial patterns
is essential characteristic of the HTM, its learning process uti-
lizes either native sequence of images (e.g., video captured by
a camera), or (in case of static images) an artificially generated
sequence of images using various exploring schemes.

In the first step of the learning process, the node memorizes
the representative spatial patterns (coincidences) from its recep-
tive field that results in creating a codebook of image patterns.
After reaching the requested number of quantization centres,
the memorization process is stopped. The ultimate goal of the
HTM learning is to detect correct invariant representations of
the input world based on the temporal relations contained in the
learning sequence. To achieve this, one needs a frequency of
transition events, i.e., co-occurrences of the memorized coin-
cidences in adjacent time instances. A sequence of the input
patterns generates a sequence of the n coincidences within the
node. In the HTM theory [14, 15], the temporal relations are
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c1 = [0 0 0 1 0 0 0 0]
c2 = [0 0 0 0 1 0 0 0]
c3 = [0 0 0 0 0 1 0 0]
c4 = [0 1 0 0 0 0 0 0]

...

g1 = {c1, c16, c24}
g2 = {c3, c44}
g3 = {c8, c20, c31}
              ...

Figure 1: Structure of a 3-layer HTM network with examples of codebook patterns and temporal groups.

described in a form of the first-order Markov graph where ver-
tices represent the memorized coincidences and links stand for
the transitions between coincidences in time. The last step of
the learning process in each HTM node is to analyze the nor-
malized Markov graph with the aim to partition it into a set of
temporal groups. The goal of this partitioning is to group to-
gether coincidences (i.e., vertices of the Markov graph) which
highly likely follow one another. A node that has completed its
learning phase can be switched into the inference mode. In this
mode, the node produces an output vector for every input pat-
tern provided. This vector indicates the degree of membership
of the input pattern into each of the temporal groups. There are
two phases of the inference process, inference in the “spatial
pooler” followed by inference in the “temporal pooler”.

Typically, most of the input patterns do not perfectly match
any of the patterns stored in the node’s memory. Let di be the
Euclidean distance of the i-th stored pattern from the input pat-
tern. The larger is the distance, the smaller should be the match
between the input pattern and the stored coincidence. It can
be assumed that the match of the patterns can be expressed as
a Gaussian function of their Euclidean distance, with the zero
mean: yi = e−d

2
i /σ

2

, where σ is a parameter of the node. By
calculating this quantity for all n memorized coincidences, one
can produce an overall belief vector y = [y1, y2, . . . , yn] that
represents closeness of the input pattern to all memorized coin-
cidences [14]. In the second phase of the inference, the tempo-
ral pooler makes use of the learned temporal groups and calcu-
lates the output vector for the nodes that are above in the HTM
hierarchy. Each individual component of the output vector rep-
resents belief that y comes from a particular temporal group.

2.2. Image features as an input to HTM

Initial implementations of the HTM networks worked with
gray-level input images exclusively. In some cases an input
transformation block with Gabor filters was included in the HTM
network that produced input in the form of image local feature

vectors. On the other side, color images are obvious for CBIR
applications. Therefore to apply the HTM network to a CBIR
task required to explore possibilities of HTM to deal with color
images or features. Consequently, in [7] we explored various
combinations of features as input vectors for the HTM network.
For color features, we selected simple images converted to one
of the selected color spaces and then fed to HTM a vector com-
posing of individual color components for each pixel. As an
alternative to the two gray-scale texture features, we used Color
Co-occurrence Matrix (CCM), in particular, the Reduced Space
variant of the CCM (RSCCM) defined in [26]. We selected six
possible color component combinations. Then, for each image
patch to be fed as an input to the HTM network, we calculated
six RSCCMs for the color combinations. We concentrated our-
selves on four color spaces: the standard RGB space, the inde-
pendent component space I1I2I3, and two perceptually uniform
UVW and Lab color spaces. The results of our computer ex-
periments and mutual comparison of the Recognition Accuracy
values showed ([22]) that the highest values are reached for two
gray-level image features, produced: (i) by application of the
Canny edge detector, and (ii) by calculation of the Grey-Level
Differences (GLD), which are completed by the color features
derived for the Lab color space.

2.3. Object recognition in color images based on parallel ap-
plication of three HTM networks

To improve the recognition accuracy of object detection sys-
tem based on the HTM network we propose a system that uses
information from three HTMs, each focused on different aspect
of the images (i.e. group of image features). The selected as-
pects are edges, texture and color information. For each aspect,
we choose the feature with the best recognition accuracy (men-
tioned in the previous section).

All three HTMs are trained individually, using a different
sensory layer, but on the same set of images. After the training,
each HTM is used to infer belief vectors from all of the train-
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ing images, to create its own set of training samples for k-NN
classifier – Vedge, Vtexture, Vcolor.

Then, for the object classification in an input image I, the
following scheme is proposed:

• the image I is inferred separately for each of the feature
applied, using the corresponding learned HTM network;
as a result three belief vectors vIedge, vItexture, vIcolor are
obtained,

• for each of these vectors, k nearest neighbors are searched
for in the corresponding set of feature training samples
(we experimentally determined that the best performance
of the k-NN is achieved for k = 2); for each of the selected
neighboring vectors, only information about its class and
distance to the corresponding vector vI is retained,

• all the nearest neighbors are then analyzed together in or-
der to find out which of them have maximum incidences
of identical class membership; the class having this prop-
erty is declared to be the class to which the image I be-
longs; if two or more classes have the same count, then
the output class is chosen out of these classes from which
the neighboring vector is the closest to the vector vI.

