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Abstract The distortion varieties of a given projective variety are parametrized by
duplicating coordinates andmultiplying themwithmonomials.We study their degrees
and defining equations. Exact formulas are obtained for the case of one-parameter
distortions. These are based on Chow polytopes and Gröbner bases. Multi-parameter
distortions are studied using tropical geometry. The motivation for distortion varieties
comes from multi-view geometry in computer vision. Our theory furnishes a new
framework for formulating and solving minimal problems for camera models with
image distortion.
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1 Introduction

This article introduces a construction in algebraic geometry that is motivated bymulti-
view geometry in computer vision. In that field, one thinks of a camera as a linear
projection P

3 ��� P
2, and a model is a projective variety X ⊂ P

n that represents
the relative positions of two or more such cameras. The data are correspondences of
image points in P2. These define a linear subspace L ⊂ P

n , and the task is to compute
the real points in the intersection L ∩ X as fast and accurately as possible. See [20,
Chapter 9] for a textbook introduction.

Amodel for cameraswith image distortion allows for an additional unknownparam-
eter λ. Each coordinate of X gets multiplied by a polynomial in λ whose coefficients
also depend on the data. We seek to estimate both λ and the point in X , where the data
now specify a subspace L ′ in a larger projective space PN . The distortion variety X ′
lives in that PN , it satisfies dim(X ′) = dim(X)+1, and the task is to compute L ′ ∩ X ′
in PN fast and accurately.

We illustrate the idea of distortion varieties for the basic scenario in two-view
geometry.

Example 1.1 The relative position of two uncalibrated cameras is expressed by a 3×3-
matrix x = (xi j ) of rank 2, known as the fundamental matrix. Let n = 8 and write F
for the hypersurface in P

8 defined by the 3 × 3-determinant. Seven (generic) image
correspondences in two views determine a line L in P8, and one rapidly computes the
three points in L ∩ F .

The 8-point radial distortion problem [25, Section 7.1.3] is modeled as follows in
our setting. We introduce six new coordinates y13, y23, y33, y31, y32, z33. These serve
as duplicates for the last row and last column of the 3×3-matrix x . The resulting 9+6
unknowns are coordinates on P

14. We define a rational normal scroll in P
14 by the

following parameterization:

(x11 : x12 : x13 : y13 : x21 : x22 : x23 : y23 : x31 : y31 : x32 : y32 : x33 : y33 : z33) =(
x11 : x12 : x13 : x13λ : x21 : x22 : x23 : x23λ : x31 : x31λ : x32 : x32λ : x33 : x33λ : x33λ

2
)
.

(1)
Here N = 14. The distortion variety F ′ is the closure of the set of points (1) where
x ∈ F and λ ∈ C. The varietyF ′ has dimension 8 and degree 16 inP14, whereasF has
dimension 7 and degree 3 in P8. To estimate both λ and the relative camera positions,
we now need eight image correspondences. These data specify a linear space L ′ of
dimension 6 in P14. The task in the computer vision application is to rapidly compute
the 16 points in L ′ ∩ F ′.

The prime ideal of the distortion varietyF ′ is minimally generated by 18 polynomi-
als in the 15 variables. First, there are 15 quadratic binomials, namely the 2×2-minors
of matrix (

x13 x23 x31 x32 x33 y33
y13 y23 y31 y32 y33 z33

)
. (2)
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Note that this matrix has rank 1 under the substitution (1). Second, there are three
cubics

x11x22x33 − x11x23x32 − x12x21x33 + x12x23x31 + x13x21x32 − x13x22x31,
x13x22y31 − x12x23y31 − x13x21y32 + x11x23y32 + x12x21y33 − x11x22y33,
x22y13y31 − x12y23y31 − x21y13y32 + x11y23y32 + x12x21z33 − x11x22z33.

(3)

These three 3×3-determinants replicate the equation that defines the originalmodelF .

This paper is organized as follows. Section 2 introduces the relevant concepts and
definitions from computer vision and algebraic geometry. We present camera models
with image distortion, with focus on distortions with respect to a single-parameter λ.
The resulting distortion varieties X[u] live in the rational normal scroll Su , where u =
(u0, u1, . . . , un) is a vector of nonnegative integers. This distortion vector indicates
that the coordinate xi on Pn is replicated ui times when passing to PN . In Example 1.1,
wehaveu = (0, 0, 1, 0, 0, 1, 1, 1, 2) andSu is the 9-dimensional rational normal scroll
defined by the 2 × 2-minors of (2).

Our results on one-parameter distortions of arbitrary varieties are stated and proved
in Sect. 3. Theorem 3.2 expresses the degree of X[u] in terms of the Chow polytope
of X . Theorem 3.10 derives ideal generators for X[u] from a Gröbner basis of X .
These results explain what we observed in Example 1.1, namely the degree 16 and the
equations in (2)–(3).

Section 4 deals with multi-parameter distortions. We first derive various camera
models that are useful for applications, and we then present the relevant algebraic
geometry.

Section 5 is concerned with a concrete application to solving minimal problems in
computer vision. We focus on the distortion variety f + E + λ of degree 23 derived
in Sect. 2.

2 One-Parameter Distortions

This section has three parts. First, we derive the relevant cameramodels from computer
vision. Second, we introduce the distortion varieties X[u] of an arbitrary projective
variety X . And, third, we study the distortion varieties for the camera models from the
first part.

2.1 Multi-view Geometry with Image Distortion

A perspective camera in computer vision [20, page 158] is a linear projection P3 ���
P
2. The 3× 4-matrix that represents this map is written as K

(
R | t

)
where R ∈ SO(3),

t ∈ R
3, and K is an upper-triangular 3×3matrix known as the calibrationmatrix. This

transforms a point Y ∈ P
3 from the world Cartesian coordinate system to the camera

Cartesian coordinate system. Here, we usually normalize homogeneous coordinates
on P

3 and P
2 so that the last coordinate equals 1. With this, points in R

3 map to R
2

under the action of the camera.
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The following camera model was introduced in [28, Equation 3] to deal with image
distortions:

α
(
R | t

)
Y =

(
h(‖A U + b‖) (A U + b)

g(‖A U + b‖)
)

for some α ∈ R\{0}. (4)

The two functions h : R → R and g : R → R represent the distortion. The invertible
matrix A ∈ R

2×2 and the vector b ∈ R
2 are used to transform the image pointU ∈ R

2

into the image Cartesian coordinate system. The perspective camera in the previous
paragraph is obtained by setting h = g = 1 and taking the calibration matrix K to be

the inverse of

(
A b
0 0 1

)
.

Micusik andPajdla [28] studied applications to fish eye lenses aswell as catadioptric
cameras. In this context, they found that it often suffices to fix h = 1 and to take a
quadratic polynomial for g. For the following derivation, we choose g(t) = 1 + μt2,
where μ is an unknown parameter. We also assume that the calibration matrix has the
diagonal form K = diag

[
f, f, 1

]
. If we set λ = μ/ f 2 then the model (4) simplifies to

α
(
R | t

)
Y = K −1

(
U

1 + λ‖U‖2
)

for some α ∈ R\{0}. (5)

Let us now analyze two-view geometry for themodel (5). The quantity λ = μ/ f 2 is
our distortion parameter. Throughout the discussion in Sect. 2, there is only one such
parameter. Later, in Sect. 4, there will be two or more different distortion parameters.

Following [20, Section 9.6], we represent two camera matrices
(
R1 | t1

)
and

(
R2 | t2

)
by their essential matrix E . This 3 × 3-matrix has rank 2 and satisfies the Démazure
equations. The equations were first derived in [10]; they take the matrix form
2 E E�E − trace(E E�)E = 0. For a pair (U1, U2) of corresponding points in two
images, the epipolar constraint now reads

0 =
(

AU2

1 + μ‖AU2‖2
)�

E

(
AU1

1 + μ‖AU1‖2
)

=
(

U2

1 + λ‖U2‖2
)�

K −� E K −1
(

U1

1 + λ‖U1‖2
)

.

(6)

In this way, the essential matrix E expresses a necessary condition for two points U1
and U2 in the image planes to be pictures of the same world point. The fundamental
matrix is obtained from the essential matrix and the calibration matrix:

F =
⎛
⎝

f11 f12 f13
f21 f22 f23
f31 f32 f33

⎞
⎠ = K −�E K −1. (7)

Using the coordinates of U1 = [u1, v1]� and U2 = [u2, v2]�, the epipolar constraint
(6) is
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0 = u2u1 f11 + u2v1 f12 + u2 f13 + u2‖U1‖2λ f13 + v2u1 f21 + v2v1 f22 + v2 f23
+v2‖U1‖2λ f23 + u1 f31 + u1‖U2‖2λ f31 + v1 f32 + v1‖U2‖2λ f32 + f33
+(‖U1‖2+‖U2‖2)λ f33 + ‖U1‖2‖U2‖2λ2 f33.

