2374 Computer Vision Winter Workshop
Zuzana Kiikelovd and Jiilia Skovierovd (eds.)
C‘esky Krumlov, Czech Republic, February 5-7, 2018

Compact ConvNets with Ternary Weights and Binary Activations

Ondiej Holesovsky ! *

ondrej.holesovsky@cvut.cz

Atsuto Maki 2
atsuto@kth.se

I Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University
166 36 Prague 6, Czech Republic

2 School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology
Stockholm, SE-10044 Sweden

Abstract. Compact convolutional neural network
(CNN) architectures with ternary weights and binary
activations is a combination of methods suitable for
making neural networks more efficient. We show that
the combination of ternary weights and depthwise
separable convolutions on the CIFAR-10 benchmark
can yield a small neural network of size 32kB and
83.70% test accuracy. We present a novel dithering
binary activation which we expected to improve ac-
curacy of networks with binary activations by ran-
domizing quantization error. This work presents the
outcome of our experiments which show that it brings
only mild improvements. A compact SqueezeNet net-
work with ternary weights and binary activations is
more accurate than the same network with binary
weights. Nevertheless, the accuracy gap to its full
precision variant remains large.

1. Introduction

Deep CNN s achieve great results in several pattern
recognition/machine learning tasks. However, CNNs
are usually computationally intensive, because of
hundreds of thousands to millions trainable parame-
ters. In addition, very many convolutional operations
in several convolutional layers need to be performed.
When deploying CNNs in a constrained environment
like autonomous cars, drones or smartphones, a com-
putationally efficient neural network is desirable.

We evaluated several methods, namely compact
CNN architectures, one-bit or two-bit weight quan-
tization and activation binarization on the CIFAR-
10 image classification benchmark [[1]. We aimed at

*Former master student at KTH, currently employed as a re-
searcher at CTU, CIIRC.

finding out the current efficiency limits. Quantized
weights reduce neural network size [2, 3]. When
combined with binary quantized activations [3, 4],
both runtime memory and energy footprint are fur-
ther reduced and inference can be faster. Compact ar-
chitectures [} 6] aim at low computational demands
with full precision (32 bit floating point) weights
while fully preserving the good image classification
accuracy of less compact models.

However, less work has be done in examining the
complementarity of these methods. The contribu-
tions of this paper are:

1. We evaluate the utility of ternary weights (-
Wn 0,+WP) for compact networks, by apply-
ing trained ternary quantization TTQ [2] to net-
works with depthwise separable convolutions.
One of the smallest networks trained on CIFAR-
10 has only 32 kB model size while achieving
83.7% test accuracy.

2. We present a combination of ternary weights
and binary activations for making neural net-
works both smaller and faster.

3. We introduce a binary dithering activation
based on ordered dithering. Ordered dithering
is a method which yields a quantized image per-
ceptibly as similar to the original image as pos-
sible. The dithering activation was motivated by
a better information preservation in quantized
feature maps. However, our experiments show
that it brings only a mild improvement.

This paper extends the master thesis by
Holesovsky [7]], interested readers may find

there more background information and experi-
ments. However, many experiments in the thesis
were not optimally performed, mostly resulting in
inferior image classification accuracy. Therefore
this paper presents both corrected and new results.
The experiments in the thesis were implemented in
TensorFlow framework [8]], this paper implements
them in PyTorch framework [9].

2. Related Work
2.1. Binary Weights and Activations

One way of reducing the memory footprint of
a convolutional neural network is to quantize its
weights or activations. When both weights and ac-
tivations have their resolution reduced, for example
to one bit instead of 32 bits, a significant speed-up
can be also achieved [4].

Courbariaux et al. [3]] introduced a method to train
binarized neural networks (BNNs), with activations
and weights constrained to —1 and +1 at runtime.
The quantization of both weights and activations is
performed by the signum function. Authors state
that full precision weight representations are required
during training in order to enable proper gradient up-
dates and averaging. The binary weights are used
only in the forward pass. They also presented two
gradient approximations of the signum function. The
gradient for weight updates involves clipping full
precision weight representations to range [—1, +1]
after each update. The binary activation gradient is
a straight-through (or identity) estimator but with the
gradient set to zero for inputs |x| > 1, thus taking
into account the saturation effect of the signum func-
tion. Binarized neural networks can be implemented
using XOR and bitcount binary operations instead of
floating point multiplications at runtime [3|].

