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Abstract—This paper focuses on the development of an op-
timization algorithm for car motion predictive control that
addresses both hybrid car dynamics and hybrid minimiza-
tion criterion. Instead of solving computationally demanding
nonlinear mixed-integer programming task or approximating
the hybrid dynamics/criterion, the Hamiltonian-switching Hybrid
Nonlinear Predictive Control algorithm developed in this paper
incorporates the information about hybridity directly into the
optimization routine. To decrease the time-complexity, several
adaptive prediction horizon approaches are proposed and for
some of them, it is shown that they preserve maneuverability-
related properties of the car. All developed alternatives are
verified on an example of a motion control of a racing car
and compared with the approximation-based nonlinear predictive
control and a commercial product. Moreover, sensitivity analysis
examining robustness of the algorithm is included as well.

Index Terms—Optimization, Nonlinear Model Predictive Con-
trol, Vehicle Control, Hybrid Systems.

I. INTRODUCTION

AUTOMOTIVE industry is currently one of the most
dynamically evolving engineering branches. Over the last

years, huge progress towards an autonomous car has been
witnessed [1], [2], [3], [4], [5] and out of the available control
methods able to replace a human driver, the model predictive
control (MPC) can be labeled as the most perspective one.

The most frequent variant is the linear MPC [6], [7],
[4]. Although computationally simple, such simplifications
of the nonlinear dynamics/nonlinear cost criterion provide
only suboptimal performance. Several works present nonlinear
variant of the MPC, however, they usually focus only on
steering control [8], [1], [9]. The nonlinear MPC proposed in
the current paper provides steering, acceleration and braking
control and focuses on both the satisfaction of the safety
constraints and maximization of the performance indicators.

Certain complication arises from the strongly nonlinear
nature of sideslipping effects. One option is to model these
effects by a steering efficiency coefficient being a piece-
wise continuous function of the forward velocity leading to
a hybrid description of the car dynamics. The attractiveness
of the hybrid description consists in replacing one complicated
nonlinear function with a series of simpler sub-functions.
Such approach is widely exploited in aerospace applications,
chemical or electrical engineering [10], [11], [12], [13].
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Usually, mixed-integer programming (MIP) solvers are ex-
ploited to handle the hybrid optimal control problems [14],
[15], [16] – however, the nonlinear MIP tasks are known to
be NP-hard with exponentially growing time/computational
demands [17], [18]. Some works [19], [20] propose alter-
natives to use of MIP solvers, however, they either rely on
restrictive assumptions such as a priori knowledge of the
sequence of the active sub-dynamics or perform a possibly
time-consuming preprocessing procedure. In this work, we
develop an approach that neither requires knowledge of the
future system behavior nor solves the given task by the
demanding MIP techniques. The proposed algorithm avoids
complex multiphase preprocessing and exploits hamiltonian-
switcher, an auxiliary variable that enables the solver to handle
optimization with switched-dynamics system and hybrid cost
criterion directly as an ordinary nonlinear-programming task.

As indicated, the computational burden is one of the
weaknesses of the optimization-based approaches. Although
dividing the “global” control task into smaller pieces and
using decentralized approach [21] might decrease the com-
putational complexity, the price to be paid is the loss of
optimality. However, since the complexity of the optimization
task depends on the length of the optimization horizon, it
can be significantly reduced using adaptive horizon. In this
paper, several alternatives are proposed with certain interesting
safety-related guarantees.

The paper is organized as follows. Sec. II introduces the
control task including vehicle behavior description, control
requirements and constraints. Sec. III deals with the mathe-
matical aspects of the problems the newly proposed algorithm
focuses at, formulates a novel hamiltonian-switcher-based
algorithm being one of the main contributions and explains
adaptive prediction horizon approaches standing for the next
contribution of the paper. In Sec. IV, the results obtained
from numerical experiments are presented. Sec. V inspects
robustness of the proposed control algorithm with respect to
parameter perturbations and Sec. VI concludes the paper.

II. CAR MOTION MODELING, OBJECTIVES AND
CONSTRAINTS

IN the role of the test-bed system, a racing car with hybrid
steering coefficient was chosen.

A. Car modeling

Car dynamics modeling is a highly delicate task since the
real car behavior is influenced by many factors, which i) are
constant (car mass, size, wheelbase), through those that ii) vary
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slightly/slowly (e.g. road inclination) up to those that iii) are
highly nonlinear/stochastic (aerodynamic (im)perfections and
their influence, car/road technical conditions and others).

In the literature, two main modeling branches are followed:
kinematic (non-holonomic) modeling [22] and dynamic mod-
eling [23]. While the dynamic modeling provides accurate
models useful for simulation and analysis, the kinematic (non-
holonomic) models are simpler and have low computational
requirements, which is very attractive for model-based control
systems. On the other hand, they do not capture more compli-
cated behavior such as side-slipping. In this manuscript, this
is overcome by a hybrid coefficient that models side-slipping
as decrease of the steering effectiveness.

The car dynamics is considered as follows:

x1,k+1 = (p1 − p2Bk)x1,k + p3Dk,

x2,k+1 = x2,k + p4α(x1,k) tan(Sk)x1,k,

x3,k+1 = x3,k + p5 cos(x2,k)x1,k,

x4,k+1 = x4,k + p5 sin(x2,k)x1,k, (1)

where the forward speed x1 (ms−1), vehicle orientation
x2 (rad) and its x- and y-position {x3, x4} (m) represent the
state vector x = [x1, x2, x3, x4]T. For visualization, see Fig. 1.
Regarding the manipulated variables u = [D,B, S]T, they cor-
respond to normalized acceleration force D (−), normalized
braking force B (−) and steering angle S (rad).

X2

X1

{X3,X4}

Fig. 1. State variables.

p1 expresses how much the car velocity is preserved in the
no-gas-no-braking case and meaningful values are those close
to 1. Driving a non-inclined road with a tarmac surface, the
p1 is typically slightly lower than 1 mainly due to ubiquitous
friction and air resistance. Lower sub-1 values are caused by
driving a rougher terrain (increased friction), uphill driving
(effect of gravitational force) or aerodynamic imperfections
(increased drag coefficient), while slightly super-1 values
indicate downhill driving. In this manuscript, p1 = 0.999.
p2 represents the braking effect. Since the braking deceler-

ation might vary from 4.5 up to almost 9.8 ms−1, considering
sampling period of 0.1 s and p1 = 0.999, p2 can range from
slightly less than 0.02 to slightly more than 0.04 depending on
the velocity, vehicle/road technical conditions and properties
(wet/icy road, bald tires, mass distribution). p2 = 0.03 used
in model (1) yields a 100-to-0-kph braking distance of around
85 m which is a reasonable value for rather unpaved surfaces.