This is a sum of 15 terms. The corresponding monomials in the unknowns form the
vector

m� = [
f11, f12, f13, f13λ, f21, f22, f23, f23λ, f31, f31λ, f32, f32λ, f33, f33λ, f33λ

2] . (8)

The 15 coefficients are real numbers given by the data. The coefficient vector c is
equal to

[
u2u1, u2v1, u2, u2‖U1‖2, v2u1, v2v1, v2, v2‖U1‖2, u1, u1‖U2‖2, v1, v1
‖U2‖2, 1, ‖U1‖2+‖U2‖2, ‖U1‖2‖U2‖2

]�
.

With this notation, the epipolar constraint given by one point correspondence is simply

c�m = 0. (9)

At this stage, we have derived the distortion variety in Example 1.1. Identify-
ing fi j with the variables xi j , the vector (8) is precisely the same as that in (1).
This is the parametrization of the rational normal scroll Su in P

14 where u =
(0, 0, 1, 0, 0, 1, 1, 1, 2). The set of fundamental matrices is dense in the hypersur-
face X = {det(F) = 0} in P

8. Its distortion variety X[u] has dimension 8 and degree
16 in P

14. Each point correspondence (U1, U2) determines a vector c, and hence, a
hyperplane in P

14. The constraint (9) means intersecting X[u] with that hyperplane.
Eight point correspondences determine a 6-dimensional linear space in P14. Intersect-
ing X[u] with that linear subspace is the same as solving the 8-point radial distortion
problem in [25, Section 7.1.3]. The expected number of complex solutions is 16.

2.2 Scrolls and Distortions

This subsection introduces the algebro-geometric objects studied in this paper. We fix
a nonzero vector u = (u0, u1, . . . , un) ∈ N

n+1 of nonnegative integers, we abbreviate
|u| = u0 + u1 + · · · + un , and we set N = |u| + n. The rational normal scroll Su is a
projective variety of dimension n +1 and degree |u| in PN . If all ui are strictly positive
then Su is smooth. The (rational normal) scroll Su has the parametric representation

(
x0 : x0λ : x0λ

2 : · · · : x0λ
u0 : x1 : x1λ : x1λ

2 : · · · : x1λ
u1 : · · · : xn : xnλ : · · · : xnλun

)
. (10)

The coordinates are monomials, so the scroll Su is also a toric variety [8]. Since
degree(Su) = |u| equals codim(Su)+1 = N −n +1, it is a variety of minimal degree
[19, Example 1.14].
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Restriction to the coordinates (x0 : x1 : · · · : xn) defines a rational map Su ��� P
n .

This is a toric fibration [11]. Its general fibers are curves parametrized by λ. The base
locus is a coordinate subspace Pn ⊂ P

N . Its points are supported on the respectively
last coordinates in each of the n+1 groups. For instance, in Example 2.1 the base locus
is the projective plane P2 inside P8 that is defined by the ideal 〈a0, b0, b1, c0, c1, c2〉.

The prime ideal of the scroll Su is generated by the 2 × 2-minors of a 2 × |u|-
matrix of unknowns that is obtained by concatenating Hankel matrices on the blocks
of unknowns; see [12, Lemma 2.1], [31], and Example 2.1 below. For a textbook
reference see [19, Theorem 19.9].

We now consider an arbitrary projective variety X of dimension d in P
n . This

is the underlying model in some application, such as computer vision. We define the
distortion variety of level u, denoted X[u], to be the closure of the preimage of X under
the map Su ��� P

n . The general fibers of this map are curves. The distortion variety
X[u] lives in PN . It has dimension d + 1. Points on X[u] represent points on X whose
coordinates have been distorted by an unknown parameter λ. Our parameterization
is the rule for the distortion. In other words, X[u] is the closure of the image of the
regular map X × C → P

N given by (10).
Each distortion variety represents a minimal problem [25] in polynomial systems

solving. Data points define linear constraints on PN , like (9). Our problem is to solve
d +1 such linear equations on X[u]. The number of complex solutions is the degree of
X[u]. A simple bound for that degree is stated in Proposition 3.1, and an exact formula
can be found in Theorem 3.2. Of course, in applications we are primarily interested
in the real solutions.

We already saw one example of a distortion variety in Example 1.1. In the following
example, we discuss some surfaces in P

N that arise as distortion varieties of plane
curves.

Example 2.1 Let n = 2 and u = (1, 2, 3). The rational normal scroll is a 3-
dimensional smooth toric variety in P8. Its implicit equations are the 2× 2-minors of
the 2 × 6-matrix (

a0 b0 b1 c0 c1 c2
a1 b1 b2 c1 c2 c3

)
. (11)

This is the “concatenated Hankel matrix” mentioned above. Its pattern generalizes to
all distortion vectors u.

Let X be a general curve of degree d in P2. The distortion variety X[u] is a surface
of degree 5d in P8. Its prime ideal is generated by the 15 minors of (11) together with
d + 1 polynomials of degree d. These are obtained from the ternary form that defines
X by the distortion process in Theorem 3.10. For special curves X , the degree of X[u]
may drop below 5d. For instance, given a line X = V (λa + μb + νc) in P

2, the
distortion surface X[u] has degree 5 if λ �= 0, it has degree 4 if λ = 0 but μ �= 0, and
it has degree 3 if λ = μ = 0. For any curve X , the property deg(X[u]) = 5 · deg(X)

holds after a coordinate change in P2. If X = {p} is a single point in P2 then X[u] is a
curve in P8. It has degree 3 unless p ∈ V (c).
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2.3 Back to Two-View Geometry

In this subsection, we describe several variants of Example 1.1. These highlight the
role of distortion varieties in two-view geometry. We fix n = 8, N = 14 and u =
(0, 0, 1, 0, 0, 1, 1, 1, 2) as above. The scroll Su is the image of the map (1) and its
ideal is generated by the 2 × 2-minors of (2). Each of the following varieties live in
the space of 3 × 3-matrices x = (xi j ).

Example 2.2 (Essential matrices) We now write E for the essential variety [10,16]. It
has dimension 5 and degree 10 in P8. Its real points x are the essential matrices in (6).
The ideal of E is generated by ten cubics, namely det(x) and the nine entries of the
matrix 2xxTx − trace(xxT)x . The distortion variety E[u] has dimension 6 and degree
52 in P

14. Its ideal is generated by 15 quadrics and 18 cubics, derived from the ten
Démazure cubics.

Example 2.3 (Essential matrices plus two equal focal lengths) Fix a diagonal cali-
bration matrix k = diag( f, f, 1), where f is a new unknown. We define G to be the
closure in P8 of the set of 3×3-matrices x such that kxk ∈ E for some f . To compute
the ideal of the variety G, we use the following lines of code in the computer algebra
system Macaulay2 [18]:

R = QQ[f,x11,x12,x13,x21,x22,x23,x31,x32,x33,y13,y23,
y33,y31,y32,z33,t];

X = matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}}
K = matrix {{f,0,0},{0,f,0},{0,0,1}};
P = K*X*K;
E = minors(1,2*P*transpose(P)*P-trace(P*transpose(P))*P)

+ideal(det(P));
G = eliminate({f},saturate(E,ideal(f)))
codim G, degree G, betti mingens G

The output tells us that the variety G has dimension 6 and degree 15 and that G is the
complete intersection of two hypersurfaces in P

8, namely the cubic det(x) and the
quintic

x11x313x31 + x213x21x23x31 + x11x13x223x31 + x21x323x31 − x11x13x331 − x21x23x331+x12x313x32 + x213x22x23x32 + x12x13x223x32 + x22x323x32 − x12x13x231x32
−x212x213x33 − x11x13x31x232 − x21x23x31x232 − x12x13x332−x22x23x332−x211x213x33−x22x23x231x32 − 2x11x13x21x23x33 − 2x12x13x22x23x33 − x221x223x33

−x222x223x33 + x211x231x33 + x221x231x33 + 2x11x12x31x32x33
+2x21x22x31x32x33 + x212x232x33 + x222x232x33.

(12)
The distortion variety G[u] is now computed by the following lines in Macaulay2:

Gu = eliminate({t}, G +
ideal(y13-x13*t,y23-x23*t,y31-x31*t,y32-x32*t,y33-x33*t,

z33-x33*tˆ2))
codim Gu, degree Gu, betti mingens Gu
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Table 1 Dimensions and degrees of two-view models and their radial distortions

u = (
0, 0, 1, 0, 0, 1, 1, 1, 2

)
Ref. n N dim(X) deg(X) dim(X[u]) deg(X[u]) Proposition 3.1

F in Example 1.1: λ + F + λ [25] 8 14 7 3 8 16 18

E in Example 2.2: λ + E + λ [25] 8 14 5 10 6 52 60

G in Example 2.3: λ f + E + f λ [22] 8 14 6 15 7 68 90

G′ in Example 2.4: λ + E + f λ 8 14 6 9 7 42 54

v = (
0, 0, 1, 0, 0, 1, 0, 0, 1

)
Ref. n N dim(X) deg(X) dim(X[v]) deg(X[v]) Proposition 3.1

F in Example 2.5: F+λ [24] 8 11 7 3 8 8 9

E in Example 2.5: E + λ [24] 8 11 5 10 6 26 30

G in Example 2.5: f + E + f λ 8 11 6 15 7 37 45

G′ in Example 2.5: E + f λ [24] 8 11 6 9 7 19 27

G′′ in Example 2.5: f + E + λ 8 11 6 9 7 23 27

We learn that G[u] has dimension 7 and degree 68 in P14. Modulo the 15 quadrics for
Su , its ideal is generated by three cubics, like those in (3), and five quintics, derived
from (12).