A binary weight architecture by Rastegari et al.
[4]] counts only with weights —1 or +1, with a per
filter floating point scaling factor in the CNN archi-
tecture. The input data are still represented by float-
ing point variables. While the model size is approx-
imately 32 x reduced when comparing it to a model
with floating point weights, the computational per-
formance can be improved only on computer archi-
tectures without a multiply-accumulate (MAC) unit
or on architectures without a hardware multiplier.
MAC unit is able to compute a combination of two
operations, multiplication and addition, in one clock
cycle. However, most personal computer or smart-
phone CPUs like x86 Intel Haswell, ARM Cortex-

A7 or GPUs like Nvidia Kepler and others do con-
tain MAC units [10]. Thus the gain in speed will not
be significant. The accuracy of their model with bi-
narized weights is the same as AlexNet accuracy on
ImageNet [4].

The other architecture proposed by [4], XNOR-
Net, binarizes both input data and filters and replaces
addition and subtraction operations with binary op-
erations XNOR and bitcount. The authors report a
potential of ~ 58x faster execution than standard
AlexNet. The ImageNet top-1 validation accuracy
is 12.5% lower than of AlexNet, 44.2% instead of
56.7% [4]]. (Note that the top-1 validation accuracy
reported by [[11] for a single CNN is 59.3%.)

Rastegari et al. [4] have also tried binarizing
more advanced ResNet and GoogLenet architectures.
However, the best performing binary-weight net-
works reach lower top-1 accuracy than their full pre-
cision counterparts, lower by 8.5% for ResNet-18
and by 5.8% for GoogLenet.

Merolla et al. [12] showed that although the full
precision weights are quite different from their bina-
rized versions after training a binary weight network,
the test errors on CIFAR-10 are surprisingly similar
for full precision CNN and its binary weight variant.
They discovered that CNNs performing well with bi-
nary weights are robust to other nonlinear distortions
at test time as well. Stochastic nonlinear projections
applied to the weights during training in the forward
pass give even more robust network weights than the
signum nonlinearity [12]]. With a stochastic train-
ing weight projection with clipping ("Tr-StochM-
C”), they surpass the full precision state-of-the-art
on CIFAR-10. However, the same method applied
to AlexNet and ImageNet has worse accuracy than
the binary weight network of Rastegari et al. [4].

2.2. Ternary Weight Networks (TWNs)

Li et al. [13] with their ternary weight networks
improved the accuracy over binary weight networks
by using weights —1, 0 or +1 instead of just —1, 41.
Similar to XNOR-Net [4], they scale each filter with
a single full precision value.

Zhu et al. [2] proposed more accurate trained
ternary weight networks using trained ternary quan-
tization (TTQ) method. They scale each nonzero
weight value (—1 or +1) by a separate full precision
scaling factor, having two scaling factors per layer in-
stead of one per filter. (Merolla et al. [[12] have found
that per filter and per layer scaling factors yield sim-

ilar results.)

Although ternary weight networks require more
memory for weight storage than binary weight net-
works (2 bits per weight vs. 1 bit), they give sparse
representations which can help to reduce computa-
tion and energy requirements. Zhu et al. [2] report
best validation accuracy at 30-50% weight sparsity
(30-50% of the weights are zeros). The most accu-
rate networks have different sparsity at different lay-
ers [2].

2.3. Compact or Compressed CNNs

Iandola et al. [S]] proposed a compact SqueezeNet
CNN architecture which is 50x smaller than
AlexNet but obtains the same top-1 ImageNet ac-
curacy (57.5%). In addition, they compress it with
deep compression [14] another 10 so thatitis 510x
smaller than AlexNet (only 0.47 MB model size in-
stead of 240 MB) while still maintaining AlexNet ac-
curacy.

Even more compact architectures, such as Xcep-
tion [6] or MobileNets [15], utilize depthwise sepa-
rable convolutions. They are based on the hypothesis
that spatial and channelwise convolutions can be per-
formed separately.

Deep compression by [14] compresses neural net-
works by means of pruning, trained quantization and
Huffman coding. Pruning reduces the number of pa-
rameters in AlexNet 9x and in VGG-16 13 by set-
ting the small weights to zero during training. The
remaining parameters are fine-tuned after that. They
then cluster the weights of each layer into 64 or 256
clusters. These clustered weights are fine-tuned by
training (each cluster by the sum of its weights gra-
dients). The result of the quantization process is 4 x
or 5.3x smaller CNN model where each weight is
represented by an 8 or 6 bit index into the respective
layer lookup table. Huffman coding of the weight
indexes follows as the last step of the compression
process, yielding a 20-30% size reduction. When
all three methods are combined together, they com-
press AlexNet 35x (from 240 MB to 6.9 MB) and
VGG-1649x (from 552 MB to 11.3 MB). Both com-
pressed models have the same accuracy as their non-
compressed counterparts on ImageNet.