The acceleration modelled by p3 is affected by factors
similar to those influencing p1 and p2. p3 = 0.35 ms−1 chosen
here corresponds to 0-to-100-kph time around 8.5 s.

p4 reflecting the influence of the car velocity and steering
command on the car orientation is obtained as a product of
the sampling period and the reciprocal of the wheelbase of the
vehicle. In this manuscript, p4 = 36.36 × 10−3 is assumed,
which corresponds to a wheelbase of 2.75 m.

As mentioned, non-holonomic models describe the vehicle
dynamics with sufficient accuracy at lower speeds and con-
sidering perfect adherence, however, they do not reflect side-
slipping effects. In this manuscript, the side-slipping is inter-
preted as decrease of steering effectiveness and is modelled
by a piece-wise continuous coefficient α(x1) that equals 1 at
lower speeds x1 ≥ v1, decreases linearly between v1 and v2

and decays exponentially at speeds x1 > v2:

α(x1) =

 α1(x1) = 1 0 ≤ x1 ≤ v1,
α2(x1) = a1x1 + a2 v1 < x1 ≤ v2,
α3(x1) = a3 exp(a4 x1) v2 < x1;

(2)
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Fig. 2. Hybrid steering coefficient α(x1).

For graphical interpretation of α(x1), see Fig. 2. The
parameters {p1, p2, p3, p4, p5}, {v1,2} and {a1, a2, a3, a4} of
(1) and (2) are provided in Tab. I. Further information on car
dynamics and modeling can be found in [24], [25], [23], [22].

TABLE I
SYSTEM PARAMETERS.

Parameter Value Parameter Value

p1 (−) 99.9× 10−2 a1 (m−1s) −4.5× 10−2

p2 (−) 3× 10−2 a2 (−) 181× 10−2

p3 (ms−1) 35× 10−2 a3 (−) 1913.22× 10−1

p4 (rad m−1s) 36.36× 10−3 a4 (m−1s) −19.15× 10−2

p5 (s) 1× 10−1 {D,D} (−) {0, 1}
v1 (ms−1) 18 {B,B} (−) {0, 1}
v2 (ms−1) 35 {S, S} (rad) {−π/6, π/6}

B. Objectives and constraints

In automobile racing, the lap time is usually minimized.
This can be transformed into speed x1 maximization which
then stands for the performance-part of the overall criterion.

The second aspect of the same (if not even greater) impor-
tance is the safety, which turns into a requirement that the car
stays on the track with a pre-defined width W . As usual in
car racing, some pre-defined tolerance ∆r is admitted.

The only technical constraints are those imposed on the
manipulated variables D, B and S:

D ≤ D ≤ D, B ≤ B ≤ B, S ≤ S ≤ S. (3)

The numerical values of {D,D}, {B,B} and {S, S} can be
found in Tab. I.
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III. CONTROLLER DESIGN

IN THIS SECTION, a novel optimization algorithm for
hybrid nonlinear predictive control is proposed and its

application to the investigated task is explained.

A. Hybrid nonlinear predictive control algorithm

Let us introduce a general description of a discrete-time
system with switched dynamics as follows:

xk+1 = F (xk, uk, sd,k), (4)

where the dynamics switcher sd,k = Sd(xk, uk) indicat-
ing the current system dynamics is obtained by a mapping
Sd : Rn+m 7→ {1, 2, . . . , Nd}. Here, n and m are the dimen-
sions of states x and inputs u and Nd ∈ N+ is the number of
switched dynamics. Moreover, let

F (xk, uk, 1) = f1(xk, uk),

F (xk, uk, 2) = f2(xk, uk),

...
F (xk, uk, Nd) = fNd

(xk, uk), (5)

where fsd,k(xk, uk) expresses the particular sub-dynamics.
The hybrid optimization criterion J minimized at each time

k is considered in the following form:

J =

k+P∑
i=k+1

L(xi, ui, sc,i) (6)

with prediction horizon P ∈ N+. Next, assume that the
function L can be expressed as

L(xk, uk, 1) = l1(xk, uk),

L(xk, uk, 2) = l2(xk, uk),

...
L(xk, uk, Nc) = lNc(xk, uk) (7)

with lsc,k(xk, uk) being the particular sub-criterion term. Here,
the criterion switcher sc,k = Sc(xk, uk) is obtained by a
mapping Sc : Rn+m 7→ {1, 2, . . . , Nc}, where Nc ∈ N+ is the
number of the hybrid parts of the cost criterion term L.

Then, the optimization task is summarized as follows:
For given initial condition x−, find

u∗ = arg minJ (x, u, sd, sc) (8)

w.r.t. xk+1 = F (xk, uk, sd,k),

umin ≤ u ≤ umax,

sd,k = Sd(xk, uk) ∈ {1, 2, . . . , Nd},
sc,k = Sc(xk, uk) ∈ {1, 2, . . . , Nc}. (9)

The common implementation (further referred to as a priori
switching model predictive control algorithm, APS-MPC) per-
formed at each sampling instance k is as follows:

APS-MPC
1) according to the last measured states x− and the last

applied inputs u−, evaluate the dynamics switcher sd =
Sd(x−, u−) and the criterion switcher sc = Sc(x−, u−);

2) find u∗ minimizing J =
∑k+P

i=k+1 lsc(xi, ui) such that
xk+1 = fsd(xk, uk) with the state initial conditions x−

and umin ≤ u ≤ umax;
3) apply the first sample of the optimized input u∗ into the

system, wait for the next measurement, repeat from 1).

The APS-MPC approach eliminates the hybridity by eval-
uating Sd and Sc prior to solving the optimization task and
assuming sd and sc constant over the whole P , which enables
use of the standard NLP solvers instead of more demanding
MINLP in step 2) of APS-MPC.

While for systems with slow dynamics/rare switching and
criteria with wide hybrid intervals, potential issues with valid-
ity of the approximation are not crucial, a suitable alternative
needs to be found for less trivial cases. Here, one such al-
ternative – Hamiltonian-switching hybrid nonlinear predictive
control algorithm (HaSH-NPC) – is derived as an adaptation
of the Hamiltonian-based gradient method [26], [27].

The original gradient algorithm makes use of the Hamilto-
nian H(x, u, λ) = λT

k+1F (xk, uk) + L(xk, uk). In the hybrid
case with system dynamics (5) and criterion term (7), it can
be derived that

H(x, u, λ) =

λT
k+1f1(xk, uk) + l1(xk, uk) iff sd = 1, sc = 1,
λT
k+1f1(xk, uk) + l2(xk, uk) iff sd = 1, sc = 2,

...
λT
k+1f1(xk, uk) + lNc(xk, uk) iff sd = 1, sc = Nc,
λT
k+1f2(xk, uk) + l1(xk, uk) iff sd = 2, sc = 1,

...
λT
k+1fNd

(xk, uk) + lNc
(xk, uk) iff sd = Nd, sc = Nc.