Example 2.4 (Essential matrices plus one focal length unknown) Let G′ denote the
6-dimensional subvariety of P8 defined by the four maximal minors of the 3×4-matrix

⎛
⎝

x11 x12 x13 x21x31 + x22x32 + x23x33
x21 x22 x23 −x11x31 − x12x32 − x13x33
x31 x32 x33 0

⎞
⎠ . (13)

This variety has dimension 6 and degree 9 in P
8. It is defined by one cubic and three

quartics. The variety G′ is similar to G in Example 2.3, but with the identity matrix as
the calibration matrix for one of the two cameras. We can compute G′ by running the
Macaulay2 code above but with the line P = K*X*K replaced with the line P =
X*K. This model was studied in [4].

The distortion variety G′[u] has dimension 7 and degree 42 in P
14. Modulo the 15

quadrics that define Su , the ideal of G′[u] is minimally generated by three cubics and
11 quartics.

Table 1 summarizes the four models we discussed in Examples 1.1, 2.2, 2.3 and 2.4.
The first column points to a reference in computer vision where this model has been
studied. The last column shows the upper bound for deg(X[u]) given in Proposition 3.1.
That bound is not tight in any of our examples. In the second half of the table, we
report the same data for the four models when only one of the two cameras undergoes
radial distortion.

Example 2.5 We revisit the four two-viewmodels discussed above, but with distortion
vector v = (0, 0, 1, 0, 0, 1, 0, 0, 1). Now, N = 11 and only one camera is distorted.
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The rational normal scroll Sv has codimension 2 and degree 3 in P
11. Its parametric

representation is

(
x11 : x12 : x13 : x13λ : x21 : x22 : x23 : x23λ : x31 : x32 : x33 : x33λ

)
.

The distortion varieties F[v], E[v], G[v] and G′[v] live in P
11. Their degrees are shown

in the lower half of Table 1. For instance, consider the last two rows. The notation
E + f λ means that the right camera has unknown focal length and it is also distorted.

The fifth row refers to another variety G′′. This is the image of G′ under the linear
isomorphism that maps a 3 × 3-matrix to its transpose. Since v is not a symmetric
matrix, unlikeu, the varietyG′′[v] is actually different fromG′[v]. The descriptor f +E+λ

of G′′[v] expresses that the left camera has unknown focal length and the right camera

is distorted. The variety G′′[v] has dimension 7 and degree 23 in P11. In addition to the
three quadrics x3i y3 j − x3 j y3i that define Sv , the ideal generators for G′′[v] are two
cubics and five quartics. The minimal problem for this distortion variety is studied in
detail in Sect. 5.

3 Equations and Degrees

In this section, we express the degree and equations of X[u] in terms of those of X .
Throughout we assume that X is an irreducible variety of codimension c in P

n and
the distortion vector u ∈ N

n+1 satisfies u0 ≤ u1 ≤ · · · ≤ un . We begin with a general
upper bound for the degree of the distortion variety X[u].

Proposition 3.1 Suppose un ≥ 1. The degree of the distortion variety satisfies

deg(X[u]) ≤ deg(X) · (uc + uc+1 + · · · + un). (14)

This holds with equality if the coordinates are chosen so that X is in general position
in P

n.

The upper bound in Proposition 3.1 is shown for our models in the last column of
Table 1. This result will be strengthened in Theorem 3.2 below, where we give an exact
degree formula that works for all X . It is instructive to begin with the two extreme
cases. If c = 0 and X = P

n , then we recover the fact that the scroll X[u] = Su has
degree N − n = u0 + · · · + un . If c = n and X is a general point in Pn , then X[u] is a
rational normal curve of degree un .

The following proof, and the subsequent development in this section, assumes
familiarity with two tools from computational algebraic geometry: the construction
of initial ideals with respect to weight vectors, as in [34], and the Chow form of a
projective variety [9,16,17,23].

Proof of Proposition 3.1 Fix dim(X[u]) = n − c + 1 general linear forms on P
N ,

denoted �0, �1, . . . , �n−c. We write their coefficients as the rows of the (n − c + 1) ×
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(N + 1) matrix ⎡
⎢⎢⎢⎣

α0,0 α0,1 α0,2 · · · α0,N

α1,0 α1,1 α1,2 · · · α1,N
...

...
...

. . .
...

αn−c,0 αn−c,1 αn−c,2 · · · αn−c,N

⎤
⎥⎥⎥⎦ . (15)

Here αi, j ∈ C. The degree of X[u] equals #
(
X[u] ∩ V (�0, . . . , �n−c)

)
. We shall do this

count. Recall that X[u] is the closure of the image of the injective map X × C → P
N

given in (10). The image of this map is dense in X[u]. Its complement is the P
n

consisting of all points whose coordinates in each the n +1 groups are zero except for
the last one. Since the linear forms �i are generic, all points of X[u]∩V (�0, . . . , �n−c) lie
in this image. By injectivity of themap, deg(X[u]) is the number of pairs (x, λ) ∈ X×C

which map into X[u] ∩ V (�0, . . . , �n−c).
We formulate this condition on (x, λ) as follows. Consider the (n −c+1)× (n +1)

matrix
⎡
⎢⎢⎢⎣

α0,0 + α0,1λ + · · · + α0,u0λ
u0 · · · · · · α0,u0+...+un−1+n + · · · + α0,N λun

α1,0 + α1,1λ + · · · + α1,u0λ
u0 · · · · · · α1,u0+...+un−1+n + . . . + α1,N λun

.

.

.
. . .

. . .
.
.
.

αn−c,0 + αn−c,1λ + · · · + αn−c,u0λ
u0 · · · · · · αn−c,u0+...+un−1+n + · · · + αn−c,N λun

⎤
⎥⎥⎥⎦ . (16)

We want to count pairs (x, λ) ∈ P
n ×C such that x ∈ X and x lies in the kernel of

this matrix. By genericity of �i , this matrix has rank n−c+1 for all λ ∈ C. This means
that, for each λ ∈ C, the kernel of the matrix (16) is a linear subspace of dimension
c − 1 in Pn .

We conclude that (16) defines a rational curve in the Grassmannian Gr(Pc−1,Pn).
Here, theαi, j arefixedgeneric complexnumbers andλ is an unknown that parametrizes
the curve. If we take the Grassmannian in its Plücker embedding, then the degree of
our curve is uc + uc+1 + · · · + un , which is the largest degree in λ of any maximal
minor of (16).

At this point, we use the Chow form ChX of the variety X . Following [9,17],
this is the defining equation of an irreducible hypersurface in the Grassmannian
Gr(Pc−1,Pn). Its points are the subspaces that intersect X . The degree of ChX in
Plücker coordinates is deg(X).

Wenowconsider the intersection of our curvewith the hypersurface definedbyChX .
Equivalently, we substitute the maximal minors of (16) into ChX and we examine
the resulting polynomial in λ. Since the matrix entries αi, j in (15) are generic, the
curve intersects the hypersurface of the Chow form ChX outside its singular locus. By
Bézout’s Theorem, the number of intersection points is bounded above by deg(X) ·
(uc + uc+1 + · · · + un).

Each intersection point is nonsingular on V (ChX ), and so the corresponding linear
space intersects the variety X in a unique point x . We conclude that the number of
desired pairs (x, λ) is at most deg(X) · (uc + uc+1 + · · · + un). This establishes the
upper bound.

For the second assertion, we apply a general linear change of coordinates to X in
P

n . Consider the lexicographically last Plücker coordinate, denoted pc,c+1,...,n . The
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monomial pdeg(X)

c,c+1,...,n appears with nonzero coefficient in the Chow form ChX . Sub-
stituting the maximal minors of (16) into ChX , we obtain a polynomial in λ of degree
deg(X) · (uc +uc+1+· · ·+un). By the genericity hypothesis on (15), this polynomial
has distinct roots in C. These represent distinct points in X[u] ∩ V (�0, . . . , �n−c), and
we conclude that the upper bound is attained. ��

We will now refine the method in the proof above to derive an exact formula for
the degree of X[u] that works in all cases. The Chow form ChX is expressed in primal
Plücker coordinates pi0,i1,...,in−c on Gr(Pc−1,Pn). The weight of such a coordinate is
the vector ei0 + ei1 + · · · + ein−c , and the weight of a monomial is the sum of the
weights of its variables. The Chow polytope of X is the convex hull of the weights of
all Plücker monomials appearing in ChX ; see [23].

Theorem 3.2 The degree of X[u] is the maximum value attained by the linear func-
tional w �→ u · w on the Chow polytope of X. This positive integer can be computed
by the formula

degree(X[u]) =
n∑

j=0

u j · degree( in−u(X) : 〈x j 〉∞
)
, (17)

where in−u(X) is the initial monomial ideal of X with respect to a term order that
refines −u.