3. Image data set

For testing the combined system of the saliency map gener-
ation with the HTM network, similarly to [9], we created three
different image data sets – single object images, partially clut-
tered images, and fully cluttered images (see Fig. 2). The single
object images have resolution of 128×128 pixels, while the par-
tially and fully cluttered images 512×512 pixels.

The first data set consists of images with a single object on a
homogenous (black) background. These images were obtained
from free image sources from the internet that satisfied the size
requirements and had transparent background. The objects are
located approximately in the center of the image and they are
resized to preserve the aspect ratio of the objects with the aim to
occupy maximum possible image area (not protruding outside
of the image boundaries). We acquired 300 unique images from
10 object categories, i.e. 30 images per category. For extending
the data set by additional images, we applied rotation around
the image center and mirroring about the vertical axis, to the
original images. The rotation range was ±40º with 10º step.
Altogether 3000 images have been obtained (1 original image,
8 rotated image versions, and 1 mirrored exemplar). These
individual object images served for the basic cross-validation
scheme necessary for computer experiments. The set was 10
times randomly split into two subsets - 60 % constituted a set
of training images for the HTM network, while the remaining -
40 % was used as testing images and for the generation of simu-
lated clutter images. The procedure of composing partially and
fully cluttered testing images can be described as follows.

We decided to generate four basic types of multiobject clut-
ter images, namely, containing 1, 2, 4, or 8 objects (denoted as
the order of the image). For each of these cases, an initial object
image is randomly selected of the given set of testing images

Figure 2: Examples of the used images: The top row shows examples of single
object images of four different object categories. Both middle and bottom rows
represent examples of multiobject images of the 1st (left) and 8th order (right).
Partially cluttered images are depicted in the middle row and fully cluttered
images (nonoverlapping objects on inhomogeneous background) in the bottom
one.

generated in the previous step. The object image is then ran-
domly embedded in a new clutter image having homogeneous
or inhomogeneous background. The location of the object im-
age is random but with a restriction not to overlap with other
already placed, object images. For the 2nd, 4th and 8th orders,
this procedure is repeated corresponding number of times. Sim-
ilarly to Chikkerur et al [9], we enforced up to one instance of
any object class per every generated image. We also generated
ground truth images (GTI) containing pixel-by-pixel informa-
tion on locations of the bounding boxes of the images and their
classes of all objects present in cluttered testing images.

The difference between partially and fully cluttered images
consists in the background used. In the partially cluttered im-
ages, the individual objects are separated by homogenous areas
and as a clutter information, the presence of other object images
is considered. The fully cluttered images are generated with
noisy background that creates additional clutter and makes the
segmentation of individual objects more difficult. The hetero-
geneous background is generated using a combination of col-
ored perlin noise textures of various grain and image blurring.

4. Color image saliency model

As outlined in Introduction, the goal of our research into
the object recognition in clutter color images is to combine the
HTM network with some model of image saliency explored
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within the field of computational methods of visual attention.
Several models of image saliency calculation have been men-
tioned in Introduction, however, due to specificity of clutter
images (a number of different objects occurring on inhomoge-
neous backgrounds), we would need a saliency model that is
able to ignore regions with similar visual characteristics and to
provide the recognition part of the combined system preferably
with the information on true attention regions. We found out
that the model of Hu and coauthors, published in [2], can serve
a suitable candidate satisfying such a requirement. On the other
hand, according to the work of Fukun Bi et al [1], it is possible
to improve detection of salient regions in images using an alter-
native integrated bottom-up model. Namely, the authors sup-
pose that discriminative local regions (DLR) are closely related
with spatial entropy. They speculate on biological plausibility
of the DLR-based mechanism in relation to the finding that hu-
man does not perceive local details of an image at pre-attention
stage, however, they are focused on the concentrative distribu-
tion of such regions. Exactly DLR-based mechanism of atten-
tion can simulate the visual property of spatial entropy. In our
approach we attempt to merge the advantages of the both meth-
ods in a way capable to generate necessary position of a salient
image window to which the HTM network is to be applied. We
first outline our modifications to basic steps of both methods of
saliency map calculation, and then, based on (Fig. 3), we will
describe our approach of merging and extending them.

Hu et al [2] proposed a method of adaptive local context
suppression of multiple cues for visual saliency calculation. Sim-
ilarly, we use the color features defined in the Lab color space.
In particular, the intensity feature is computed from the L chan-
nel, the individual color components are computed from the
color channels of this model, and, eventually, the texture fea-
ture is computed using all the channels (Fig. 3).