To make the above description more compact, let us introduce
a hamiltonian-switcher sh = Sh(sd, sc),

Sh : {1, 2, . . . , Nd}×{1, 2, . . . , Nc} 7→ {1, 2, . . . , Nh}. (10)

Here, Nh ∈ N+ corresponds to the number of all possible
Hamiltonian relations for the hybrid optimization problem.
The mapping Sh can be with advantage chosen as

Sh(sd, sc) = (sd − 1)Nc + sc. (11)

Then, the hybrid-problem Hamiltonian can be constructed as

H(x, u, λ, sh) = Hsh(x, u, λ) = λT
k+1fsd(xk, uk)+lsc(xk, uk).

(12)
Instead of approximating the hybridity, the novel HaSH-NPC
algorithm incorporates the information about it directly into
the optimization algorithm and handles the problem correctly.
The HaSH-NPC algorithm description follows.

HaSH-NPC
Obtain the state measurements x− and initial input profile
estimate U0; then iteratively repeat:

1) use the initial condition x0 = x− corresponding to
the currently measured states and input profile from
the previous iteration U l−1 to obtain the state trajecto-
ries X = [x0, x1, . . . , xP ] according to (4); store the
dynamics-switcher profile Sd = [sd,1, sd,2, . . . , sd,P ];
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2) evaluate the criterion-switcher mapping Sc(X,U l−q)
and obtain the criterion-switcher profile
Sc = [sc,1, sc,2, . . . , sc,P ];

3) according to mapping (11), obtain hamiltonian-switcher
profile Sh = [sh,1, sh,2, . . . , sh,P ];

4) create the piece-wise continuous Hamiltonian
H(x, u, λ, sh) according to (12), calculate its derivatives
with respect to x and u;

5) evaluate the co-state backward dynamics

λk =
∂H
∂x

(xk, u
l−1
k , λk+1, sh,k)=

∂Hsh,k

∂x
(xk, u

l−1
k , λk+1)

with λP = ∂J/∂x|P ; obtain the co-state trajectory Λ =
[λ0, λ1, . . . , λP ];

6) evaluate the gradient ∂H/∂u, obtain input profile U l by
performing the gradient step as follows:

U l = U l−1 − αl
∂H
∂u

(X,U l−1,Λ, Sh),

= U l−1 − αl
∂HSh

∂u
(X,U l−1,Λ); (13)

7) project U l on the admissible interval 〈umin, umax〉;
8) if ‖U l − U{∗,l−1}‖ ≤ ε1 ∨

∣∣J(U l)− J(U l−1)
∣∣ ≤ ε2,

ε1 > 0, ε2 > 0, where

U{∗,l−1} = arg min(min{J(U0), J(U1), . . . , J(U l−1)})

then terminate; apply the first sample of U{∗,l} into the
system, wait for the new measurements, go to 1);
else l = l + 1, repeat from 1).

Let us note that the search step length choice is a highly
complicated and still open question. While computationally
least demanding, constant search steps often provide poor
convergence performance. On the other hand, search steps
obtained by a line search usually yield best convergence
performance, however, their calculation might be prohibitively
time-consuming. A fair trade-off is offered by the heuristically
chosen cost-function-dependent search steps that i) are small
(and prevent oscillations) if the cost criterion decreases rapidly,
and ii) increase (and speed-up the convergence) if the cost
criterion change is small. Moreover, their computational de-
mands are negligible since they can be expressed analytically.
In this paper, the search step length αl is considered as
a function of the cost criterion value decrease ∆Jl−1 =
|J(U l−1)− J(U l−2)| as follows,

αl = βmax(α,min(α,− log10(∆Jl−1))), (14)

where β � 0 and α > α� 0 shape and constrain the step.

B. Control design

As indicated, the performance-part of the criterion mini-
mized over prediction horizon P ∈ N+ is expressed as

Jp =

k+P∑
i=k+1

−x1,i. (15)

The satisfaction of the safety requirements can be accom-
plished in several ways. The first option is to track the central

line given by {xcent,k, ycent,k}, which, however, disables speed
optimization. Rather than that, keeping the x- and y-position
within admissible limits is more advantageous. To handle this,
a new state x5 (m) representing the total driven distance is
introduced and the model (1) is extended as follows:

x{1,...,4},k+1 =̂ (1),

x5,k+1 = x5,k + p5x1,k. (16)

Similarly to [28], [29], elimination of hard state constraints
related feasibility issues is provided by introducing relaxed
safety-part of the minimization criterion formulated as follows:

Js =

k+P∑
i=k+1

L(x3,i, x4,i,CX(x5,i),CY (x5,i)), (17)

where

L =


0 ri < R,
|ri −R| R ≤ ri < R+ ∆r,
ω3(ri −R)2 R+ ∆r ≤ ri.

(18)

Here,

ri =
√

(x3,i −CX(x5,i))2 + (x4,i −CY (x5,i))2 (19)

represents the distance of the car from the central line
[CX ,CY ], R = W/2 is the half-width of the track, ∆r is
the considered tolerance and ω3 is a weighting parameter.

Having specified a set of discrete points {xcent, ycent}
lying on the central line and the corresponding driven dis-
tances {dcent} and exploiting spline interpolation techniques
[30], functions CX(x5) and CY (x5) can be obtained as
CX ≈ xcent(dcent), CY ≈ ycent(dcent), and then directly
incorporated into the cost criterion (20).

To avoid simultaneous use of gas and brake, additional
minimization term DkBk is considered. The overall criterion
for the predictive controller is then formulated as

Jk = ω1Jp + ω2Js +

P∑
i=k

DiBi, (20)

Jp and Js correspond to (15) and (17), respectively, and ω1

and ω2 are user-defined weights. The values of ω{1,2,3}, R
and ∆r are listed in Tab. II. Last of all, let us note that the
solution is required to respect the hybrid dynamics (16) with
Nc = 3 and Nd = 3 and satisfy constraints (3).

TABLE II
CASE STUDY PARAMETERS.

Parameter Value Parameter Value

R (m) 3.5 ω2 (−) 100
∆r (m) 0.5 ω3 (−) 2
ω1 (−) 7

C. Adaptive prediction horizon

Prediction horizon is one of the key parameters specifying
the trade-off between computational complexity and optimal-
ity. The idea of adaptive prediction horizon comes in very
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naturally in case of car motion control – intuitively, the higher
the velocity is, the longer horizon is needed to handle the car
satisfactorily and respect the track constraints. In this work,
three adaptive prediction horizon approaches are considered.