Proof Let M be a monomial ideal in x0, x1, . . . , xn whose variety is pure of
codimension c. Each of its irreducible components is a coordinate subspace
span(ei0 , ei1 , . . . , ein−c ) of P

n . We write μi0,i1,...,in−c for the multiplicity of M along
that coordinate subspace. By [23, Theorem 2.6], the Chow form of (the cycle given
by) M is the Plücker monomial

∏
p

μi0,i1,...,in−c
i0,i1,...,in−c

, and the Chow polytope of M is the
point

∑
μi0,i1,...,in−c (ei0 + ei1 + · · · + ein−c ). The j-th coordinate of that point can be

computed from M without performing a monomial primary decomposition. Namely,
the j-th coordinate of the Chow point of M is the degree of the saturation M : 〈x j 〉∞.
This follows from [23, Proposition 3.2] and the proof of [23, Theorem 3.3].

We now substitute each maximal minor of the matrix (16) for the corresponding
Plücker coordinate pi0,i1,...,in−c . This results in a general polynomial of degree ui0 +
ui1 + · · · + uin−c in the one unknown λ. When carrying out this substitution in the
Chow form ChX , the highest degree terms do not cancel, and we obtain a polynomial
in λ whose degree is the largest u-weight among all Plücker monomials in ChX .
Equivalently, this degree in λ is the maximum inner product of the vector u with any
vertex of the Chow polytope of X .

One vertex that attains this maximum is the Chow point of the monomial ideal
M = in−u(X) in the proof of Proposition 3.1. Note that we had chosen one particular
term order to refine the partial order given by −u. If we vary that term order, then we
obtain all vertices on the face of the Chow polytope supported by u. The saturation
formula for the Chow point of the monomial ideal M in the first paragraph of the proof
completes our argument. ��
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We are now able to characterizewhen the upper bound in Proposition 3.1 is attained.
Let c− and c+ be the smallest and largest index, respectively, such that uc− = uc =
uc+ . We define a set Lu of n − c + 1 linear forms as follows. Start with the n − c+
variables xc++1, xc++2, . . ., xn and then take c+ − c + 1 generic linear forms in the
variables xc− , xc−+1, . . . , xc+ . In the case when u has distinct coordinates, V (Lu) is
simply the subspace spanned by e0, e1, . . . , en−c.

Corollary 3.3 The degree of X[u] is the right hand side of (14) if and only if V (Lu)∩
X = ∅.

Proof The quantity deg(X) · (uc + uc+1 + · · · + un) is the maximal u-weight among
Plückermonomials of degree equal to deg(X). Themonomials that attain thismaximal
u-weight are products of deg(X) many Plücker coordinates of weight uc + uc+1 +
· · · + un . These are precisely the Plücker coordinates pi0,i1...,ic+−c, uc++1,...,un , where
c− ≤ i0<i1< · · ·<ic+−c ≤ c+.

Such monomials are nonzero when evaluated at the subspace V (Lu). All other
monomials, namely those having smaller u-weight, evaluate to zero on V (Lu). Hence,
the Chow form ChX has terms of degree deg(X) · (uc + uc+1 + · · · + un) if and only
if ChX evaluates to a nonzero constant on V (L) if and only if the intersection of X
with V (Lu) is empty. ��

We present two examples to illustrate the exact degree formula in Theorem 3.2.

Example 3.4 Suppose X is a hypersurface in Pn , defined by a homogeneous polyno-
mial ψ(x0, . . . , xn) of degree d. Let � be the tropicalization of ψ , with respect to
min–plus algebra, as in [27]. Equivalently, � is the support function of the Newton
polytope of f . Then

deg(X[u]) = d · |u| − �(u0, u1, . . . , un). (18)

For instance, let n = 8, d = 3 and ψ the determinant of a 3 × 3-matrix. Hence, X
is the variety of fundamental matrices, as in Example 1.1. The tropicalization of the
3 × 3-determinant is

� = min
(
u11+u22+u33, u11+u23+u32, u12+u21+u33, u12+u23+u31,

u13+u21+u32, u13+u22+u31
)
.

The degree of the distortion variety X[u] equals 3 · ∑
ui j − �. This explains the

degree 16 we had observed in Example 1.1 for the radial distortion of the fundamental
matrices.

Example 3.5 Let X be the variety of essential matrices with the same distortion vector
u. In Example 2.2, we found that deg(X[u]) = 52. The following Macaulay2 code
verifies this:

U = {0,0,1,0,0,1,1,1,2};
R = QQ[x11,x12,x13,x21,x22,x23,x31,x32,x33,Weights

=>apply(U,i->10-i)];
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P = matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}}
X = minors(1,2*P*transpose(P)*P-trace(P*transpose(P))*P)

+ideal(det(P));
M = ideal leadTerm X;
sum apply( 9, i -> U_i * degree(saturate(M,ideal

((gens R)_i))) )

Here, M is the monomial ideal in−u(X), and the last line is our saturation formula
in (17).

We next derive the equations that define the distortion variety X[u] from those that
define the underlying variety X . Our point of departure is the ideal of the rational
normal scroll Su . It is generated by the

(N−n
2

)
minors of the concatenated Hankel

matrix. The following lemma is well known and easy to verify using Buchberger’s
S-pair criterion; see also [31].

Lemma 3.6 The 2×2-minors that define the rational normal scrollSu form a Gröbner
basis with respect to the diagonal monomial order. The initial monomial ideal is
square-free.

For instance, in Example 2.1, when n = 2 and u = (1, 2, 3), the initial monomial
ideal is

〈a0b1, a0b2, a0c1, a0c2, a0c3, b0b2, b0c1, b0c2, b0c3, b1c1, b1c2, b1c3, c0c2, c0c3, c1c3〉. (19)

A monomial m is standard if it does not lie in this initial ideal. The weight of a
monomial m is the sum of its indices. Equivalently, the weight of m is the degree in
λ of the monomial in N + 1 variables that arises from m when substituting in the
parametrization of Su .

Lemma 3.7 Consider any monomial xν = xν0
0 xν1

1 · · · xνn
n of degree |ν| in the coor-

dinates of Pn. For any nonnegative integer i ≤ ν · u, there exists a unique monomial
m in the coordinates on P

N such that m is standard and maps to xνλi under the
parameterization of the scroll Su.

Proof The polyhedral cone corresponding to the toric variety Su consists of all pairs
(ν, i) ∈ R

n+2
≥0 with 0 ≤ i ≤ ν ·u. Its lattice points correspond tomonomials xν t i onSu .

Since the initial ideal in Lemma 3.6 is square-free, the associated regular triangulation
of the polytope is unimodular, by [34, Corollary 8.9]. Each lattice point (ν, i) has a
unique representation as anN-linear combination of generators that span a cone in the
triangulation. Equivalently, xν t i has a unique representation as a standard monomial
in the N + 1 coordinates on P

N . ��
We refer to the standard monomial m in Lemma 3.7 as the i th distortion of the
given xν .

Example 3.8 In Example 2.1, we have n = 2, N = 8, and Su corresponds to the cone
over a triangular prism. The lattice points in that cone are the monomials xν0

0 xν1
1 xν2

2 t i

with 0 ≤ i ≤ ν0 + 2ν1 + 3ν2. We can rewrite each such monomial uniquely in
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terms of the ambient coordinates on P8, namely as a monomial that does not lie in the
ideal (19). This monomial equals aν00

0 aν01
1 bν10

0 bν11
1 bν12

2 cν20
0 cν21

1 cν22
2 cν23

3 . Its exponents
satisfy ν00 + ν01 = ν0, ν10 + ν11 + ν12 = ν1, ν20 + ν21 + ν22 + ν23 = ν2 and
ν01 + ν11 + 2ν12 + ν21 + 2ν22 + 3ν23 = i . For instance, if xν = x30 x21 x22 then its
various distortions, for 0 ≤ i ≤ 13, are the monomials

a3
0b20c20, a3

0b20c0c1, a3
0b20c0c2, a3

0b20c0c3, a3
0b20c1c3, a3

0b20c2c3, a3
0b20c23,

a3
0b0b1c23, a3

0b0b2c23, a3
0b1b2c23, a3

0b22c23, a2
0a1b22c23, a0a2

1b22c23, a3
1b22c23.

Given any homogeneous polynomial p in the unknowns x0, x1, . . . , xn , we write
p[i] for the polynomial on PN that is obtained by replacing each monomial in p by its
i th distortion.

Example 3.9 For the scroll in Example 2.1, the distortions of the sextic p =
a6+a2b2c2 are

p[0] = a6
0 + a2

0b20c20, p[1] = a5
0a1 + a0a1b20c20 , . . . , p[5] = a0a5

1 + a2
1b1b2c20,

p[6] = a6
1 + a2

1b22c20, . . .

The following result shows how the equations of X[u] can be read off from those
of X .

Theorem 3.10 The ideal of the distortion variety X[u] is generated by the
(N−n

2

)
quadrics that define Su together with the distortions p[i] of the elements p in the
reduced Gröbner basis of X for a term order that refines the weights −u. Hence, the
ideal is generated by polynomials whose degree is at most the maximal degree of any
monomial generator of M = in−u(X).