Let us consider an image divided into blocks, called atten-
tion patches, each containing p × q pixels. The contrast of a
particular feature at the patch centered at (i, j) is calculated us-
ing this formula:

FV k(i, j) =

1

N

∑
[u,v]∈(U×V )\{[0,0]}

|MFk(i, j)−MFk(i+ u, j + v)|,

where U = {−1, 0, 1} , V = {−1, 0, 1} , are the sets of
relative indices of the patch centered at (i, j), and MFk (., .)
are the means of the k − th feature in the central or the cor-
responding neighboring patch, and N is the number of patches
in its neighborhood. The contrasts at the patch (i, j) for k =
1, 2, ... n features/(attention cues) are normalized to the inter-
val < 0, 1 >. Then each patch can be represented by the n
dimensional feature contrast vector over its neighborhood. To
get the combined feature map, the individual components of the
contrast vector of the given image patch are summed up. The
contrast measure for the given set of features is suppressed, if
the patch and its neighbors are similar. The similarity is esti-
mated by the variance of data along eigenvectors of an n×n co-
variance matrix. This matrix is formed from the feature contrast

feature map

calculation

maxima
detection

Figure 3: Scheme of the proposed compound algorithm in which two salient
region detection methods ([2] and [1]) are combined with the goal to generate
an appropriate window position for the application of the HTM to color clutter
images in the task of object detection and recognition.

vectors at the patch (i, j) and its neighborhood. The eigenval-
ues λ̄ of this matrix represent the extent of similarity or dissimi-
larity among the attention cues. For example, a large eigenvalue
indicates a large variance along the direction of its correspond-
ing eigenvector, which implies higher discriminating power [2].
Thus, the suppression factor SF for the patch (i, j) is defined
through the product of the eigenvalues: τ(i, j) =

∏t
s=1 λ̄s,

where the eigenvalues λ̄s are sorted in ascending order, and the
parameter t (number of accepting eigenvalues) controls the de-
gree of suppression. For obtaining the ultimate saliency value
S(i, j) for the patch (i, j), the multiple attention cues repre-
sented by the combined map, are modulated by SF according to
this formula

S(i, j) = τ(i, j) ·
n∑
k=1

FVk(i, j).

Such a product, calculated in the block, depicted in Fig. 3 as the
"saliency map", should contain true Attention Regions.

The authors of [1] argued that the basic property of human
visual attention consists in two complementary mechanisms: 1-
suppressing the response to frequently occurring features, and
2-simultaneous enhancing unexpected ones. Their algorithm of
detecting the saliency from discriminative local regions (DLR
map in Fig. 3) simulates this property. We outline only key steps
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of the DLR map calculation, for details the reader is referred to
the original paper [1].

• First, using the standard scale-space approach, DoG im-
ages are generated from the intensity mapMI of the given
color input image M by repeatedly convolving MI with
the Gaussians,

• the SIFT keypoints are found by detecting local extrema
in adjacent scales of DoG images, the i − th keypoint
is denoted as Pi(x, y, σpoint (i)), where(x, y)are coor-
dinates of the keypoint location, and σpoint (i) indicates
the keypoint scale,

• as robust saliency detection requires extraction of merely
stable keypoints, an iterative process is proposed for re-
peated image resampling and keypoints re-extraction,

• the final keypoints set Zk ={P1, P2, . . . , PNk
} is gener-

ated by k iterations, and the downsampled image Mk
I is

eventually reached,

• the parameter σT characterizing influence degree within
the keypoint neighborhood is defined as σT = σpoint ×(
size

(
Mk
I

)
/size (MI)

)
, where size (·)means the im-

age size,

• the range of the applied discrete Gaussian function is de-
noted by LT , and given as LT = 2 · (2σT + 1) + 1,

• then, for each extracted keypoint, a neighborhood tem-
plate TKP is defined by the formula:

TKP (x, y, σT , LT ) =
1

2πσ2
T

exp
(
−
(
x2 + y2

)
/
(
2σ2

T

))
,

• the saliency map SMDLR for representation of the saliency
of DLR is calculated according to

SMDLR =

Nk∑
i=1

T iKP (x, y, σT , LT ) .

Instead of the calculation of Early Visual Features (EVF),
used in the paper [1] to combine them with the DLR map,
we propose to merge the partial result – maps of three fea-
tures, generated by the procedure of Hu et al. – with the DLR
saliency map SMDLR. Thereby we get a novel combined fea-
ture map (SMCF ). As the inspiration for such an integration of
the DLR map into our attention system, the human face recog-
nition methodology, proposed in [3] and [27], has served: –face
and skin detection was added to color, intensity, and texture fea-
tures – to find true salient regions in images with human faces.
However, our system should work with general images, thus,
instead of the face and skin detection, we extend the set of ini-
tial features by the DLR map. Eventually, two branches of the
diagram of our method, depicted in Fig. 3 as A, and B, represent
the following operations.

First, regional maxima are detected (branch A) in the saliency
map S and their coordinates are used to extract windows {Wi}
from the combined feature map SMCF (SM − CF in Fig. 4).

The cut-out windows are centered in the local maxima and their
size is identical with the size of the square-shaped field of view
of HTM.

Second, for each generated window Wi⊂ SMCF we cal-
culate its centroid (branch B). Since some objects can generate
more than one regional maximum in the saliency map SMCF ,
we calculate the distance between all centroid pairs and merge
those pairs that are closer to each other than a certain thresh-
old. The result of such a merging procedure is a new "centroid"
with the coordinates which represent the final position of the
HTM window to be extracted from the original input image at
this location. The HTM window position is also adjusted do not
protrude outside the original image.

