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Abstract. The aim of this paper is to describe development of an eval-
uation system for practical comparison of wireless communication tech-
nologies used in field robotics. The evaluation system is capable of mea-
suring data rate, drop rate and latency in both communication directions.
The evaluation system closely simulates communication of a teleoperated
field robot with its base station - which is a highly asymmetric commu-
nication link, because there is a high data rate video feed transmission
from the robot to the base station.
This paper describes specifics of wireless communication links used in
field robotics and considerations that need to be taken into account when
developing such system. The wireless link evaluation system is described
from hardware and software point of view.

Keywords: Field robotics, Wireless communication technology, Evalu-
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1 Introduction & Motivation

Communication is one of the key areas in mobile and especially field robotics
where intensive research needs to be conducted because success of teleoperated
field robotics missions depends on stable, long range and low latency communi-
cation. The nature of field robotics missions determines that the communication
link must be wireless which brings significant challenges concerned with latency
and most importantly range.

This article describes an approach to building an evaluation tool for com-
munication links used in field robotics. It is capable of measuring latency, loss
rate, reordering and with suitable communication hardware also SNR and RSSI.
The evaluation system works by simulating traffic that is usually present in tele-
operated field robotics missions - there are control data transmitted from the
operator to the robot and video feed with telemetry data transmitted in the
opposite direction - from the robot to the operator. This way the results are bet-
ter than with just measuring data rates with random data as the measurement
process is an approximation of a real life mission. First version of this evaluation
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system was described in [1] where it was successfully tested while evaluating 2.4
GHz and 5 GHz 802.11 communication links.

The motivation behind development of such evaluation system was the ability
of rapid testing of communication interfaces and therefore being able to deliver
the best wireless communication performance in field robotics missions which
are primary research goal of our research group. The main goal is to greatly
improve communication link for our research group’s Orpheus series robots [2],
[3], [4].

2 Measuring communication link properties

The goal of this section is to provide insight into requirements needed for im-
plementation of the communication link evaluation system. First, specifics of
communication in mobile robotics are described. Analysis of video feed commu-
nication model is done in order to closely simulate video feed traffic. For latency
measurement time synchronization is required which is also described here.

2.1 Specifics of communication in field robotics

Data traffic in teleoperated field robots consists of two types of UDP datagrams
- video feed coming from the robot to the base station and control and telemetry
data that are transmitted in both directions. A schematic diagram showing the
traffic can be seen in the figure 1. As can be seen in the figure, the base station
sends control data at frequency of about 30 Hz and the data has a length of
about 80 B, while the robot sends video feed with data rate of approximately
800 kbps and telemetry data which are responses to the control data therefore
have about the same frequency of 30 Hz but their length is about 120 B.

Base station Robot

Control data
30 Hz, 80 B

Video feed
800 kbps
Telemetry data
30 Hz, 120 B

Fig. 1. A graphical representation of communication between the base station and the
robot

2.2 Analysis of video feed data

In order to closely simulate the video feed traffic the video feed must be captured
and analyzed. The video feed consists of UDP datagrams that contain h.264 or



h.265 encoded video. This codec effectively compresses small changes in the
picture resulting in low data rate, while full frame changes such as moving with
the camera result in high data rate. Therefore to accurately analyze the video
feed, the camera needs to be moving during the capture to generate high data
rate video feed. The data required to simulate the feed are timestamps and
lengths of the datagrams.

The video feed was captured using Wireshark by applying filter on the in-
terface that is used to connect to the camera. The applied filter was udp and
ip.src == cameraIP and ip.dst == computerIP where cameraIP is the IP

address of the camera and computerIP is the IP address of the interface that is
used to connect to the camera. The measured data can be then exported in the
Wireshark using File -> Export Packet Dissections -> As CSV....

Captured datagram information were then analyzed using MATLAB. First
the CSV file was loaded to a matrix and timestamps alongside with datagram
lengths were extracted. The data can be seen in the figure 2. As can be seen the
majority of captured datagrams have 1400 B length. A window with length of
one second containing a lot of datagrams with 1400 B length (indicating high
data rate) was selected. Datagrams contained in the selected second are shown
in the figure 3.
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Fig. 2. Captured video feed datagram length in time
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Fig. 3. Selected window of the the video feed datagram capture

The selected datagrams then needed to be transformed into data that could
be used by the evaluation system. That means that timestamps in seconds needed
to be transformed to milliseconds. Observing the timestamps showed that the
data is grouped into groups of four to eight datagrams. Furthermore by observing
the data it can be seen that the timestamps can be rounded to 10 ms resolution,
which is useful for optimizing the evaluation system sending algorithm. Times-
tamps and datagram lengths were then exported so that they could be used in
the evaluation system.