The network after pruning [[14] is not only smaller
but also faster as dense vector-matrix multiplication
required by fully connected layers is currently slower
in GPU and CPU BLAS libraries than sparse vector-
matrix multiplication. The evaluation of fully con-

nected layers was 3x faster on average on a CPU
with pruned weights. The pruned convolutional lay-
ers, however, will not be significantly faster given
current standard CPU or GPU hardware and BLAS
packages. This may be a disadvantage especially
for compact networks without fully connected layers
like SqueezeNet [3].

A research article by [16] suggests removing
whole neurons instead of only single weights. They
obtain 2-3x less parameters by doing that as well as
an accuracy comparable to VGG-16. The advantage
of their approach over the one of [[14] is a direct pos-
itive impact on inference speed when evaluating the
trimmed network using dense matrix multiplication
on a GPU. What is more, neuron trimming may be
combined with weight pruning to obtain even more
compressed CNN models.

3. Methods

We have focused on combinations of several
methods, namely depthwise separable convolutions,
trained ternary quantization and binary activations.
In what follows, these strategies will be described in
more detail.

3.1. Depthwise Separable Convolutions

A depthwise separable convolution, popularized
by [6]], is a module consisting of two convolutional
layers meant for building convolutional neural net-
works. It is based on the hypothesis that spatial
and channelwise convolutions can be performed sep-
arately. For example, a convolutional layer with NV
3x3x(C filters can be replaced by a layer with C'
3x3x1 filters and a layer with N 1 x 1 xC filters. The
first layer is computing a separate spatial convolution
(e.g. 3x3x1) on each of the C input channels. It is
followed by a convolutional layer with N filters of
size 1 x1xC, where N is the desired output dimen-
sion.

When evaluating the effects of depthwise separa-
ble convolutions in networks like ResNet-20, we re-
place with them all convolutional layers except the
first one. This can be justified by the fact that the
first layer usually contains only quite small 3x3x3
filters, thus the model size savings would not be very
large.

3.2. Trained Ternary Quantization (TTQ)

To the best of our knowledge, out of the current
1 or 2 bit quantization methods, ternary weight net-

works by [2]] preserve the classification accuracy the
most when comparing them to full precision weight
networks. We use ternarization the same way as
[2]. A full precision real scalar weight w;(:) with
a within-layer index ¢ and from layer [is projected to
a ternary weight w} () in the forward pass using

Vle, if if)l(i) > A

wi(i) = 4 0, if |y (7)) < A (1)
—Wp, it (i) < -4,
A =1tx m?X(\uN)l(i)]). (2)

Like in [2]], we use ¢ = 0.05 as a constant for
the whole network. W}/ and W} are positive and
negative scaling weights, shared by ternary weights
within layer [. They are set to 1.0 before the training
starts and updated during the training with gradients

[

oL oL
P o) ¥
el?
oL oL
Co= =Y o)
oW, 2 ui()

where L is the loss function of the network, If =
{ify (i) > A}, I = {i|wy (i) < —A;} are the sets
of indices to positive and negative ternary weights.
The weight gradients,

f%xwﬁ if (1) > A
oL o o
— N — EA0) X 17 if "U}[('L)’ < Al (5)
Oy (1) l
OL_ oW, ifa (i) < —A,
owy (4) l

are applied to the full precision weights w;(7) in each
training step.

3.3. Binary Activations
The simplest binary activation is a deterministic

signum function (a binary threshold) [3|]

1, ifz >0,
xp = Sign(z) = 6
» = Sign() {—L ifr<o O

which maps a full precision activation x to a binary
activation xp.

"Note the minus sign in the equation for the gradient of W
It was left out in the original TTQ paper.

This binary activation is not fully differentiable.
Approximating the gradients is one way of adapting
it to the stochastic gradient optimization algorithms,
which are widely used in the training of neural net-
works.

The gradient of the network loss function L w.r.t.
the signum activation output x; (equation [6]) is

o
Oz

g (7
We need to approximate the gradient of the loss w.r.t.
the signum activation input z. One way of doing that

is
oL . iflzl <1
g = 2L _ o ifldl ®)
Ox 0, if|z]>1,

as applied by [3]. In other words, we approximate
the signum function by a linear function in [—1, 1]
and by a constant function elsewhere.

3.4. Dithering Binary Activation

We introduce dithering activation based on or-
dered dithering with the hope of reducing the loss
of information caused by binary quantization.