1

2

3

4

1

2

Figure 4: Illustration of the saliency and feature map and processes of the HTM
window position calculation. The top row shows examples of two multiobject
images from the input data set (left - partially cluttered, right - fully cluttered)
with the final HTM cut-out window marked as solid-line squares (each window
is numbered in its top left corner). In the middle row the corresponding com-
bined feature maps are visualized, and at the bottom, the final saliency maps
are displayed. The asterisks mark the local maxima found in the saliency maps.
The dashed rectangles illustrate the cut-outs from the combined feature map,
for which the individual centroids (triangles) are calculated (see Section 4). For
illustration, the image centroids calculated from the values of the saliency map,
are marked as small squares. In the window N.2, occuring in the top left im-
age, the final windows accepted (after centroid merging procedure) as the HTM
window, are enhanced. The window N.4 illustrates the situation when the cen-
troid, generated from the feature map, improves the accuracy of the window
placement.
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5. Computer experiments

5.1. Image object detection and recognition tasks

The visual object detection task is often considered inde-
pendently of an image object recognition (classification) task.
However, there exist computer vision and processing applica-
tions in which these two approaches emerge in a concerted and
complex task. The proposed compound system, including the
image saliency mapping (ISM), as well as the HTM part, is one
of such examples of "classifier-based object detection". The
evaluation of its performance required a design of specific tools
that is addressed in the following subsection 5.2 On the other
side, for a comparison of our method to other methods solving
this type of the tasks, we needed to choose suitable techniques.
In subsection 5.3 we describe two such benchmark techniques.
The results of the evaluation of the experiments of both types
are discussed in details in Section 6 – Results.

5.2. Design of image object detection and recognition experi-
ments

The compound system, we proposed for object recognition
in simulated clutter images, consists of two key subsystems, -
the intelligent HTM network, and - the image saliency mapping
(ISM) system that is responsible for detecting geometrical loca-
tions of individual objects occurring in a model of the complex
clutter image. Our primary goal was not to optimize the HTM
network with respect to its object recognition performance. The
goal was to concentrate ourselves on exploring a principal pos-
sibility to link the HTM network with ISM system which would
give the HTM multiobject detection capabilities. Therefore we
decided to reduce the computational complexity of the exper-
iments by applying the HTM network in its basic mode (one
level) that enabled, at the same time, to prepare a consistent
platform for its benchmarking with other methods. For evalua-
tion of the performance of the whole system, we proposed the
following experimental conditions:

1. first, the evaluation of the performance of the HTM net-
work in its basic mode applied to the task of single object
recognition,

2. second, the success of the HTM application to clutter im-
ages depends not only on the HTM system performance
alone, but primarily on the type of image saliency model
selected, and on the method of extracting windows of in-
terest in the generated saliency map. Therefore, before
evaluating the performance of the whole (ISM+HTM)
system, the performance of the ISM system alone had
to be evaluated,

3. finally, the overall recognition accuracy was evaluated for
the whole system, applied to the task of object recogni-
tion in clutter images.

Based on the overall evaluation methodology, we elaborated the
following more detailed steps of calculations:

A) to test the performance of the HTM subsystem in ideal
conditions, images with the single centered object and no clut-
ter (the input images) are randomly split into training (60%)

and testing (40%) sets. After the HTM network is trained on
the training set, the testing images are consecutively inferred
and classified by the learned HTM. We also generate a set of
testing images with random translation of the object by 0 to 10
pixels in either direction and test the recognition performance
of the HTM on this set separately. This is done to have the
HTMs performance evaluated not only in ideal conditions but
also in conditions similar to the image windows generated by
the saliency system which are expected to be slightly offset
even in the best case scenario. This whole process is repeated
10 times to achieve more consistent results.

B) the objective of the image saliency calculation is to pro-
vide a response function, the local maxima of which can in-
dicate areas of object occurrence in the given multiobject im-
age; exactly to such image areas should the HTM subsystem be
applied (see Fig.4). For characterization of the accuracy with
which the saliency map satisfies this objective, we proposed to
use two measures – localization accuracy and overlap. The
localization accuracy (LA) indicates how well a saliency map
pinpoints objects of interest in the images. The overlap indi-
cates the portion of the area of the object’s square bounding
box (defined in GTI) by which it overlaps the cut-out window.

We shortly describe the calculation of these two measures
for arbitrary cut-out window generated by ISM system. All
these windows have square shape and identical size with the
length of the diagonal denoted by d. First, we identify all such
bounding boxes of the individual objects from the GTI, which
have nonempty intersection with the given cut-out window. The
object whose bounding box has the greatest overlap with the
cut-out window represents the dominant object. We consider
then the centroid Co of the dominant object bounding box and
the centroid Cw of the given cut-out window. The maximum
allowed distance (deviation) of these two centroids can be lim-
ited by the threshold d/2 . Since distances d(Cw, Co) can vary
over the set of all simulated objects from GTI, we should nor-
malize them by the maximum allowed distance, i.e. by d/2 .
We exclude from the succeeding process the cases for which
inequality d(Cw, Co) >d/2 holds, and assign the LA = 0%
. For other cases, the localization accuracy is calculated using
the formula:

LA = (1− d(Cw, Co)

d̄/2
) ∗ 100% .