2.3 Time synchronization

Latency measurement requires time synchronization between the two communi-
cation simulators, which can be achieved using PTP (precision time protocol -
IEEE 1588) [5]. This protocol is implemented on Linux using the ptpd daemon.
In case of this measurement system, ptdp was installed on both of the Rasp-
berry Pis. The robot simulating Raspberry Pi then serves as a master in the
PTP and is configured using command sudo ptpd -M -i eth0 while the base
simulating Raspberry Pi serves as a PTP slave and is configured using sudo
ptpd -s -i eth0. The slave automatically finds the master and adjusts time
accordingly.



The previously described setup works only when the two parts of the evalu-
ation system are present on the same network and the connection is done using
a transparent radio bridge. In the case that there is not a transparent link and
the two parts are on separate networks another parameter needs to be passed
o the ptpd daemon command. The robot simulating part needs to be started
with command sudo ptpd -M -i eth0 -u BASE_STATION_SIMULATOR_ADDRESS
and the base station simulator with command sudo ptpd -s -i eth0 -u
ROBOT_SIMULATOR_ADDRESS.

3 System for evaluation of communication links

Our proposed and developed evaluation system for communication links works by
closely simulating traffic generated by the robot and the base station, therefore
provides accurate results and shows the behavior of the link.

There are two parts of the evaluation system - robot and base station simu-
lator - which simulate traffic generated by the robot and the base station. These
parts consist of a Raspberry Pi running custom software. To control the eval-
uation system another program is used. The robot simulator is supposed to be
mobile, therefore it was equipped with a 3 cell Li-Poly battery and a step-down
converter.

In order to achieve best results, the robot simulating part of the evaluation
system has to be placed in certain height above the ground in order to avoid
radio waves being absorbed by the ground. For some experiments it was therefore
placed on a cardboard box with height of 490 mm. The base simulating part of
the measurement system was placed on a table in a designated spot. Both parts
of the evaluation system can be seen during an experimental evaluation with
MikroTik router based communication link in the figures below.

Fig. 4. Base simulator hardware placed
on a designated spot on a table

Fig. 5. Robot simulator hardware
placed on a box used to maintain al-
titude



3.1 Communication simulating software

Communication simulating program was designed to simulate the communica-
tion model of the robot. The core of the program is based on an epoll based
scheduler that schedules sending and receiving of UDP datagrams to simulate
traffic.

The program is meant to be run all the time. It always waits for an in-
coming TCP connection that begins the evaluation. Once the evaluation begins,
datagrams are sent periodically and received datagrams are parsed and analyzed.
The evaluation runs for predetermined number of seconds and saves result of the
evaluation for each second. After the evaluation is complete the resulting data
are sent to the TCP connection that started the evaluation. A simple diagram
showing communication between the programs is shown in the figure 6.

Implementation-wise there is only one program that can be switched to act
as a robot simulator a base station simulator using command line arguments.
The program is also capable of communication with MikroTik routers utlizing
MikroTik API [6] in order to read RSSI and SNR values, address of the router
is also specified using a command line argument.

Communication
simulator

Communication
simulator

Simulator
control

Base station simulator Robot simulator

10.0.15.201/16 10.0.15.200/16

UDP datagrams
Video feed

Control and telemetry data

TCP packetsTCP packets

Fig. 6. Diagram showing communication between programs in the measurement system

Program binaries are installed on the Raspberry Pis using a Makefile gener-
ated by CMake. After installation the program can be launched by calling
commsim -a BASE_STATION_SIMULATOR_ADDRESS -m MIKROTIK_ADDRESS or
commsim -b -a ROBOT_SIMULATOR_ADDRESS -m MIKROTIK_ADDRESS depending
on whether the program should simulate traffic from the robot or from the base
station. The MIKROTIK_ADDRESS is an optional parameter and the -b parameter
specifies that the simulation program should act as a base station simulator.