Proof Since X[u] ⊂ Su , the binomial quadrics that define Su lie in the ideal I (X[u]).
Also, if p is a polynomial that vanishes on X then all of its distortions p[i] are in
I (X[u]) because

p[i]
(
x0, λx0, . . . , λ

u0x0, x1, . . . , λ
un xn

) = λi · p(x) = 0 for λ ∈ C and x ∈ X.

Conversely, consider any homogeneous polynomial F in I (X[u]). It must be shown
that F is a polynomial linear combination of the specified quadrics and distortion
polynomials. Without loss of generality, we may assume that F is standard with
respect to the Gröbner basis in Lemma 3.6 and that each monomial in F has the same
weight i . This implies

F
(
x0, λx0, . . . , λ

u0x0, x1, . . . , λ
un xn

) = λi f (x)

for some homogeneous f ∈ C[x0, . . . , xn]. Since F ∈ I (X[u]), we have f ∈ I (X).
We note also that F can be recovered from f , by applying the uniqueness part of
Lemma 3.7 to each monomial in f . This implies that F = f[i] equals the i th distortion
of f .
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We now write

f = h1 p1 + h2 p2 + · · · + hk pk,

where p1, p2, . . . , pk are in the reduced Gröbner basis of I (X) with respect to a
term order refining −u, and the multipliers satisfy deg−u( f ) ≥ deg−u(h j p j ) =
deg−u(h j )+deg−u(p j ) for j = 1, 2, . . . , k. Since F = f[i], we have−deg−u( f ) ≥ i .
Hence, for each j there exist nonnegative integers a j and b j such that a j + b j = i
and −deg−u(h j ) ≥ a j and −deg−u(p j ) ≥ b j . The latter inequalities imply that the
distortion polynomials (h j )[a j ] and (p j )[b j ] exist.

Now consider the following polynomial in the coordinates on P
N :

F̃ = (h1)[a1] · (p1)[b1] + · · · + (hk)[ak ] · (pk)[bk ].

By construction, F̃ and F both map to λi f under the parametrization of the scroll
Su . Thus, F̃ − F ∈ I (Su). This shows that F is a polynomial linear combination
of generators of I (Su) and distortions of Gröbner basis elements p1, . . . , pk . This
completes the proof. ��

We illustrate this result with two examples.

Example 3.11 If X is a hypersurface of degree d ≥ 2, then the ideal I (X[u]) is gen-
erated by binomial quadrics and distortion polynomials of degree d. More generally,
if the generators of I (X) happen to be a Gröbner basis for −u, then the degree of the
generators of I (X[u]) does not go up. This happens for all the varieties from computer
vision seen in Sect. 2.

In general, however, the maximal degree among the generators of I (X[u]) can be
much larger than that same degree for I (X). This happens for complete intersection
curves in P3:

Example 3.12 Let X be the curve in P
3 obtained as the intersection of two random

surfaces of degree 4. We fix u = (2, 3, 4, 4). The initial ideal M = in−u(X) has
51 monomial generators. The largest degree is 32. We now consider the distortion
surface X[u] in P12. The ideal of I (X[u]) is minimally generated by 133 polynomials.
The largest degree is 32.

4 Multi-parameter Distortions

In this section, we study multi-parameter distortions of a given projective variety X ⊂
P

n . Now, λ = (λ1, . . . , λr ) is a vector of r parameters, and u = (u0, . . . , un) where
ui = {ui,1, ui,2, . . . , ui,si } is an arbitrary finite subset ofNr . Each point ui, j represents
a monomial in the r parameters, denoted λui, j . We set |u| = ∑n

i=0 |ui | = ∑n
i=0 si and

N = |u| − 1. The role of the scroll is played by a toric variety Cu of dimension n + r
in P

N that is usually not smooth. Generalizing (10), we define the Cayley variety Cu

in PN by the parametrization
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(
x0λ

u0,1 : x0λ
u0,2 : · · · : x0λ

u0,s0 : x1λ
u1,1 : · · · : x1λ

u1,s1 : · · · : xrλ
ur,1 :

· · · : xrλ
ur,sr

)
. (20)

The name was chosen because Cu is the toric variety associated with the Cayley
configuration of the configuration u. Its convex hull is the Cayley polytope; see [11,
Section 3] and [27, Definition 4.6.1].

The distortion variety X[u] is defined as the closure of the set of all points (20) in
P

N where x ∈ X and λ ∈ (C∗)r . Hence X[u] is a subvariety of the Cayley variety
Cu , typically of dimension d + r where d = dim(X). Note that, even in the single-
parameter setting (r = 1), we have generalized our construction, by permitting ui to
not be an initial segment of N.

Example 4.1 Let r = n = 2, u0 = {(0, 0), (0, 1)}, u1 = {(0, 0), (1, 0)}, u2 =
{(2, 2), (1, 1)}. The Cayley variety Cu is the singular hypersurface in P

5 defined by
a0b0c0 − a1b1c1. Let X be the conic in P

2 given by x20 + x21 − x22 . The distortion
variety X[u] is a threefold of degree 10. Its ideal is 〈a0b0c0 − a1b1c1, a2

0c20 + b20c20 −
c41, a2

0a1b1c0 + a1b20b1c0 − a0b0c31, a2
0a2

1b21 + a2
1b20b21 − a2

0b20c21〉.

4.1 Two Views with Two or Four Distortion Parameters

We now present some motivating examples from computer vision. Multi-dimensional
distortions arise when several cameras have different unknown radial distortions, or
when the distortion function g(t) = 1+ μt2 in (4)–(5) is replaced by a polynomial of
higher degree.

We return to the setting of Sect. 2, and we introduce two distinct distortion param-
eters λ1 and λ2, one for each of the two cameras. The role of the equation (6) is played
by

0 =
(

U2

1 + λ2‖U2‖2
)�

⎡
⎣

x11 x12 x13
x21 x22 x23
x31 x32 x33

⎤
⎦

(
U1

1 + λ1‖U1‖2
)

. (21)

Just like in (9), this translates into one linear equation c�m = 0, where now m� =
[x11, x12, x13, λ1x13, x21, x22, x23, λ1x23, x31, x31λ2, x32, x32λ2, x33, x33λ2, x33λ1,
x33λ1λ2] and c� equals

[
u2u1, u2v1, u2, u2‖U1‖2, v2u1, v2v1, v2, v2‖U1‖2, u1, u1‖U2‖2, v1, v1‖U2‖2, 1,

‖U1‖2, ‖U2‖2, ‖U1‖2‖U2‖2
]
.

Here c is a real vector of data, whereas λ = (λ1, λ2) and x = (xi j ) comprise 11
unknowns. The vector m is a monomial parameterization of the form (20). The corre-
sponding configuration u is given by u11 = u12 = u21 = u22 = {(0, 0)}, u13 = u23 =
{(0, 0), (1, 0)}, u31 = u32 = {(0, 0), (0, 1)} and u33 = {(0, 0), (1, 0), (0, 1), (1, 1)}.
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Table 2 Dims, degrees, mingens of two-view models and their two-parameter radial distortions

dim(X), dim(X[u]) deg(X[u]) Proposition 3.1 # ideal gens of
deg(X) iterated deg 2, 3, 4, 5

F in Example 1.1: λ1 + F + λ2 7, 3 9 24 36 11, 4, 0, 0

E in Example 2.2: λ1 + E + λ2 5, 10 7 76 120 11, 20, 0, 0

G in Example 2.3: λ1 f + E + f λ2 6, 15 8 104 180 11, 4, 0, 4

G′ in Example 2.4: λ1 + E + f λ2 6, 9 8 56 108 11, 4, 15, 0

The Cayley variety Cu lives in P
15. It has dimension 10 and degree 10. Its toric ideal

is generated by 11 quadratic binomials.
Let X ⊂ P

8 be one of the two-viewmodelsF , E ,G, orG′ in Sect. 2.3. The following
table concerns the distortion varieties X[u] in P15. It is an extension of Table 1.

On each X[u], we consider linear systems of equations c�m = 0 that arise from
point correspondences. For aminimal problem, the number of such epipolar constraints
is dim(X[u]), and the expected number of its complex solutions is deg(X[u]). The
last column summarizes the number of minimal generators of the ideal of X[u]. For
instance, the variety X[u] = E[u] for essential matrices is defined by 11 quadrics (from
Cu), 20 cubics, 0 quartics and 0 quintics. If we add 7 general linear equations to these
then we have a system with 76 solutions in P

15. The penultimate column of Table 2
gives an upper bound on deg(X[u]) that is obtained by applying Proposition 3.1 twice,
after decomposing u into two one-parameter distortions.

We next discuss four-parameter distortions for two cameras. These are based on the
following model for epipolar constraints, which is a higher-order version of Eq. (21):

0 =
(

U2

1 + λ2‖U2‖2 + μ2‖U2‖4
)�

⎡
⎣

x11 x12 x13
x21 x22 x23
x31 x32 x33

⎤
⎦

(
U1

1 + λ1‖U1‖2 + μ1‖U1‖4
)

.