Ordered dithering is a method of image quantiza-
tion which randomizes quantization errors. It pre-
serves lower frequencies at the expense of higher fre-
quencies, yielding a binary image which is percepti-
bly as similar to the original image as possible. In
ordered dithering, the quantization error randomiza-
tion is achieved by adding a dithering mask to the real
pixel values and quantizing the result, in our case us-
ing a binary threshold at zero. We choose ordered
dithering over error diffusion because it is spatially
stable (one changed pixel value does not affect neigh-
bouring pixels). The computation of ordered dither-
ing is also easily parallelizable.

Many different quantization masks exist (Bayer
[17] or Void-and-Cluster [18] among others). We
choose to use a dither quantization mask published
in public domain in [19]. It does not exhibit visi-
ble grid-like artifacts like the Bayer mask. Further-
more, dithering masks of any size are easily com-
putable. The mask (type 4) value m € [—1,+1] for
a grayscale image pixel at non-negative i, i, pixel
coordinates is

miz,iy = 20m;171y—10, (9)
) — ((ia + 1z * 67) + iy * 236) x 119&255

Migsiy = 9255.0 €9)

where * is integer multiplication, & is binary bitwise
AND operation. All operations with floating point
operands (2.0, 255.0, 1.0) are floating point. i, is
the channel number. We quantize one single chan-
nel (grayscale) image x;,;, € [—1,+1] to obtain a
binary image

xp = Sign(x + m). (11

When there are more feature maps (channels) com-
ing into one convolutional layer, we repeat equations
[I0} [I1] for each channel with i, = 1, applying the
same mask m each time by default. We call this 2D
dithering. In one experiment, we have also tested 3D
dithering with different dithering masks for different
channels, by setting 7 to the channel index. Thus the
full precision input has always the same dimensions
as the binary output.

(a) a dither mask

(b) colour ramps

Figure 1: Left: a 32x32 pixels large sample of the
quantization mask m;, ; . Right: horizontal colour
ramps. They are from top to bottom: grayscale,
binary-quantized by a dither, binary-quantized by
thresholding.

A sample of the dithering mask can be seen in fig-
ure[I] Figure[I]also shows how a horizontal grayscale
colour ramp is quantized to binary values by dither-
ing and by simple thresholding. Figure [2] shows an
example of a grayscale image and its binary dithered
and thresholded versions. Dithering intuitively helps
preserve information when there are dark objects
on dark backgrounds or light objects on light back-
grounds. As dithering introduces a constant noise,
high contrast images may be better served with sim-
ple thresholding.

We apply dithering activations in convolutional
neural networks after the first layer, after spatial sub-
sampling (e.g. max pooling) and before the last

(a) grayscale

(b) binary, a dither

(c) binary, threshold

Figure 2: Illustration of ordered dithering and thresh-
olding of a grayscale image from ImageNet. The im-
age size is 334 x224 pixels.

layer which has spatial input (spatial size larger than
one). Dithering does not have to be before every
layer because its effects can be seen in several sub-
sequent layers. We argue that the first binary activa-
tion should include dithering, in order to preserve as
much information as possible. Max pooling makes
data in the spatial dimensions more uniform. We ex-
pect dithering to restore more information after max
pooling than a simple thresholding activation.

4. Results
4.1. Adapting SqueezeNet v1.1 to CIFAR-10

The CIFAR-10 dataset contains images of a uni-
form size of 32x32 pixels and three colour chan-
nels. In our experiments, we train and evaluate
three different CNN architectures, namely BCNN [3]]
ResNet-20 (the version used in [2]) and SqueezeNet
v1.1 [5].

ResNet-20 and BCNN are networks already de-

veloped for CIFAR-10 but SqueezeNet was designed
for larger input images. Thus in case of SqueezeNet,
we upscale the small CIFAR-10 input images to
128 x 128 pixels.

4.2. Ternary Weights on CIFAR-10

Our setup for training ternary weight networks is
almost identical to the approach of [2]]. All networks
are at first trained full precision, then fine-tuned us-
ing TTQ. Learning rate is set to 0.1 for the first 81
epochs, then decreased by a factor of ten after epochs
81, 123 and 150. The momentum parameter was
set to 0.9, we use L2-normalized weight decay of
0.0002, batch size 128. The only exception is that we
do not apply data augmentation, in order to simplify
any future attempts for reproduction of our results.
When not stated otherwise, we apply TTQ to all con-
volutional and fully connected layers except for the
first convolutional layer of a given network.

We validate our implementation by training
ResNet-20 with full precision and ternary weights.
Our obtained results are compared to the original re-
sults from [2]] in table[I] The effect of data augmenta-
tion is significant, but we can see that the absolute ac-
curacy difference between both ternary and full pre-
cision network pairs is at most 0.72%.