1) Linear adaptive horizon (θ-P approach): The prediction
horizon is calculated using [θx−1 ] being the nearest integer to
a θ-multiple of x−1 ,

P = max(1, [θx−1 ]), (21)

where θ > 0 is a tuning parameter. Despite simple calculation,
the choice of the parameter θ is very tricky and depends
heavily on the current track – combination of long straight
parts where the car velocity increases rapidly and short sharp
curves demanding intensive braking requires higher θ while
presence of only low-curvature passages might allow also for
lower θ. Absence of such information can degrade the control
performance considerably – this shortcoming is eliminated by
the more advanced alternatives for adaptive prediction horizon.

2) Nominal logarithmic adaptive horizon (nom-log-P ap-
proach): In this case, the horizon P is calculated as

P =

{
1 x−1 ≤ v1,

1 +
⌈
logp

(
v1
x−
1

)⌉
v1 < x−1 ,

(22)

where p = p1 − p2B < 1 represents the velocity dynamics
coefficient with maximum braking and minimum acceleration.
Here, dεe denotes the smallest integer not less than ε. Now,
let us define the nominal car dynamics as dynamics (1) with
x1 ≤ v1, i.e. α(x1) = 1, and let us specify the preservation
of nominal maneuverability as the physical capability of the
car to drive over a trajectory that is realizable by the nominal
car dynamics. Then, the following statement can be made:

Theorem 1. Consider a vehicle with dynamics (16) with
p = p1−p2B < 1 and D = 0. Let us assume that given initial
conditions x−, an optimal controller OC∞ with prediction
horizon P =∞ with respect to criterion (20) and constraints
(3) results in sup(rk) ≤ R+ ∆r. Then, given the same initial
conditions x−, an optimal controller OC? with prediction
horizon P ? calculated according to (22) preserves nominal
maneuverability and also leads to sup(rk) ≤ R+ ∆r.

Proof. The only difference between the nominal car dynamics
and the dynamics of the real car is caused by the fact that
α(x1,k) < 1 ⇔ x1,k > v1. Assuming an optimal controller,
it can be expected that given enough information about the
upcoming trajectory (represented by infinite prediction horizon
P = ∞), the controller decreases the velocity x1,k such that
α(x1,k) = 1 when necessary. Here, it should be noted that
infinite prediction horizon in fact collapses to a horizon of such
finite length that the whole tracks is covered. A controller with
shorter P (not covering the whole track) is able to ensure such
decrease only in case that P is large enough to bring x1 from
x1,0 = x−1 to x1,P < v1 with Dk ≡ D, Bk ≡ B. Directly
substituting Dk ≡ D, Bk ≡ B and P ? calculated according
to (22) into the dynamics of the car (1), the nonlinear velocity
dynamics turns into a linear one,

x1,k+1 = px1,k, (23)

with p = p1 − p2B < 1. Then, x1,P? = pP
?

x−1 . Obviously,
x−1 ≤ v1 yields P ? = 1, x1,P?−1 ≤ v1 and α(x1,P?−1) = 1.
For x−1 > v1, the substitution leads to

x1,P? =

(
p

(
1+

⌈
logp

(
v1

x
−
1

)⌉))
x−1 ≤ p

v1

x−1
x−1 < v1. (24)

Furthermore,

x1,P?−1 ≤
v1

x−1
x−1 ≤ v1 ⇔ α(x1,P?−1) = 1, (25)

which means that x2,P? evolves from x2,P?−1 according to the
nominal car dynamics and therefore, P ? calculated according
to (22) provides enough information to preserve nominal
maneuverability.

3) Super-nominal logarithmic adaptive horizon (S-nom-log-
P approach): Inspecting the dynamics (1), it can be seen that
the function tan(S) is multiplied not only by the α(x1) but by
the maneuverability product pM (x1) = x1α(x1) that specifies
the resulting efficiency of the steering S.
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Fig. 3. pM (x1) and super-nominal maneuverability range 〈0, v+
1 〉, detail.

Looking at Fig. 3, it is obvious that the value of the pM can
be even higher than v1α(v1). Let us call such values super-
nominal values of pM and let us define the super-nominal
maneuverability range as

〈0, v+
1 〉 = {x1| pM (x1) ≥ v1α(v1) ∨ α(x1) = 1}.

The value of v+
1 can be found as the higher solution of the

equation pM (x1) = v1α(v1). Let us also specify the preser-
vation of super-nominal maneuverability as the capability of
achieving that the x2,P−1 evolves to x2,P with either super-
nominal pM or nominal α = 1.

Now, let us have P calculated based on x−1 as follows

P =

{
1 x−1 ≤ v

+
1 ,

1 +
⌈
logp

(
v+
1

x−
1

)⌉
v+

1 < x−1 ,
(26)

and formulate the following statement.

Theorem 2. Consider a vehicle with dynamics (16) with
p = p1−p2B < 1 and D = 0. Let us assume that given initial
conditions x−, an optimal controller OC∞ with prediction
horizon P =∞ with respect to criterion (20) and constraints
(3) results in sup(rk) ≤ R+ ∆r. Then, given the same initial
conditions x−, an optimal controller OCs? with prediction
horizon P s? calculated according to (26) preserves super-
nominal maneuverability and also leads to sup(rk) ≤ R+∆r.
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Furthermore, the following holds for the average value of
prediction horizon exploited by controllers OCs?, OC?:

mean(P s?|OCs?) ≤ mean(P ?|OC?).

Proof. The first part of the proof is similar to the previous
case and consists in direct substitution of Dk ≡ D, Bk ≡ B
and P s? calculated by (26) into (1). Having accomplished this,
it can be shown that with x−1 > v+

1 and P s?,

x1,P s?−1 =

(
p

⌈
logp

(
v
+
1

x
−
1

)⌉)
x−1 ≤

v+
1

x−1
x−1 ≤ v

+
1 , (27)

i.e. the velocity can be decreased from x−1 > v+
1 such that the

super-nominal maneuverability range is reached at k = P s?−1
and x2,P s? can evolve from x2,P s?−1 with super-nominal pM .

The second part of the proof comes from the comparison of
expressions (22) and (26) – since v1 ≤ v+

1 , P s?(x−1 ) calcu-
lated according to (26) is not higher than P ?(x−1 ) calculated
by (22) for any value of x−1 .