Simulating control and telemetry traffic Control and telemetry traffic con-
sists of datagrams with average length of 80 bytes in the direction to robot and of



120 bytes in the direction from robot. Datagrams in both directions are sent with
frequency of 30 Hz therefore need to be sent every 33 ms. Structure of datagrams
sent by the evaluation system is shown in the figure 7. As can be seen in the
figure, the first byte is a header with a predefined single byte constant 0x10 that
can be used to ignore packets that are not sent by the evaluation system. Then
number of the second of the evaluation is sent as a single byte to identify data-
grams that are received after the second concludes. Single byte sequence number
follows the second that is used to identify reordered datagrams and finally there
are eight bytes containing timestamp in milliseconds since 1.1.1970 that is used
to calculate the latency. The rest of the datagram is filled with pseudo random
data.

Second Timestamp Pseudo-random dataSQNHeader

1 B 1 B 1 B 8 B (required length - 11) B

Fig. 7. Structure of a packet used for simulating control and telemetry traffic

Simulating video feed traffic Video feed capture and analysis in the section
2.2 showed that video feed datagrams are sent in batches irregularly and the
sending loop can be optimized by running every 10 ms. First on the program
launch datagram lengths obtained by the analysis are grouped to batches accord-
ing to the timestamp. Then in every sending loop iteration the program checks
if any datagrams should be sent and sends them if needed. Datagrams are then
received and analyzed similarly to the control and telemetry datagrams.

The structure of the datagrams is similar to the one described in the section
3.1. However, there are some minor changes to it. Firstly the header byte contains
0x20 constant. Secondly apart from sending second, millisecond is also sent in
two bytes. In the evaluation of telemetry and control traffic, the millisecond is
currently not sent but could be used to further improve drop rate and datagram
reorder analysis. The datagram structure is shown in the figure 8.

Second Millisecond Timestamp Pseudo-random dataSQNHeader

1 B 1 B 2 B 1 B 8 B (required length - 13) B

Fig. 8. Structure of a datagram used for simulating video feed traffic

Measuring latency Synchronization of time described in the section 2.3 along-
side with timestamps being send in the datagram is used to measure latency



between sending and receiving datagrams. The calculation then requires only to
subtract time received in the datagram from current time in milliseconds. To
avoid for integer overflow errors caused by imprecise time synchronization it is
vital that the smaller time is always subtracted from the greater time. After cal-
culation of latency, it is saved and maximal and minimal latency are calculated.
When evaluation is completed in the second, average latency is computed ac-
cording to the equation 1 as well as standard deviation of the latency according
to the equation 2. Code used for latency computation is shown in the listing 1.1.

t̄ =
1

N

N∑
i=1

ti (1)

where t̄ is average latency, t is vector of measured latencies and N is number of
measured latencies

σ =

√√√√ 1

N − 1

N∑
i=1

(ti − t̄)2 (2)

where t̄ is average latency, t is vector of measured latencies and N is number of
measured latencies

1 uint64_t time = millis ();
2 uint64_t receivedTime = 0;
3 memcpy (& receivedTime , datagram.data + 5, 8)
4
5 uint64_t latency = 0;
6 if (time > receivedTime) {
7 latency = time - receivedTime;
8 } else {
9 latency = receivedTime - time;
10 }
11
12 if (latency > maxLatency) {
13 maxLatency = (uint16_t) latency;
14 }
15 if (latency < minLatency) {
16 minLatency = (uint16_t) latency;
17 }
18
19 latencies[latencyIndex] = (uint16_t) latency;
20 latencyIndex ++;

Listing 1.1. Calculating latency

Measuring datagram reordering and loss There are two mechanisms used
to detect delayed datagrams. Firstly, the second in which the datagrams were



sent must be the same as the second in which they were received. If that is not
the case, then the datagrams are counted. Also if sequence number of the re-
ceived frame is lower than sequence number of previously received datagram, the
datagram is counted. Algorithm used for delayed datagram detection is shown
in the listing 1.2.

1 uint8_t frameSecond = datagram.frame [1];
2
3 if (frameSecond != state.second) {
4 delayedPacketsFromLastSeconds ++;
5 return;
6 }
7
8 if (newFrameNumber < lastReceivedFrameNumber) {
9 delayedPackets ++;
10 } else {
11 lastReceivedFrameNumber = newFrameNumber;
12 }

Listing 1.2. Detecting delayed datagram

Lost datagrams are calculated from the number of sent datagrams that is
hardcoded to the program by subtracting the number of received datagrams
from the current second.