We see that the maximum possible LA=1 is reached when
the centroids Co and Cw coincide.

The overlap is a ratio of the area of the bounding box of
the dominant object intersecting the cut-out window to the total
area of the bounding box in the original GTI. We also evaluated
the recall of the attention system that represents the percentage
of correctly located objects of all objects present in the image.
The clutter measure shows the ratio of bounding boxes of all
other, non-dominant objects to the area of the cut-out. Finally,
we also counted the average number of cut-outs per image, i.e.
the number of object locations proposed by the ISM. In ideal
case, the number of cut-outs windows per image would be the
same as the order of that image.
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The overall recognition accuracy for the whole (ISM+HTM)
system is calculated as follows. First, the saliency maps are cal-
culated for each of the testing images. Then, the saliency maps
and their local maxima are used to generate object candidate
square windows. These are afterwards used for calculatation
of the final position of the given cut-out window (Fig.4). The
boundix boxes of the objects of the GTI are identified with the
individual windows. The final cut-out windows are fed to the
trained HTM. So, for each cut-out window, the inference is per-
formed using the HTM subsystem. The generated belief vectors
are afterwards classified using the algorithm described in Sec-
tion 2.3. For each image the number of correctly detected and
classified objects is calculated. The object detection is valid iff
the window is classified as one of the class of the GTI regions
that have a non-zero overlap with the window.

5.3. The benchmark experiments for comparison of the
(ISM+HTM) system to other techniques

Based on practical reasons (an application of standard and
verified software tools), for the benchmark experiments we have
selected two algorithms available as toolboxes in the MATLAB
software, namely: i) cascade object detectors [28], and ii) the
algorithms of object template matching in images [29].

5.3.1. Cascade detectors
The cascade detectors consist of several stages formed by

ensembles of weak learners. Each stage is trained using the
boosting technique and it labels the currently located region as
either positive or negative. Positive indicates that an object was
found and negative indicates no objects were found. The stages
are designed to reject negative samples as fast as possible. If the
label is negative, the classification of this region is complete,
and the detector slides the window to the next location. If the
label is positive, the classifier passes the region to the next stage.
The detector reports an object found at the current window lo-
cation when the final stage classifies the region as positive. The
individual cascades, which tend to be more and more complex
with higher stages, can incorporate various image features. In
our experiments we used: i) histograms of oriented gradients
(HOG) [30][31], ii) local binary patterns (LBP) [32][33], and
iii) "slanted" Haar features [34][35]. A true positive occurs
when a positive sample is correctly classified. A false posi-
tive occurs when a negative sample is mistakenly classified as
positive. A false negative occurs when a positive sample is mis-
takenly classified as negative. Even if the detector incorrectly
labels a non-object as positive, the mistakes can be corrected in
subsequent stages.

Using the MATLAB implementation we trained individual
detectors for three mentioned features. We used the same set of
training images of ten categories as in the case of (ISM+HTM)
system, i.e., single dominant objects on homogeneous back-
ground for each detector. To avoid the situation when detec-
tors are focused just on the background, we extended the set
of negative examples of objects by images consisted of merely
black background. Altogether each detector has been trained on
180 positive instances of objects from the given class and 1800

negative instances of other nine classes plus black background.
The number of the detector cascades was 4. After the extended
testing we have found optimized parameters of the applied al-
gorithms. The results of object detection via cascade detectors
applied to the set of multiobject images, introduced in Section
3, obtained for the optimized parameters, are described in Sec-
tion 6.

5.3.2. Template matching
In the domain of computer vision and image object detec-

tion, template matching represents another well-known and es-
tablished method that is suitable for our benchmark experiments.
Provided a set of templates – prototypes of the image objects
being detected in an image – is available, this method is based
on calculation of the 2D cross-correlation function between the
given template and the input image. There are several modi-
fications of the definition of the cross-correlation function. In
the MATLAB implementation, we utilized, two definitions are
used, i) the sum of the squared differences (SSD), and ii) the
normalized cross-correlation (NCC). The identical training im-
ages to those used for the HTM network and the cascade de-
tectors have been used as templates in our application of the
template matching. The organization of the experiments was
as follows. For each class of ten classes of image objects used
(see Section 3) in experiments with HTM, we calculated the
cross-correlation mapsMi(x, y) for all n object instances in the
class. Then a conjunctive cross-correlation map MAP (x, y)
for the selected object (template) class was calculated. The
conjunctive map can be computed either as a maximum, that
is MAP (x, y) = maxni=1Mi(x, y), or as an average of the in-
dividual maps, i.e. MAP (x, y) = [

∑
n
i=1Mi(x, y)] /n.