Remark. Considering r as an additional system output and
Radm = 〈0, R + ∆r〉 as admissible set for r, a controller
can be found stabilizable if it ensures that rk ∈ Radm ∀k ≥
0 iff r0 ∈ Radm or limk→∞ rk = ra ∈ Radm iff r0 /∈ Radm.
From the above mentioned, it can be deduced that starting from
initial conditions r0 ∈ Radm, suitably tuned optimal controller
with the proposed adaptive prediction horizon is able to keep
r within the admissible bounds given that this is achievable
by the nominal car, which means that Radm = 〈0, R + ∆r〉
is forward invariant with the proposed predictive controller
and the adaptive predictive horizon. This covers the first
part of the stability requirements. The second part of the
stability requirements is covered by incorporating the track
violation into the criterion (20). Since the controller makes
control moves in the direction of negative gradient of the
cost function, choosing suitable weights makes the non-zero
safety part of the criterion decrease gradually from time k−1
to k, i.e. Js,k ≤ Js,k−1. Therefore, if r0 /∈ Radm, the
controller produces a series of control moves uk such that
limk→∞ rk = ra ∈ Radm, which covers the second part of
the stability requirements. As such, Theorems I and II and
their proofs guarantee the recursive feasibility when using the
nom-log-P and S-nom-log-P prediction horizons.

IV. RESULTS

SEVERAL numerical experiments were performed on dif-
ferent tracks to examine the performance of all presented

alternatives. Their results are presented in the current Section.

A. APS-MPC vs. HaSH-NPC comparison

At first, the hybrid predictive control algorithms were tested
on Track 1 with the nominal prediction horizon P = 25
samples. Fig. 4 shows the behavior of the car on the track.

Looking at Fig. 4, it seems that both algorithms respect
the safety constraints satisfactorily. However, more details are
provided by the uppermost subfigure of Fig. 5 where the
distance of the car from the central line is shown. The yellow
line r = R indicates the inner zero-penalized part of the track
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Fig. 4. Track 1 (black – HaSH-NPC, red – APS-MPC).

while the green line r = R + ∆r indicates the transition
between the linear and quadratic penalization.
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Fig. 5. Track 1 – r, x1, sd (black – HaSH-NPC with P = 25, red – APS-
NPC with P = 25, blue dashed – APS-NPC with P = 30).

It can be seen that while the HaSH-NPC algorithm (rep-
resented by black solid line) almost never allows the car to
leave the inner zero-penalized part of the track r < R and
very safely satisfies the condition r < R + ∆r, APS-MPC
(represented by red solid line) working with the approximated
description of the optimization problem happens to violate
even the additional tolerance on the distance from the central
line. It can be expected that as significant track-violation as
can be observed in case of APS-MPC can eventually bring
the car to a point at which it is not able to return back to
track and continue racing any more. This negative effect can
be eliminated considering APS-MPC with increased prediction
horizon P = 30. This situation is represented by blue dashed
line. Although the use of longer prediction horizon complies
with the expectations and helps to keep the car on the track,
increase of the computational time can be also expected.

Fig. 5 shows also the x1 profiles for the three above
mentioned variants (middle subfigure). Since the velocity
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determines the current system sub-dynamics, the velocities v1

and v2 of expression (2) are indicated by green and yellow
dashed line and also the dynamics-switcher profiles sc is
provided (see the lowermost subfigure).

Looking at Fig. 5, it is obvious that the assumption on a
priori known sequence of the system sub-dynamics can not
hold in this case and therefore, the approaches mentioned in
the Introduction of the paper relying on such assumption could
not be used. Given that the velocity (and thus the dynamics
switcher) profiles are quite similar for the three depicted
alternatives while the track-satisfaction differs significantly for
HaSH-NPC vs. APS-MPC with P = 25, it can be concluded
that with equal prediction horizon, the HaSH-NPC handles the
switching dynamics in a more appropriate way.

To obtain a more reliable comparison, another set of numer-
ical experiments with the longer and more complicated Track
2 was performed. Track 2 and the behavior of the car with
the two hybrid predictive control algorithms are presented in
Fig. 6. Also in this case, nominal P = 25 was used.
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Fig. 6. Track 2 (black – HaSH-NPC, red – APS-MPC).

In case that a more complex track is considered, the
difference between the performance of the two algorithms is
more significant. While the HaSH-NPC handles the complex
track as well as the simpler one, certain problems in keeping
the car on the track can be observed in case of APS-MPC.
This is demonstrated by Fig. 7 where several details of the
track are provided. Especially when driving at limit speed
and cornering, the APS-MPC with nominal prediction horizon
sometimes happens to get out of the track. Fig. 8 shows
velocity profiles and distance from the central line in one such
situation in more detail. In the first sub-figure, black and red
lines represent the distance r reached by HaSH-NPC and APS-
MPC at particular distance driven from the start d. Dashed
lines mark r = R (yellow) and r = R + ∆r (green). In
the second sub-figure, black/red line shows velocity reached
by HaSH-NPC/APS-MPC and green and yellow dashed lines
mark v1 and v2, respectively.

From Fig. 8, it can be observed that due to the considered
approximation, APS-MPC does not decrease the speed suffi-
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Fig. 7. Track 2 – details (black – HaSH-NPC, red – APS-MPC).
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Fig. 8. Track 2 – r, x1 (black – HaSH-NPC with P = 25, red – APS-NPC
with P = 25, blue dashed – APS-NPC with P = 30).

ciently enough when cornering. This is not the case of HaSH-
NPC which acts appropriately and successfully satisfies the
track-tolerance. By increasing prediction horizon to P = 45
samples in case of APS-MPC (blue dashed line), even the
algorithm working with approximation can act sufficiently in
advance and achieves satisfactory performance.

The results of all experiments with constant prediction
horizon are summarized in Tab. III where T1 and T2 indicate
the particular track. Several numerical evaluators were chosen
as follows to provide a comprehensive comparison. As the first
evaluator, the average velocity x1was considered. The second
evaluator TV = max{TVk} corresponds to the maximal track
violation TVk = max(0, rk −R) where rk is defined by (19).
Let us remind the tolerance for the track violation ∆r = 0.5 m.
The last evaluator d∆rV represents the distance driven by the
car when violating even the track tolerance (this corresponds
to rk > ∆r). For HaSH-NPC, prediction horizon P = 25
samples was considered while in case of the other algorithm,
the prediction horizon is indicated by the subscript (i.e. APS-
MPC35 means APS-MPC with horizon P = 35 samples).