(22)

As before, the 3× 3-matrix x = (xi j ) belongs to a two-view camera model E ,F , G or
G′. We rewrite (22) as the inner product c�m = 0 of two vectors, where c records the
data and m is a parametrization for the distortion variety. We now have n = 9, r = 4
and |u| = 25. The configurations inN4 that furnish the degrees for this four-parameter
distortion are

u11 = u12 = u21 = u22 = {0},
u13 = u23 = {0, (1, 0, 0, 0), (0,0,1,0)}, u31 = u32 = {0, (0, 1, 0, 0), (0, 0, 0, 1)},

u33 = {0, (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)}.

Each of the resulting distortion varieties X[u] lives in P
24 and satisfies dim(X[u]) =

dim(X)+4. As before, we may compute the prime ideals for these distortion varieties
by elimination, for instance in Macaulay2. From this, we obtain the information
displayed in Table 3.

In each case, the 51 quadrics are binomials that define the ambient Cayley variety Cu

in P24. The minimal problems are now more challenging than those in Tables 1 and 2.
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Table 3 Dimension, degrees, number of minimal generators for four-parameter radial distortions

Dimension Degree Quadrics Cubics Quartics Quintics

F in Example 1.1: λ1μ1 + F + λ2μ2 11 115 51 9

E in Example 2.2: λ1μ1 + E + λ2μ2 9 354 51 34

G in Example 2.3: λ1μ1 f + E + f λ2μ2 10 245 51 9 42

G′ in Example 2.4: λ1μ1 + E + f λ2μ2 10 475 51 9 9

For instance, to recover the essential matrix along with four distortion parameters
from 9 general point correspondences, we must solve a polynomial system that has
354 complex solutions.

4.2 Iterated Distortions and Their Tropicalization

In what follows we take a few steps toward a geometric theory of multi-parameter
distortions. We begin with the observation that multi-parameter distortions arising in
practice, including those in Sect. 4.1, will often have an inductive structure. Such a
structure allows us to decompose them as successive one-parameter distortions where
the degrees form an initial segment of the nonnegative integers N. In that case, the
results of Sect. 2 can be applied iteratively. The following proposition characterizes
when this is possible. For ui ⊂ N

r and k < r , we write ui |Nk ⊂ N
k for the projection

of the set ui onto the first k coordinates.

Proposition 4.2 Let u = (u0, . . . , un) be a sequence of finite nonempty subsets of
N

r . The multi-parameter distortion with respect to u in λ1, . . . , λr is a succession
of one-parameter distortions by initial segments, in λ1, then λ2, and so on, if and
only if each fiber of the maps ui |Nk � ui |Nk−1 becomes an initial segment of N when
projected onto the kth coordinate. This condition holds when each ui is an order ideal
in the poset Nr , with coordinate-wise order.

Proof We show this for r = 2. The general case is similar but notationally more
cumbersome. The two-parameter distortion given by a sequence u decomposes into
two one-parameter distortions if and only if there exist vectors v = (v0, . . . , vn) ∈
N

n+1 and w = (w0, . . . , wn) ∈ N
v0+1 ⊕· · ·⊕N

vn+1 such that ui = {(s, t) : 0 ≤ s ≤
vi and 0 ≤ t ≤ wis} for i = 0, 1, . . . , n. This means that both the Cayley variety and
any distortion subvariety decompose as follows:

Cu = (Sv)[w] and X[u] = (X[v])[w]. (23)

The segment [0, vi ] inN is the unique fiber of the map ui |N1 � ui |N0 = {0}. The fiber
of ui |N2 � ui |N1 = [0, vi ] over an integer s is the segment [0, wis] in N. Thus the
stated condition on fibers is equivalent to the existence of the nonnegative integers vi

and wis . For the second claim, we note that the set ui is an order ideal in N2 precisely
when wi0 ≥ wi1 ≥ · · · ≥ wis . ��
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Proposition 4.2 applies to all models seen in Sect. 4.1 since the ui are order ideals.

Example 4.3 Consider the two-parameter radial distortion model for two cameras
derived in (21). The vectors in the above proof are v = (0, 0, 1, 0, 0, 1, 0, 0, 1) and
w = (

0, 0, (0, 0), 0, 0, (0, 0), 1, 1, (1, 1)
)
. The decomposition (23) holds for all four

models X = E,F ,G,G′. The penultimate column of Table 2 says that the degree of
(X[v])[w] is bounded above by 12 · deg(X). This follows directly from Proposition 3.1
because 12 = |v|·|w|.

The exact degrees for X[u] shown in Tables 2 and 3 were found using Gröbner
bases. This computation starts from the ideal of X and incorporates the structure in
Proposition 4.2.

Tropical geometry [27] furnishes tools for studyingmulti-parameter distortion vari-
eties. In what follows we identify any variety X ⊂ P

n with its reembedding into P
N ,

where the i-th coordinate xi has been duplicated |ui | times. Consider the distortion
variety 1[u] of the point 1 = (1 : 1 : · · · : 1) in P

n . This is the toric variety in P
N

given by the parametrization

(
λu0,1 : λu0,2 : · · · : λu0,s0 : λu1,1 : · · · : λu1,s1 : · · · : λur,1 : · · · : λur,sr

)
for λ ∈ (C∗)r+1.

Let ũ denote the (r+1) × (N+1)-matrix whose columns are vectors in the sets ui for
i = 0, 1, . . . , n, augmented by an extra all-one row vector (1, 1, . . . , 1). This matrix
represents the toric variety 1[u]. Recall that the Hadamard product � of two vectors in
C

n+1 is their coordinate-wise product. This operation extends to points in Pn and also
to subvarieties.

Theorem 4.4 Fix a projective variety X ⊂ P
n and any distortion system u, regarded

as r × (N + 1)-matrix. The distortion variety is the Hadamard product of X with a
toric variety:

X[u] = X � 1[u]

Its tropicalization is the Minkowski sum of the tropicalization of X with a linear space:

trop(X[u]) = trop(X) + trop(1[u]) = trop(X) + rowspace(ũ). (24)

Proof This follows from Eq. (20) and [27, Chapter 5]. The toric variety 1[u] in P
N

is represented by the matrix ũ, in the sense of [34], so its tropicalization is the row
space of ũ. Tropicalization takes Hadamard products into Minkowski sums, by [2,
Propostion 5.1] or [27, Proposition 5.5.11]. ��

Theorem 4.4 suggests the following method for computing degrees of multi-
parameter distortion varieties. Let L be the standard tropical linear space of
codimension r + dim(X) in R

N+1/R1, as in [27, Corollary 3.6.16]. Fix a general
point ξ in RN+1/R1. Then deg(X[u]) is the number of points, counted with multiplic-
ity, in the intersection of the tropical variety (24) with the tropical linear space ξ + L .
In practice, X is fixed and we precompute trop(X). That fan then gets intersected with
ξ + L + rowspace(ũ) for various configurations u.
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Table 4 Tropical varieties in R
9/R1 associated with the two-view models

Variety X Dim Lineality f-vector Multiplicities

F in Example 1.1 7 4 (9, 18, 15) 115
E in Example 2.2 5 0 (591, 4506, 12,588, 15,102, 6498) 26426, 472
G in Example 2.3 6 1 (32, 213, 603, 780, 390) 1336, 254
G′ in Example 2.4 6 1 (100, 746, 2158, 2800, 1380) 1800, 2572, 48

Corollary 4.5 The degree of X[u] is a piecewise-linear function in the maximal minors
of ũ.

Proof The maximal minors of ũ are the Plücker coordinates of the row space of
ũ. An argument as in [7, Section 4] leads to a polyhedral chamber decomposition
of the relevant Grassmannian, according to which pairs of cones in trop(X) and in
ξ + L + rowspace(ũ) actually intersect. Each such intersection is a point, and its
multiplicity is one of the maximal minors of ũ. ��

Using the software Gfan [21], we precomputed the tropical varieties trop(X) for
our four basic two-viewmodels, namely X = E,F ,G,G′. The results are summarized
in Table 4.

The lineality space corresponds to a torus action on X . Its dimension is given in
column 2. Modulo this space, trop(X) is a pointed fan. Column 3 records the number
of i-dimensional cones for i = 1, 2, 3, . . .. Each maximal cone comes with an integer
multiplicity [27, Section 3.4]. These multiplicities are 1, 2 or 4 for our examples.
Column 4 indicates their distribution.

5 Application to Minimal Problems

This section offers a case study for oneminimal problemwhich has not yet been treated
in the computer vision literature. We build and test an efficient Gröbner basis solver
for it. Our approach follows [25,26] and applies in principle to any zero-dimensional
parametrized polynomial system. This illustrates how the theory in Sects. 2, 3, 4 ties
in with practice.