6. Results

6.1. Evaluation of the performance of the (ISM+HTM) system
As described in the previous chapter, we first evaluated the

HTM’s performance on the single object images where HTM
achieved 91.13% recognition accuracy (with standard deviation
(STD) of 0.76%) and 73.23% (STD 2.99%) on the randomly
translated images. We also tested the HTM’s performance on
the multi-object images of the 1st order without using the atten-
tion system, where it achieved recognition accuracy of 10.04%
(STD 0.4%), which is roughly equivalent to the random chance
(10% in our case – classification into 10 object classes). To
apply the HTM system to classification of objects present in
clutter images is not adequate, as the system is learned on a set
of single object images and it was not intended to be applied
directly to the images of such a type.

implementation details can be found at the Matlab web page:
http://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-

class.html
available at the web portal Matlab Central File Exchange:

http://www.mathworks.com/matlabcentral/leexchange/24925-fast-robust-
template-matching
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Next, we evaluated the performance of the attention system,
see Table 1. As we expected, the system performs better in im-
ages with partial clutter than in fully cluttered images. How-
ever, the accuracy was above 80% in all cases, with the maxi-
mum absolute average deviation from the true center of the ob-
ject of 15.25 pixels (considering 128×128 pixel windows) and
the minimum absolute average deviation 9.75 pixels. More im-
portant is that even though there are some decreasing trends, the
accuracy and overlap values are relatively similar regardless of
the number of objects present in the image, considering the par-
tially and fully cluttered images alone. The recall values were
above 90% and in most cases equal or very close to 100%. This
means the system is almost always successful in finding all of
the objects in the images. Interestingly, we can see that the re-
call for images of the 2nd and 4th order is slightly lower for
partially cluttered images. The trend is even more noticeable,
if one analyzes STD values. We hypothesize that inhomoge-
nous background can sometimes help the objects to stand out
more than at homogenous background. This can be seen in Fig.
4. The saliency map of the partially cluttered image (bottom
left) contains multiple maxima but only one of them is signif-
icant, the remaining regions have very low saliency. However,
both regions in the fully cluttered saliency map (bottom right)
contains maxima with roughly the same significance. The clut-
ter expectably increases with the image order, but it is at most
10.33%. In all experiments, the number of windows found by
the system was approximately the same as the number of the
objects per image in that particular data set, even though the
system had no a priori knowledge of the image order.

Further, we evaluated the HTM’s performance when it was
applied to the cut out windows generated by the attention sys-
tem. The classification accuracy (CA) values are shown in Ta-
ble 2. The best CA of 64.65% is achieved in the simplest case –
partially cluttered images of the first order – which is 29% de-
crease compared to centered ideal case images and 11.7% de-
crease when comparing to the translated single object images.
Moreover, the CA drops rapidly with increasing image order.
As it could be expected, the performance for the fully cluttered
images is much lower than for the partially cluttered images.
However, even in the worst case – fully cluttered image of the
8th order – the CA is almost 3 times higher (29.44%) than the
random chance.

6.2. Comparison of the image object detection accomplished
by the (ISM+HTM) system and by two benchmark tech-
niques

In the comparison experiments with object detection in multi-
images we used two important performance characteristics: "cor-
rect detection rate" (CDR) and "recall" (R). The correct detec-
tion rate is defined as a ratio of the number of correctly detected
image objects (true positives) to the number of all detected ob-
jects (true positives + false positives). The correct detection

Image
Type Measure

Order of Images

1 2 4 8

Pa
rt

ia
lly

C
lu

tte
re

d

localization
accu-
racy

88.63
±7.37

89.23
±5.55

89.04
±4.32

87.04
±3.92

overlap 90.26
±6.22

93.09
±4.82

94.23
±3.79

93.87
±3.36

recall 100.00
±0.00

98.24
±9.18

97.62
±7.55

95.91
±6.80

clutter 0.00
±0.00

0.78
±3.41

2.91
±4.62

10.25
±5.51

hits 1.11
±0.32

2.17
±0.63

4.31
±1.19

8.53
±2.35

Fu
lly

C
lu

tte
re

d

localization
accu-
racy

83.14
±11.55

84.09
±8.54

84.42
±6.27

83.63
±4.72

overlap 85.63
±9.56

89.22
±7.38

91.00
±5.61

91.36
±4.28

recall 100.00
±0.00

99.98
±0.52

99.48
±3.59

93.51
±8.45

clutter 0.00
±0.00

0.82
±3.35

3.07
±4.59

10.33
±5.47

hits 1.22
±0.46

2.35
±0.72

4.59
±1.30

8.55
±2.44

Table 1: Evaluation of the attention system. Each column represents the values
for different order of images.The values of accuracy, overlap, recall, and clutter
are shown as percentage; hits represents the absolute number of windows. The
values of the standard deviation (STD) are situated below the corresponding
characteristic value.

Image
Type

Order of Images

1 2 4 8

Partially
cluttered

64.65
±1.05

51.01
±1.93

43.60
±1.43

37.18
±1.18

Fully
cluttered

39.51
±3.71

34.57
±3.21

32.32
±2.49

29.44
±1.29

Table 2: Classification accuracy-CA of the HTM. The individual columns cor-
respond to the specific image order. The values represent the percentual CA of
the classification with its STD below.

rate decreases with increased number of false positives. On the
other hand, the recall is defined as a ratio of the number of cor-
rectly detected objects in a multi-image to the number of all
objects present in the image. Naturally, the increasing number
of improperly rejected positions in the image (false negatives)
results in decreased recall value.