TABLE III
COMPARISON OF HYBRID PREDICTIVE CONTROL ALGORITHMS.

x1 (ms−1) TV (m) d∆rV (m)

T1 HaSH-NPC 33.4 0.1 0
APS-MPC25 33.0 1.8 34
APS-MPC30 33.2 0.1 0

T2 HaSH-NPC 34.7 0.4 0
APS-MPC25 34.2 3.3 42
APS-MPC35 34.4 0.9 10
APS-MPC45 34.6 0.5 0
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By inspecting Tab. III, it can be observed that all algorithms
achieve very comparable average velocities on particular track
with slight superiority of HaSH-NPC results and (as expected),
increase of prediction horizon results in increase of x1 in case
of APS-NPC algorithm. However, big difference in results can
be noticed by comparing the TV and d∆rV values. Here, the
superiority of the HaSH-NPC algorithm is indisputable. On
Track 1, the HaSH-NPC algorithm never violates the track
tolerance (see TV = 0.1 < ∆r and d∆rV = 0). On the
other hand, APS-MPC with P = 25 drives 34 m violating
the track by more than 0.5 m with maximal violation being
1.8 m. To make APS-MPC achieve the same track-satisfaction
performance as in case of HaSH-NPC, the prediction horizon
needs to be increased to P = 30 samples.

The situation is even more significant in case of the more
complicated Track 2. Although TV of HaSH-NPC rises to 0.4
m, it stays within the defined track tolerance ∆r with P as
low as 25 samples. The APS-MPC algorithm, however, is
not able to achieve desirable track-satisfaction performance
even with P = 35 for which it still violates the track
by up to 0.9 m. The satisfaction of the track-tolerance is
achieved with as long predictions as P = 45 samples. The
observed poorer behavior of the APS-MPC algorithm is caused
by a combination of several factor, out of which the most
influencing is the approximation of the hybrid dynamics/cost
criterion. MPC is a model-based controller and therefore,
neglecting/approximating the system dynamics in a significant
way comes hand in hand with performance degradation. On
the other hand, increasing P can remedy these negative effects
since more time is provided to take corrective action. This
explains why APS-MPC is outperformed by HaSH-NPC with
equal prediction horizons and why also APS-MPC can satisfy
the safety requirements with increased P .

B. Adaptive prediction horizon approaches comparison

To inspect the performance of the adaptive prediction hori-
zon approaches, only HaSH-NPC algorithm was evaluated.
This decision was accepted to avoid misleading results caused
by inappropriate optimization task handling which can occur
due to the approximations performed within APS-MPC. Track
2 was considered because of its more complicated shape and
a need for more aggressive car handling and maneuvering.

To obtain an illustrative and reliable comparison of different
approaches, several evaluators were inspected. The first evalua-
tor was naturally the average achieved velocity x1 representing
the performance-part of the optimization criterion while the
safety-part SP of the criterion, max

(
rk −R

)
≤ ∆r, was

evaluated binarily (3 – passed, 7 – failed). As the compu-
tational complexity and efficiency markers, average prediction
horizon P considered by particular controller and “efficiency
ratio” E = x1/P of the average achieved velocity and the
average prediction horizon were evaluated as well. The results
are summarized in Tab. IV. For the sake of completeness,
results of algorithm with constant prediction horizon denoted
as c-HaSH-NPC are provided as well.

At first, θ-P approach exploiting linear adaptive prediction
horizon was tested with θ ∈ {0.2, 0.4, 0.6, 0.8, 1}. Taking all

TABLE IV
COMPARISON OF ADAPTIVE PREDICTIVE HORIZON APPROACHES.

x1 (ms−1) SP P (−) max(P ) (−) E (−)

θ-P θ = 0.2 30.7 7 6.6 11 −
θ = 0.4 32.7 7 13.6 20 −
θ = 0.6 34.6 3 20.6 31 1.68
θ = 0.8 34.7 3 27.3 38 1.27
θ = 1.0 34.9 3 33.3 49 1.05

nom-log-P 34.9 3 22.4 36 1.56

S-nom-log-P 34.7 3 17.8 29 1.95

c-HaSH-NPC 34.7 3 25 25 1.39

the performance, safety and efficiency indicators into account,
it can be seen that while all θ-P variants with θ ≥ 0.6 passed
the safety-requirements, those with θ ≥ 0.8 might not be
regarded as competitive due to their excessive computational
complexity demonstrated by P ≥ 27.3. This comes hand-in-
hand with decrease of the efficiency ratio E which degrades
from E = 1.68 (for θ = 0.6) to as low as E = 1.05 (for
θ = 1.0). Efficiency ratio for variants that did not pass the
safety requirements was not evaluated.

Unlike the θ-P variants, nom-log-P and S-nom-log-P ap-
proaches provide both safety constraints satisfaction inherently
stemming from the way they were derived and attractive per-
formance with high computational efficiency. While nom-log-
P approach achieves the highest x1, S-nom-log-P approach
is clearly the most computationally efficient with E = 1.95.

Now, let us inspect the Pareto optimality of each of them.
Considering multiple evaluative criteria Ji, i ∈ {1, . . . , ni}
and a set of solutions X, solution x̃ ∈ X is said to dominate
solution x̌ ∈ X iff Ji(x̃) ≤ Ji(x̌) for all i and at least for one
j ∈ {1, . . . , ni}, Jj(x̃) < Jj(x̌). A solution x̂ ∈ X is said to
be Pareto optimal iff it is not dominated by any other solution
x̌ ∈ X. Further details on Pareto optimality might be found
in [31], [32], [33] and references therein.

Considering three evaluative criteria J1 = −x1, J2 = P
and J3 = −E, it can be straightforwardly shown that out of
all alternatives that passed the safety-requirements, only nom-
log-P and S-nom-log-P approaches are not dominated by any
other solution and thus can be regarded as Pareto optimal.
This fact is graphically demonstrated in Fig. 9 – it is obvious
that the Pareto frontier [31] comprising the Pareto optimal
solutions consists exclusively of logarithm-based (nom-log-P
and S-nom-log-P ) approaches.

Fig. 10 illustrates the trade-off between the efficiency E and
the safety-requirements satisfaction by depicting Pk (horizon
at time k) as a function of x1,k. S-nom-log-P approach splits
the approaches into two groups – those lying completely above
the S-nom-log-P -profile are safety-acceptable yet efficiently
suboptimal while those that “under-crawl” it significantly are
in turn more efficient but might be safety-unacceptable.

The overview is completed by a comparison with a com-
mercially available MINLP solver provided in Tab. V. In this
role, ga function implementing genetic algorithm being part
of Matlab Global Optimization Toolbox was employed with
three different settings denoted as ga1, ga2, ga3. CTR (−)
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Fig. 9. Pareto optimality (◦ – 0.6-P , / – 0.8-P , . – 1.0-P ,× – c-HaSH-NPC,
� – nom-log-P , � – S-nom-log-P , ·− – Pareto frontier).

0 10 20 30 40 50
0

10

20

30

40

50

x
1,k

 (ms
−1

)

P
k
 (

−
)

Fig. 10. Pk as a function of x1,k (∗ – 0.2-P , + – 0.4-P , ◦ – 0.6-P , / –
0.8-P , . – 1.0-P , � – nom-log-P , � – S-nom-log-P ).

expressing the ratio between the average computational time
of ga and HaSH-NPC was evaluated as well.