3.2 Evaluation system control and data processing

Evaluation is started using the evaluation control program. The program first
starts the measurement by sending a predefined TCP packet to the simulator
programs and then waits until the simulator programs send data back over the
TCP socket. Once the measurement results are sent from both of the simulators
the results are saved in CSV format. An example of calling the program is
csc -r ROBOT_SIMULATOR_ADDRESS -b BASE_STATION_SIMULATOR_ADDRESS
-f OUTPUT_FILE. An example of the output file contents is shown in the listing
1.3. Similarly to the communication simulation program the control program
binary is installed using a Makefile generated by CMake.

1 robot
2 sentPackets ,receivedPackets , ...
3 30,27,0,0,29.12,41.92,3,155,80,0,0,0,0,0,1000,0,-89,14
4 30,30,0,0,8.29,7.32,2,26,80,0,0,0,0,0,1000,0,-89,14
5 ...
6 base
7 sentPackets ,receivedPackets , ...
8 30 ,25 ,0 ,0 ,24.5 ,22.95 ,0 ,77 ,0 ,70 ,0 ,0 ,41.76 ,37.45 ,

3,152,-88,17
9 30 ,30 ,0 ,1 ,30.72 ,33.37 ,0 ,118 ,0 ,78 ,0 ,5 ,40.81 ,32.16 ,

3,116,-88,17



10 ...
Listing 1.3. Example of measurement system output file contents

3.3 Processing the measured data

Results provided by the evaluation system need to be further processed to pro-
vide meaningful data for experiments. The processing is performed using a func-
tion programmed in MATLAB. In each measurement there are data from 30 sec-
onds. The data are averaged and maximal values are selected. The script outputs
results to a csv file.

4 Sample results

The figures 9, 10 and 11 show sample data output from the evaluation system,
more specifically comparison of data from two evaluations - of 2.4 GHz and 5 GHz
802.11 communication links. The evaluations were performed in four points with
different distances and different numbers of obstacles.

The first figure - figure 9 shows comparison of average latencies. The second
figure - figure 10 shows comparison of latency deviations. The third figure - figure
11 shows comparison of drop rates.

It can be seen that generally 5 GHz link performs worse than the 2.4 GHz one.
There are some irregularities in the data that could most likely be avoided using
repeated measurement and by measuring in areas where frequency spectrum on
these frequencies is not used that much.
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Fig. 9. Comparison of average latencies from evaluation of 2.4 GHz and 5 GHz 802.11
communication links
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Fig. 10. Comparison of latency deviations from evaluation of 2.4 GHz and 5 GHz
802.11 communication links
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5 Further work

There are a few ways of further enhancing the evaluation system. The most
significant of them is adding a touch screen display to the robot simulator Rasp-
berry Pi, thus adding a graphical user interface. This would bring significant
simplification to the usage of the evaluation system as the need for an external
computer starting the simulation would be eliminated. Another advantage would
be the possibility to show the measured data in real time and measure again in
case of any fatal error. Showing the data in real time also means that the results
processing would be done directly on the Raspberry Pi, therefore eliminating
the need for external scripts for data processing, but there would have to be a
way to upload the results to an external storage, such as a file server or an USB
flash drive.

Another way of improving the evaluation system would be allowing for on-
board network interface configuration. This proposes significant challenge as
improper configuration causes the entire evaluation system to become unusable.
This could also be configurable using the aforementioned graphical user interface.

Another problem that needs to be solved is simulation of a moving vehicle
because there will be more noise and the demodulation might be problematic.

6 Conclusion

The aim of this thesis was to provide an insight into how to develop an evaluation
system for communication links in field robotics. Specifics of communication
model in field robotics was examined alongside with video feed data. Based on
these principles an example evaluation system was developed. The evaluation
system is very simple but has many drawbacks, mostly caused by complicated
setup and usage because there are many steps to be done before the evaluation
itself starts. Many of these drawbacks will hopefully be solved by implementing
the graphical user interface mentioned in the section 5.

The evaluation system was tested in [1] where 2.4 GHz and 5 GHz 802.11
communication links were evaluated. Comparison of the two communication links
proved that the 5 GHz link had lower range and higher latency. It was proven
that the evaluation system works and it can be used for future comparisons
of communication links and more importantly of their different configuration.
The evaluation system targets not only 802.11 based systems but also any radio
communication systems equipped with ethernet and TCP/IP stack (for example
radios based on 433 MHz ISM frequencies). For comparison of the communication
links it is also more important to tell which is better than to provide absolute
values of measured data.
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