The figure 5 shows the information flow in the system. Anal-
ysis of the flow suggests the following alternative representa-
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input
image

e: empty windows

o: detected objects

m: missed objects

object
classification I: incorrect classification

C: correct classification

i: necessarily incorrect classification

W

object
detection

ISM HTM

Figure 5: Flow of information in the proposed system composed of ISM and
HTM and quantities used for the definition of the evaluation measures: correct
detection rate CDR and recall R.

cascade detector parameters
feature scaleFact minSize maxSize mergeThr
HOG 1.05 108 130 350
LBP 1.05 110 130 360
Haar 1.01 120 130 500

Table 3: The optimized parameters for the cascade detectors applied to multi-
image object detection.

tions of the used measures:

CDR =
correctly classified objects

all classified objects
=

C

e+ o
=

C

C +W
,

R =
correctly classified objects

all objects present in the image
=

C

o+m
,

therefore, it can be seen that the CDR of the whole system
is the same as the classification accuracy of the HTM.

The simulation experiments were organized as a multiple
(10-times) random generation of the individual multi-images to
which the proposed compound (ISM+HTM) system and both
benchmark methods were applied. The generated multi-images
were used as ground true images with known location of objects
needed for calculations of comparison characteristics. The con-
dition of correct detection of an object, described in Section 5.2,
was applied to each cut out window.

6.2.1. Implementation and evaluation of the cascade detectors
performance

The MATLAB implementation (see Section 5.3.1) of the
cascade detectors required setting of four basic controlling pa-
rameters. We carried out a number of tests for finding op-
timum values of these parameters. Although the spatial res-
olution of testing images was 128×128 pixels, based on the
tests we set the parameter minSize (initial expected size of
objects) to the value 100, i.e. we used the images of 100×100
pixels. The parameter scaleFactor defines the step of grad-
ual object enlargement, beginning at minSize up to the maxi-
mum size maxSize. The object detection was repeated at each
scale. The parametermergeThreshold determines the number
of scales at which the object has to be detected at the given lo-
cation to be accepted as object position. The maximum admis-
sible number of erroneous positive detections at each cascade
(FalseAlarmRate) was set to 10 %. The optimized values of
the controlling parameters of the cascade detectors are listed in
Table 3.

or
de

r features
image type HOG LBP Haar ISM+HTM

1 19.35 18.28 18.73 64.65
partially 2 18.57 17.16 17.90 51.01
cluttered 4 19.54 18.84 17.83 43.60

8 20.78 23.26 20.00 37.18
1 4.90 12.04 8.13 39.51

fully 2 6.18 13.54 10.28 34.57
cluttered 4 7.60 14.31 12.62 32.32

8 9.63 15.13 15.14 29.44

Table 4: The values of the CDR (in %) obtained by three versions of the cas-
cade detectors and by the proposed (ISM+HTM) system for partially and fully
cluttered testing multi-images.

or
de

r features
image type HOG LBP Haar ISM+HTM

1 47.03 42.88 59.34 71.76
partially 2 41.05 36.92 52.48 55.35
cluttered 4 35.63 31.99 47.36 46.98

8 27.99 25.15 36.80 39.64
1 44.24 39.58 56.12 48.20

fully 2 37.11 35.45 48.15 40.62
cluttered 4 30.45 31.63 41.50 37.09

8 25.15 25.51 33.60 31.46

Table 5: The values of the recall (in %) obtained by three versions of the cas-
cade detectors and by the proposed (ISM+HTM) system for partially and fully
cluttered testing multi-images.

In Table 4 the values of the correct detection rate achieved
by three versions of the cascade detectors for partially clut-
tered and fully cluttered multi-images are mentioned. The val-
ues of the same characteristic reached by the compound system
(IMS+HTM) are located in the last column of the table. In all
test cases, our system achieved the highest CDR. It should be
emphasized that the results achieved by our compound system
applied to fully cluttered images are significantly better than for
any of the cascade detectors.

In Table 5 the values of the recall are shown which were
achieved by three versions of the cascade detectors for partially
cluttered and fully cluttered multi-images. The values of the
recall reached by the compound system (IMS+HTM) are again
located in the last column of the table. In the partially cluttered
images, our system achieved the best recall in 3 out of four
cases. For the fully cluttered multi-images, the best results were
reached by the cascade detector using the Haar feature, however
the results of the application of (IMS+HTM) were comparable.

6.2.2. Implementation and evaluation of the template matching
performance

In the case of template matching we used MATLAB imple-
mentation (see Section 5.3.2). This implementation comprises
the code of both above mentioned methods NCC and SSD (sub-
section 5.3.2). For merging the individual maps we applied the
average method (denoted as φ), as well as maximum method
(denoted as M ). Altogether we tested four versions of the tem-
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plate matching procedures. In the final step of detection, it is
necessary to set a suitable threshold for accepting some local
maxima of the conjunctive cross-correlation maps for the tem-
plates of the given class. If the value of the local maximum
of the map is lesser than the threshold, the presence of the ob-
ject in the detected position is refused. Otherwise, the object is
accepted and its center is identified as the position of the corre-
sponding map maximum. For the verification of the correctness
of the object detection, the method identical with that used in
the case of the (ISM+HTM) system was used. The values of
the CDR obtained by the template matching methods in two
versions for partially and fully cluttered testing multi-images
are listed in Table 6. To enable direct comparison we included
in the table also the CDR values obtained by the (IMS+HTM)
system.