TABLE V
MINLP SOLVER RESULTS.

nom-log-P S-nom-log-P
ga1 ga2 ga3 ga1 ga2 ga3

x1 (ms−1) 33.0 33.8 34.4 32.9 33.5 34.3
TV (m) 0.3 0.2 0.2 0.3 0.2 0.2
CTR (−) 42.5 150.0 1063.8 41.7 152.1 1069.9

This comparison demonstrates the main advantage of the
newly proposed HaSH-NPC algorithm against the MINLP
solvers – elimination of unbearably high computational com-
plexity. While with the computationally least demanding set-
tings (which still consumes about 40× more time), the ga
velocity performance is about 5% worse, the best achieved ga
solution that is comparable with the HaSH-NPC one requires
more than 1000× longer computations.

V. SENSITIVITY ANALYSIS

TO EVALUATE robustness of the proposed control al-
gorithms, a detailed scenario-based sensitivity analysis

was performed exploiting a sub-section of the second track
encircled in Fig. 6 by dashed blue line. In each of the analyzed
cases, nom-log-P and S-nom-log-P approaches were tested
and x1 and TV were evaluated. Out of the model parameters,
p5 was excluded from the sensitivity analysis. The other “p”
parameters (i.e. p1−4) were perturbed separately while the α-
formula (i.e. a1−4 and v1,2 parameters) was changed as a
whole. Let us note that the MPC model parameters correspond
to Tab. I unless otherwise stated and for completeness, the
unperturbed cases are presented in the tables in blue.

A. p1 sensitivity analysis

6 values ranging from 0.99 to 1.004 were chosen, which
can be interpreted as uphill/rough terrain driving, non-inclined
road driving and downhill driving. The results are presented
in Tab. VI.

TABLE VI
p1 SENSITIVITY ANALYSIS.

p1
nom-log-P S-nom-log-P

x1 (ms−1) TV (m) x1 (ms−1) TV (m)

0.99 38.1 0.2 37.6 0.2
0.999 38.4 0.2 38.0 0.2
0.99999 38.3 0.2 37.9 0.2
1.001 38.2 0.2 37.8 0.2
1.002 38.0 0.2 37.6 0.3
1.003 37.8 0.2 37.3 0.3
1.004 37.7 0.3 37.2 0.4

Inspecting the TV results presented in Tab. VI, it can
be seen that none of the tested values causes safety prob-
lems which means the control algorithm is sufficiently robust
against the p1 mismatch.

B. p2 sensitivity analysis

Robustness against p2 perturbation was tested on a set of 10
scenarios with p2 ranging from 0.04 to 0.006 to cover both the
situations where the braking effectiveness is underestimated
and those where the braking effect decreases (which can
happen due to rain or snow) and MPC overestimates it. The
results are listed in Tab. VII.

TABLE VII
p2 SENSITIVITY ANALYSIS.

p2
nom-log-P S-nom-log-P

x1 (ms−1) TV (m) x1 (ms−1) TV (m)

0.04 37.9 0.1 37.6 0.1
0.03 38.4 0.2 38.0 0.2
0.027 37.5 0.2 36.6 0.2
0.025 36.0 0.3 34.6 0.3
0.024 33.7 0.3 32.0 0.4

0.02 35.3 0.4 33.3 0.4
0.015 33.2 0.5 31.4 0.5
0.01 29.3 0.5 27.6 0.5

0.008 29.9 0.1 29.3 0.1
0.007 29.8 0.1 29.2 0.1
0.006 29.9 0.2 29.2 0.2

0.008 33.1 0.2 32.7 0.2
0.007 31.7 0.2 31.2 0.2
0.006 30.2 0.2 29.8 0.2

Inspecting the results obtained for p2 = 0.04 to 0.024 (the
first sub-table), it can be seen that both variants are successful
without any adaptations. Decreasing p2 to 0.02, S-nom-log-
P violated ∆r and therefore, the following workaround was
proposed. Calculation of prediction horizon was performed
considering “worst case guess” p2,wg = 0.01, while for the
MPC model itself, the original p2 = 0.03 was used. Basically,
only the prediction horizon was increased while the dynamics
remained the same. This was successfully tested for p2 = 0.02
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to 0.01 (see the second sub-table). For p2 = 0.008, ∆r was
again violated and another workaround consisting in use of
“worst case guess” for both the prediction horizon calculation
and the MPC model was implemented with p2,wg = 0.005.
The usefulness of this adaptation is demonstrated by the
results presented in the third sub-table. Last of all, a p2

estimator was designed according to (1) using x1, D and B
measurements and as the parameter for the optimizer, moving
average calculated from p2 estimates over the last 10 samples
was used. These results presented in the last sub-table show
that while already the original “no-estimator” algorithm had
satisfied the safety requirements, the optimality in the sense
of x1 improved with the estimator.

C. p3 sensitivity analysis

Regarding the p3 parameter, 8 values ranging from 0.2 to
0.7 corresponding to 0-100-kph acceleration times of 4 to 15 s
were used. The results can be found in Tab. VIII.

TABLE VIII
p3 SENSITIVITY ANALYSIS.

p3
nom-log-P S-nom-log-P

x1 (ms−1) TV (m) x1 (ms−1) TV (m)

0.20 36.0 0.1 35.7 0.1
0.25 36.9 0.1 36.7 0.1
0.30 37.6 0.1 37.2 0.2
0.325 38.2 0.2 37.7 0.2
0.35 38.4 0.2 38.0 0.2
0.40 38.6 0.2 38.3 0.3
0.50 39.3 0.3 38.7 0.3
0.60 39.7 0.3 39.2 0.4
0.70 40.0 0.3 39.6 0.4

According to the results, it is obvious that the influence
of the p3 parameter perturbation on the performance is in
some sense proportional to the p3 perturbation – p3 de-
crease/increase results in decrease/increase of both the x1

and TV, nevertheless, the satisfaction of safety requirements
remains unharmed for the whole inspected range.

D. p4 sensitivity analysis

The p4-perturbation robustness of the control algorithm was
verified on a series of 7 numerical experiments where p4 varied
from 33.33 × 10−3 to 41.67 × 10−3. Such values can be
interpreted as wheelbase ranging from 2.4 to 3.0 m, which
covers the vast majority of the race cars. The obtained results
are shown in Tab. IX.