We fix the distortion variety f + E + λ in Table 1. This is the variety G′′[v] which
lives in P

11 and has dimension 7 and degree 23. We represent its defining equations
by the matrix ⎛

⎝
x11 x12 x21x31 + x22x32 + x23x33 x13 y13
x21 x22 −x11x31 − x12x32 − x13x33 x23 y23
x31 x32 0 x33 y33

⎞
⎠ . (25)

This matrix is derived by augmenting (13) with the y-column. The prime ideal of G′′[v]
is generated by all 3× 3-minors of (25) and the 2× 2-minors in the last two columns.
The real points on this projective variety represent the relative position of two cameras,
one with an unknown focal length f and the other with an unknown radial distortion
parameter λ.
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Each pair (U1, U2) of image points gives a constraint (6) which translates into a
linear equation on G′′[v] ∩ L ′ ⊂ P

11, as in Eq. (9). Here m� = [x11, x12, x13, y13, x21,
x22, x23, y23, x31, x32, x33, y33] is the vector of unknowns. Using notation as in
Sect. 2.1, the coefficient vector of the equation c�m = 0 is c� = [u2u1, u2v1, u2,

u2‖U1‖2, v2u1, v2v1, v2, v2‖U1‖2, u1, v1, 1, ‖U1‖2
]
.

Seven pairs determine a linear system C m = 0 where the coefficient matrix C has
format 7 × 12. For general data, the matrix C has full rank 7. The solution set is a
5-dimensional linear subspace in R

12, or, equivalently, a 4-dimensional subspace L ′
in P

11. The intersection G′′[v] ∩ L ′ consists of 23 points. Our aim is to compute these
fast and accurately. This is what is meant by the minimal problem associated with the
distortion variety G′′[v].

5.1 First Build Elimination Template, then Solve Instances Very Fast

We shall employ the method of automatic generation of Gröbner solvers. This has
already been applied with considerable success to a wide range of camera geometry
problems in computer vision; see e.g., [25,26]. We start by computing a suitable basis
{n1, n2, n3, n4, n5} for the null space of C in R

12. We then introduce four unknowns
γ1, . . . , γ4, and we substitute

m = γ1n1 + γ2n2 + γ3n3 + γ4n4 + n5. (26)

Our rank constraints on (25) translate into ten equations in γ1, γ2, γ3, γ4. This system
has 23 solutions in C

4. Our aim is to compute these within a few tens or hundreds of
microseconds.

Efficient and stable Gröbner solvers are often based on Stickelberger’s Theorem
[35, Theorem 2.6], which expresses the solutions as the joint eigenvalues of its com-
panion matrices. Let I ⊂ R[γ ] be the ideal generated by our ten polynomials in γ =
(γ1, γ2, γ3, γ4). The quotient ring R[γ ]/I is isomorphic to R

23. An R-vector space
basis B is given by the standardmonomials with respect to any Gröbner basis of I . The
multiplication map Mi : R[γ ]/I → R[γ ]/I , f �→ f γi is R-linear. Using the basis
B, this becomes a 23× 23-matrix. The matrices M1, M2, M3, M4 commute pairwise.
These are the companion matrices. As anR-algebra, R[M1, M2, M3, M4] � R[γ ]/I .
Since I is radical, there are 23 linearly independent joint eigenvectors x, satisfying
Mix = λix. The vectors (λ1, λ2, λ3, λ4) ∈ C

4 are the zeros of I .
In practice, it suffices to construct only one of the companion matrices Mi , since

we can recover the zeros of I from eigenvectors x of Mi . Thus, our primary task is to
compute either M1, M2, M3 or M4 from seven point correspondences (U1, U2) in a
manner that is both very fast and numerically stable. For this purpose, the automatic
generatorofGröbner solvers [25,26] is used.Wenowexplain thismethod and illustrate
it for the f + E + λ problem.

To achieve speed in computation, we exploit that, for generic data, Buchberger’s
algorithm always rewrites the input polynomials in the same way. The resulting Gröb-
ner trace [36] is always the same. Therefore, we can construct a single trace for all
generic systems by tracing the construction of a Gröbner basis of a single “generic”
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system. This is done only once in an offline stage of solver generation. It produces
an elimination template, which is then reused again and again for efficient online
computations on generic data.

Starting with the input polynomial system F = { f1, . . . , f10}, the offline part of the
solver generation is a variant of the Gröbner trace algorithm in [36]. Based on the F4
algorithm [13] for a particular generic system, it produces an elimination template for
constructing a Gröbner basis of 〈F〉. The system F = { f1, . . . , f10} is written in the
form A m = 0, where A is the matrix of coefficients andm is the vectors of monomials
of the system. Every Gröbner basisG of F can be constructed by Gauss–Jordan (G–J)
elimination of a coefficient matrix Ad derived from F by multiplying each polynomial
fi ∈ F, by all monomials up to degree max {0, d − di }, where di = deg( fi ).
Tofind an appropriated, our solver generator startswithd = min {di }, setsmd = m,

and G–J eliminates the matrix Amin{di } = A. Then, it checks if a Gröbner basisG has
been generated. If not, it increases d by one, builds the next Ad and md , and goes
back to the check. This is repeated until a suitable d and a Gröbner basis G has been
found. Often, we can remove some rows (polynomials) from Ad at this stage and form
a smaller elimination template, denoted A′

d . For this, another heuristic optimization
procedure is employed, aimed at removing unnecessary polynomials and provide an
efficient template leading from F to the reduced coefficient matrix A′

d . For a detailed
description see [26] and [25, Section 4.4.3].

In order to guide this process, we first precompute the reduced Gröbner basis of I ,
e.g., w.r.t. grevlex ordering in Macaulay2 [18], and the associated monomial basis
B ofR[γ ]/I . This has to be done in exact arithmetic overQ, which is computationally
very demanding, due to the coefficient growth [1]. We alleviate this problem by using
modular arithmetic [13] or by computing directly in a finite field modulo a single
“lucky prime number” [36]. For many practical problems [6,30,32], small primes like
30,011 or 30,013 are sufficient.

The output of this offline algorithm is the elimination template for constructing
A′

d , i.e., the list of monomials multiplying each polynomial of F to produce A′
d and

m′
d . The template is encoded as manipulations of sparse coefficient matrices. After

removing unnecessary rows and columns, the matrix A′
d has size s × (s + |B|) for

some s. The left s×s-block is invertible.Multiplying A′
d by that inverse and extracting

appropriate rows, one obtains the |B| × |B| matrix M1 that represents the linear map
R[γ ]/I → R[γ ]/I, f �→ f γ1 in the basis B.

We applied this offline algorithm to the f +E +λ problem, with standardmonomial
basis

B = (
1, γ1, γ1γ3, γ1γ3γ4, γ1γ4, γ1γ 2

4 , γ2, γ2γ3, γ2γ3γ4, γ2γ4, γ2γ
2
4 , γ2γ

3
4 , γ3, γ

2
3 ,

γ 3
3 , γ 2

3 γ4, γ3γ4, γ3γ
2
4 , γ3γ

3
4 , γ4, γ

2
4 , γ 3

4 , γ 4
4

)
.

Note that |B| = 23. The matrix (25) gives the following ten ideal generators (with
d1=d2=d3=2, d4=d5=3, d6= · · · =d10=4) for the varietyG′′[u] encoding the f +E+λ

problem:
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f1 = y23x33 − x23y33
f2 = y13x33 − x13y33
f3 = y13x23 − x13y23
f4 = y13x22x31 − x12y23x31 − y13x21x32 + x11y23x32 + x12x21y33 − x11x22y33
f5 = x13x22x31 − x12x23x31 − x13x21x32 + x11x23x32 + x12x21x33 − x11x22x33
f6 = x11y13x31x32 + x21y23x31x32 + x12y13x232 + x22y23x232 − x11x12x31y33 − x21x22x31y33

−x212x32y33 + x213x32y33 − x222x32y33 + x223x32y33 − x12x13x33y33 − x22x23x33y33
· · · · · · · · · · · · · · ·

f10 = x11x12x231 + x21x22x231 − x211x31x32 + x212x31x32 − x221x31x32 + x222x31x32
−x11x12x232 − x21x22x232 + x12x13x31x33 + x22x23x31x33 − x11x13x32x33 − x21x23x32x33

Using (26), these are inhomogeneous polynomials in γ1, γ2, γ3, γ4. In the offline
algorithm, we multiply fi by all monomials up to degree 5−di in these four variables.
Each of f1, f2, f3 is multiplied by the 35 monomials of degree ≤ 3, each of f4, f5 is
multiplied by the 15monomials of degree≤ 2, and each of f6, . . . , f10 ismultiplied by
the 5 monomials of degree ≤ 1. The resulting 160 = 10+105+30+25 polynomials
are written as a matrix A5 with 160 rows. Only 103 rows are needed to construct the
matrix M1. We conclude with an elimination template matrix A′

5 of format 103×126.
For any data C , the online solver performs G–J elimination on that matrix, and it
computes the eigenvectors of a 23 × 23 matrix M1.

To avoid coefficient growth in the online stage, exact computations over Q are
replaced by approximate computations with floating point numbers in R. In a naive
implementation, expected cancellations may fail to occur due to rounding errors, thus
leading to incorrect results. This is not a problem in our method because we follow the
precomputed elimination template: we use onlymatrix entries that were nonzero in the
offline stage. Still, replacing the symbolic F4 algorithm with a numerical computation
may lead to very unstable behavior.