or
de

r

methods
IS

M
+H

T
M

image type NCC SSD

φ M φ M

1 10.06 15.52 1.94 3.25 64.65

partially 2 13.80 20.48 6.46 6.62 51.01

cluttered 4 17.96 30.57 12.39 12.51 43.60

8 21.72 45.52 19.13 22.14 37.18

1 2.51 6.26 0.08 1.90 39.51

fully 2 4.15 9.33 0.10 3.02 34.57

cluttered 4 7.04 14.85 0.29 5.08 32.32

8 11.08 21.99 0.86 9.18 29.44

Table 6: The values of the CDR (in %) obtained by four versions of the template
matching methods and by the proposed (ISM+HTM) system for partially and
fully cluttered testing multi-images.

Similarly to the cascade detectors, our system outperformed
all template matching methods in all testing conditions. Com-
paring solely the template matching methods, the the best over-
all CDR was achieved by the (NCC -M methods, both in par-
tially and fully cluttered multi-images.

The values of the recall measure achieved in testing all four
versions of the template matching algorithms are included in
Table 7. In partially cluttered images, the best performing method
was the (NCC-M ) template matching. However, as soon as
clutter was introduced, its recall dropped below the values achieved
by our method.

7. Conclusions

The basic goal of our research was to extend the domain of
present applications of the HTM network (exclusively to one
object images) to classification of objects located in "clutter"
(multi-object) images. We have proposed to enhance the clas-
sification functionality of the HTM network by means of a vi-
sual attention-based system. Similarly to the HTM inteligent

or
de

r

methods

IS
M

+H
T

M

image type NCC SSD

φ M φ M

1 100.00 97.58 31.58 81.67 71.76

partially 2 69.08 84.63 33.54 59.75 55.35

cluttered 4 44.92 69.81 30.00 43.44 46.98

8 27.16 54.10 23.55 32.50 39.64

1 32.83 44.00 8.25 29.33 48.20

fully 2 27.25 35.83 9.34 25.21 40.62

cluttered 4 23.31 31.56 9.77 21.77 37.09

8 17.13 24.68 10.31 18.93 31.46

Table 7: The values of the recall (in %) obtained by four versions of the tem-
plate matching methods and by the proposed (ISM+HTM) system for partially
and fully cluttered testing multi-images.

network, also the interconnection of HTM to ISM was biolog-
ically inspired. The basis of this system was adopted from two
papers [2] and [1]. We have modified it and appended to it a
novel algorithm for the image saliency map calculation. We
have also developed a particular scheme for the combination
of three parallel HTM networks which can separately process
color, texture, and shape information from color images. This
scheme is based on the results of our preceding research into
optimum features used as input data of the individual HTM net-
works. We have evaluated the attention system and the HTM’s
performance separately. The evaluation of the attention sys-
tem shows promising results in the sense that the system can
satisfactorily locate objects in images with several objects on
inhomogenous background. Albeit the HTM’s performance is
significantly lower than in the ideal case (centered single object
images), it is still relatively high in most cases, considering the
classification into 10 object classes.

Two benchmark methods of object detection in multiob-
ject images have been deployed for comparison of their perfor-
mance with the performance of the proposed combined system
(IMS + HTM). We selected the cascade detectors, as well as the
template matching algorithms from the MATLAB set of Tool-
boxes. For the performance evaluation of all three approaches
we used two basic characteristics, the correction detection rate
(CDR) and Recall (R). The obtained results of computer ex-
periments with cluttered multiobject images are summarized in
previous Section 6. Based on the detailed discussion of these
results we can draw the following conclusions:

• the visual attention system alone achieves satisfactory high
values of the recall, for the highest simulated image com-
plexity (eight objects) in the fully cluttered (inhomoge-
neous background) images, the valueR = 93.51 is reached;
for partially cluttered multi-images (type 8) the highest
recall value 54.10 was achieved for template mnatching
method (NCC-M ), however the recall value 39.64 achieved
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by the (IMS+HTM) system was the second one,

• on the other side, for fully cluttered multi-images (type
8) the maximum recall 33.6 was obtained for the cascade
detector with Haar basis; the recall value 31.46 obtained
for (ISM+HTM) system in this case is quite comparable,

• the values of the CDR of the system (IMS+HTM) were
significantly higher than the values reached by both bench-
mark methods,

• in this paper we did not address the issues related to the
optimization of the HTM network itself, even though it
turned out that the combination of the HTM with a so-
phisticated system of visual attention opens possibilities
of the HTM application to more complex (clutter) images
in tasks of object detection,

• on the other side, there are a number of open issues which
can be tackled in the future research, e.g., making the
learning phase of the HTM network more robust to the
training images shifted in various directions, resulting in
increasing the value of CDR for the whole (IMS+HTM)
system, also more levels of the HTM network could cer-
tainly contribute to better generalization of the learning
process,

• especially challenging directions of the future research
appeared recently, namely, to explore possibilities of co-
operating the HTM with a suitable convolution neural
networks (CNN), and/or research into relations among
IMS, HTM, and CNN in various combinations.
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