While the nom-log-P approach can handle all evaluated
p4 values without violating the track constraints, the S-nom-
log-P approach encounters difficulties with the lowest p4

values representing a car with 3.0 m wheelbase. The difference
between the two approaches is in their prediction horizon
– although both algorithms optimize considering the same
dynamics, slightly longer prediction horizon of nom-log-P
approach provides it with enough time to take corrective
action. This weakness of S-nom-log-P approach can be
remedied by increasing the safety penalty ω2 from 200 to 500.
The results of such configuration are presented in Tab. IX in

TABLE IX
p4 SENSITIVITY ANALYSIS.

p4 × 103 nom-log-P S-nom-log-P
x1 (ms−1) TV (m) x1 (ms−1) TV (m)

33.33 36.5 0.4 35.8/35.6 0.6/0.4
34.48 37.5 0.4 37.0 0.5
35.71 38.2 0.3 37.7 0.4
36.36 38.4 0.2 38.0 0.2
37.04 38.3 0.2 37.9 0.2
38.46 38.1 0.1 37.7 0.1
40.00 37.9 0.1 37.3 0.1
41.67 37.7 0.0 37.1 0.1

the corresponding row after the slash mark. As can be seen,
the unacceptable track violation was successfully eliminated.

Inspecting x1, it can be concluded that both under- and over-
steering requires corrective actions leading to x1 decrease.

E. α sensitivity analysis
The α expression was perturbed as a whole to preserve

monotonicity of the coefficient. These perturbations mean
that multiple parameters were changed at time, therefore the
perturbed coefficients are plotted instead of exact numerical
perturbations of the particular parameters.

At first, the inclination of α varied from 0.7 up to 3. These
perturbations are in Fig. 11 denoted as αinc=i, (i stands for the
inclination). Next, α was “shifted” by −4 up to +6 ms−1 as
shown in Fig. 11, where the corresponding profiles are denoted
as αs (s represents the velocity shift). Following the results
obtained in Sec. V-D, ω2 = 500 was used for S-nom-log-P
with α{−2,−3,−4}. Additional 3 cases were added, see αalt,1,
αalt,2 and αalt,3 in Fig. 11. The results can be found in Tab. X.
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Fig. 11. Petrurbations of α.

Tab. X demonstrates that although inaccurate α expression
degrades x1, no significant interventions are needed for the
algorithms to keep the car on the track with TV ≤ ∆r. It
should be noted that this holds also for the inspected cases
where not only the parameters of the α-expression were per-
turbed, but even completely different mathematical functions
(higher powers of x1, their reciprocals and logarithms) were
used, which is represented by αalt,1, αalt,2 and αalt,3.
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TABLE X
α SENSITIVITY ANALYSIS.

α
nom-log-P S-nom-log-P

x1 (ms−1) TV (m) x1 (ms−1) TV (m)

αinc=0.7 31.9 0.4 30.0 0.4
αinc=0.8 34.1 0.3 32.1 0.3
αinc=1.0 38.4 0.2 38.0 0.2
αinc=1.2 35.2 0.2 33.5 0.2
αinc=1.7 34.4 0.3 33.1 0.3
αinc=3.0 34.1 0.3 32.4 0.4

α+6 32.2 0.3 31.3 0.4
α+5 32.3 0.2 31.3 0.3
α+4 32.9 0.2 32.0 0.3
α+3 33.3 0.1 32.3 0.2
α+2 33.5 0.0 33.4 0.2
α+1 34.5 0.1 34.2 0.1
α0 38.4 0.2 38.0 0.2
α−1 35.8 0.3 34.9 0.3
α−2 31.5 0.4 30.5 0.4
α−3 30.7 0.4 29.5 0.5
α−4 30.1 0.5 28.5 0.5

αalt,1 34.3 0.4 32.6 0.4
αalt,2 35.2 0.3 34.2 0.4
αalt,3 36.3 0.2 35.4 0.3

F. Performance enhancement

Despite encouraging robustness demonstrated above, it can
be expected that the performance might further improve with
an estimator providing regular parameters corrections. To
verify this, p2,real = 0.01 and αreal = αalt,1 were used in the
real system dynamics. The other parameters were kept at their
original values since either their influence was insignificant or
they are not expected to be misestimated considerably. The
x1 and x2 measurements were corrupted by white noises with
variances of σ1 = 0.5 and σ2 = 35 × 10−3. Estimates of p2

were obtained in a way described in Sec. V-B. Regarding α
coefficient, its current value was regularly estimated as well
and the obtained {x1, α(x1)} pairs were used for recursive
approximation of α(x1) expression. These estimates were used
for both nom-log-P and S-nom-log-P algorithms and Tab. XI
presents the results achieved without and with parameter esti-
mator and those obtained with perfect knowledge of the system
parameters. The results demonstrate that even though the
original MPC parameters might be inaccurate, their continuous
estimation can change the performance from unsatisfactory to
almost equivalent to the ideal case.

TABLE XI
PERFORMANCE ENHANCEMENT WITH PARAMETER ESTIMATORS.

nom-log-P S-nom-log-P
x1 (ms−1) TV (m) x1 (ms−1) TV (m)

no estimator 30.3 1.2 29.2 1.5
estimator 33.1 0.2 32.8 0.2
ideal case 33.3 0.2 33.0 0.2

VI. CONCLUSION

IN THIS paper, HaSH-NPC being a new hybrid nonlinear
model predictive control algorithm for vehicular control

was designed. Unlike the commonly used soluation that ap-
proximates the optimization problem (APS-MPC), HaSH-NPC
handles the hybridity in the system dynamics description and
the cost criterion directly exploiting an auxiliary variable –
the hamiltonian-switcher. The performance of the HaSH-NPC
algorithm was verified on an example of a race car with
hybrid dynamics considering hybrid cost criterion. The results
show very attractive performance of the HaSH-NPC, which
even with short prediction horizon outperforms the APS-MPC
algorithm.

The second part of the paper focused on adaptive prediction
horizons and on their role in minimization of computational
complexity such that the safety requirements were satisfied.
Linear and logarithm-based prediction horizon approaches
were proposed and their results show that while also linear
prediction horizons can improve the computational burden
when compared with the constant prediction horizon, they
might not be able to provide acceptable safety-requirements
satisfaction. This issue is overcome by the logarithm-based
approaches, which are shown to be also Pareto optimal with
respect to multiple evaluative criteria. Additional comparison
with a commercially available MINLP solver provided the
same prediction horizons demonstrate that HaSH-NPC re-
quires only a fraction of MINLP solver computational time
with comparable performance.

In the last part, results of a detailed sensitivity analysis
were presented demonstrating the robustness of the proposed
approach with respect to various system parameters pertur-
bations. In this part, also several performance enhancements
were proposed that can further improve the robustness and the
overall functionality of the algorithm.

The results encourage practical use of the algorithms that
provide a “recipe” for computationally effective nonlinear
model predictive control for the automotive area.
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