It has been observed [3] that different formulations, term orderings, pair selection
strategies, etc., can have a dramatic effect on the stability and speed of the final solver.
It is hence crucial to validate every solver experimentally, by simulations as well as
on real data.

5.2 Computational Results

A complete solution, in the engineering sense, to a minimal problem is a solution
that is: (1) fast and (2) numerically stable for most of the data that occur in practice.
Moreover, for applications it is important to study the distribution of real solutions of
the minimal solver.

Minimal solvers are often used inside RANSAC style loops [14]. They form parts of
much larger systems, such as structure-from-motion and 3D reconstruction pipelines
or localization systems. Maximizing the efficiency of these solvers is an essential
task. Inside a RANSAC loop, all real zeros returned by the solver are seen as possible
solutions to the problem. The consistency w.r.t. all measurements is tested for each of
them. Since that test may be computationally expensive, the study of the distribution
of real solutions is important.
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In this section, we present graphs and statistics that display properties of the com-
plete solution we offer for the f + E +λ problem. We studied the performance of our
Gröbner solver on synthetically generated 3D scenes with known ground-truth param-
eters. We generated 500,000 different scenes with 3D points randomly distributed in
a cube [−10, 10]3 and cameras with random feasible poses. Each 3D point was pro-
jected by two cameras. The focal length f of the left camera was drawn uniformly
from the interval [0.5, 2.5], and the focal length of the right camera was set to 1. The
orientations and positions of the cameras were selected at random so as to look at the
scene from a randomdistance, varying from20 to 40 from the center of the scene. Next,
the image projections in the right camera were corrupted by random radial distortion,
following the one-parameter division model in [15]. The radial distortion λwas drawn
uniformly from the interval [−0.7, 0]. The aim was to investigate the behavior of the
algorithms for large as well as small amounts of radial distortion.

Computation and its speed. The proposed f + E + λ solver performs the following
steps:

1. Fill the 103 × 126 elimination template matrix A′
5 with coefficients derived from

the input measurements.
2. Perform G–J elimination on the matrix A′

5.
3. Extract the desired coefficients from the eliminated matrix.
4. Create the multiplication matrix from extracted coefficients.
5. Compute the eigenvectors of the multiplication matrix.
6. Extract 23 complex solutions (γ1, γ2, γ3, γ4) from the eigenvectors.
7. For each real solution (γ1, γ2, γ3, γ4), recover the monomial vector m as in (26),

the fundamental matrix F , the focal length f , and the radial distortion λ.

These seven steps were implemented efficiently. The final f + E + λ solver runs in
less than 1ms. All computations reported in this section were performed on an Intel(R)
Core(TM) i5-2520M CPU @ 2.50GHz laptop.

Numerical stability. Westudied the behavior of our solver on noise-free data. Figure 1a
shows the distribution of Log10 of the relative error of the radial distortion parameter λ
estimated using the new f + E +λ solver. These result were obtained by selecting the
real roots closest to the ground-truth values. The results suggest that the solver delivers
correct solutions and its numerical stability is suitable for real-word applications.

Figure 1b shows the distribution of Log10 of the relative error of the estimated focal
length f . Again these result were obtained by selecting the real roots closest to the
ground-truth values. Note that the f + E + λ solver does not directly compute the
focal length f . Its output is the monomial vector in m (26), from which we extract λ
and the fundamental matrix X = (xi j ). To obtain the unknown focal length from X ,
we use the following formula:

Lemma 5.1 Let X = (xi j )1≤i, j≤3 be a generic point in the variety G′′ from Exam-
ple 2.5. Then there are exactly two pairs of essential matrix and focal length (E, f )

such that X = diag( f −1, f −1, 1)E. If one of them is (E, f ) then the other is
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Fig. 1 Numerical stability. a Log10 of the relative error of the estimated radial distortion. b Log10 of the
relative error of the estimated focal length

(diag(−1,−1, 1)E, − f ). In particular, f is determined up to sign by X. A formula to
recover f from X is as follows:

f 2 = x23x231 + x23x232 − 2x21x31x33 − 2x22x32x33 − x23x233
2x11x13x21 + 2x12x13x22 − x211x23 − x212x23 + x213x23 + x221x23 + x222x23 + x323

. (27)

Proof Consider the map E × C
∗ → P

8, (E, f ) �→ diag( f −1, f −1, 1)E . Let I ⊂
Q[ei j , f, xi j ] be the ideal of the graph of this map, where E = (ei j )1≤i, j≤3. So, I is
generated by the tenDémazure cubics and the nine entries of X −diag( f −1, f −1, 1)E .
We computed the elimination ideal I ∩ Q[ f, xi j ] in Macaulay2. The polynomial
gotten by clearing the denominator and subtracting the RHS from the LHS in the
formula (27) lies in this elimination ideal. ��

Counting real solutions. In the next experiment, we studied the distribution of the
number of real solutions (λ, F) and the number of real solutions for the focal length f .

Figure 2a shows the histogram of the number of real solutions on the distortion
variety G′′[v]. All odd integers between 1 and 23 were observed. Most of the time we
obtained an odd number of real solutions between 7 and 15. The empirical probabilities
are in Table 5.

Figure 2b shows the histogram of the number of real solutions for the focal length
f , computed from the distortion variety G′′[v] using the formula (27). Of the 46 complex
solutions, at most 23 could be real and positive. The largest number of positive real
solutions f observed in 500,000 runs was 16. The empirical probabilities from this
experiment are in Table 6.

We performed the same experiment with image measurements corrupted by Gaus-
sian noise with the standard deviation set to 2 pixels. The distribution of the real roots
in the distortion variety G′′[v] was very similar to the distribution for noise-free data.
The main difference between these result and those for noise-free data was in the
number of real values for the focal length f . For a fundamental matrix corrupted by
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Fig. 2 Number of real solutions for floating point computation with noise-free image data

Table 5 Distribution of the number of real solutions in the distortion variety G′′[v] for noise-free data

Real roots in G′′[v] 1 3 5 7 9 11 13 15 17 19 21 23

% 0.003 0.276 2.47 9.50 21.0 28.0 22.8 11.5 3.60 0.681 0.078 0.003

Table 6 Distribution of the number of positive real roots for the focal length f for noise-free data

Real f 0 1 2 3 4 5 6 7 8 9 10 11

% 0.003 0.397 3.16 7.93 14.5 18.8 19.9 15.5 10.5 5.54 2.52 0.894

Real f 12 13 14 15 16

% 0.295 0.075 0.023 0.005 0.001

Table 7 Distribution of the number of real solutions in the distortion variety G′′[v] for image measurements
corrupted with Gaussian noise with σ = 2 pixels

Real roots 1 3 5 7 9 11 13 15 17 19 21 23

% 0.021 0.509 3.23 11.2 22.4 27.7 21.1 10.1 3.07 0.566 0.062 0.004

noise, the formula (27) results in no real solutions more often. See Tables 7 and 8 for
the empirical probabilities.

Finally, we performed the same experiments for a special camera motion. It is
known [29,33] that the focal length cannot be determined by the formula (27) from
the fundamental matrix if the optical axes are parallel to each other, e.g., for a sideways
motion of cameras. Therefore, we generated cameras undergoing “close-to-sideways
motion”. To model this scenario, 100 points were placed in a 3D cube [−10, 10]3.
Then 500,000 different camera pairs were generated such that both cameras were first
pointed in the same direction (optical axes intersect at infinity) and then translated
laterally. Next, a small amount of rotational noise of 0.01 degrees was introduced into
the camera poses by right-multiplying the projection matrices by rotation matrices.
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Table 8 Distribution of the number of real roots for the focal length f with data as in Table 7

Real f 0 1 2 3 4 5 6 7 8 9 10 11

% 0.243 1.30 4.92 10.2 16.1 19.0 18.5 13.7 8.79 4.33 1.96 0.689

Real f 12 13 14 15 16

% 0.217 0.048 0.015 0.002 0.001

Table 9 Distribution of the number of real solutions in the distortion variety G′′[v] for the close-to-sideways
motion scenario with noise-free data

Real roots 1 3 5 7 9 11 13 15 17 19 21 23

% 0.007 0.544 5.14 16.83 26.2 24.9 16.2 7.37 2.30 0.475 0.061 0.006

Table 10 Distribution of the number of real solutions for the focal length f in the close-to-sidewaysmotion
scenario with noise-free data

Real f 0 1 2 3 4 5 6 7 8 9 10 11

% 0.006 0.755 3.08 10.2 12.9 20.9 16.2 16.0 8.73 6.17 2.61 1.58

Real f 12 13 14 15 16 17 18 19 20

% 0.556 0.253 0.086 0.033 0.011 0.0044 0.0016 0.0012 0.0002

This multiplication slightly rotated the optical axes of cameras (as not to intersect at
infinity) as well as simultaneously displaced the camera centers.

The results for noise-free data are displayed in Tables 9 and 10. For this special
close-to-sideways motion, the formula (27) provides up to 20 real solutions for the
focal length f .
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