Under the same training conditions, ternary
weight SqueezeNet network has almost the same ac-
curacy as the full precision one. However, when we
evaluate ResNet-20 with depthwise separable con-
volutions (DW-sep.), the ternary weight model loses
7.17% in accuracy on the full precision one. We can
preserve more accuracy by ternarizing only the 1x1
convolutional layers and keeping the rest full preci-
sion. The accuracy loss is then 2.17% at model size
32kB.

The same results are displayed in figure as
points coloured according to the type of weights (ttq,
full precision float) and the presence of depthwise
separable convolutions (dw).

4.3. Ternary Weights and Binary Activations on
CIFAR-10

In order to test ternary weights combined with bi-
nary activations as well as our binary dithering ac-
tivation, we first reproduce the results of [3]. This
means training a larger BCNN network on CIFAR-
10 with both weights and activations binary. Our
training hyperparameters are identical to the CIFAR-
10 Theano experiment in [3]], which means that the
learning rate is exponentially decayed every epoch

Setup | Size [kB] | CIFAR-10 [%] |

Standard results, 32 bit weights
*SqueezeNet, ours 2899 88.03
*ResNet-20 1073 86.00
ResNet-20 [2]] 1073 91.77
*ResNet-20, DW-sep. 146 85.87

Ternary weights (TTQ)
*SqueezeNet 188 88.10
*ResNet-20 69 86.72
ResNet-20 [2] 69 91.13
*ResNet-20, DW-sep. 11 78.70

TTQ only for 1x1 convolutions
*ResNet-20, DW-sep. | 32 83.70

Table 1: Network size and test accuracy on CIFAR-
10 for full precision and ternary weights. Evaluat-
ing networks with standard and depth-wise separable
convolutions. Results marked by * come from our
own experiments.

100
>< X X *
801X
S
> 601
o
35
o
© 40
0 X float
201 X dw, float
~+ SqueezeNet v1.1 ttq
X ResNet-20 X dw,ttqg
0+~ I]
10! 102 103
net size [kB]

Figure 3: Model size and test accuracy plot for neural
networks on the CIFAR-10 dataset.

from 0.001 at epoch one down to 0.0000003 at the
final epoch number 500. The square hinge loss com-
puted from a batch of 50 images is optimized by the
Adam optimizer.

The results of BCNN are shown in table[2l The ac-
curacy of 88.60% achieved by [3]] is within the con-
fidence bounds of our result, 88.16 + 0.68% [} Cour-
bariaux et al. [3] state that their full precision BCNN

>The confidence is twice the standard deviation based on
three trials. Each trial starts from a different random weight ini-
tialization. Each time, the network from the training epoch with
the best validation accuracy is chosen to be tested.

Setup | Size [kB] | CIFAR-10 [%] |

Standard results, 32 bit weights
*SqueezeNet 2899 88.03
BCNN [3] 56088 ?

Binarized Neural Networks
*SqueezeNet 97 73.87
*BCNN 1766 88.16 + 0.68
BCNN [3] 1766 88.60
*BCNN 2D dithering 1766 87.29

Ternary Weights and Binary Activations
*SqueezeNet 188 78.44
*SqueezeNet 2D dit. 188 79.42
*SqueezeNet 3D dit. 188 79.69

Table 2: Network size and test accuracy on CIFAR-
10 for full precision, binary and ternary weights. The
networks with reduced weight precision have binary
activations. When provided, the confidence is twice
the standard deviation based on three trials. Results
marked by * come from our own experiments.

has almost the same test accuracy as the binarized
variant.

In our SqueezeNet v1.1 experiments, we only in-
crease the exponentially decayed learning rate sched-
ule ten times to 0.01 at epoch one and to 0.000003
at epoch 500, due to the deeper network (eigh-
teen weight layers in SqueezeNet instead of nine in
BCNN). The rest of the training setup remains un-
changed.

We discover that the accuracy of the more com-
pact SqueezeNet v1.1 architecture drops significantly
more than in case of BCNN when binarized, from
88.03% down to 73.87%. We can improve this result
to 78.44% by using ternary weights (TTQ) together
with binary activations, see table @ Still, the accu-
racy drop remains significant.

The default 2D variant of the dithering activa-
tion is tested on the binarized BCNN network. It
causes an absolute accuracy drop of 0.87% when
compared to simple binary thresholding activation.
We record a mild absolute accuracy improvement
of 0.98% thanks to 2D and of 1.25% thanks to 3D
dithering activations on ternary weight SqueezeNet
v1.1 (table[2)).

5. Conclusion

We have shown that by combining efficient depth-
wise separated convolutions and ternary weights,

small networks can be trained on CIFAR-10. One of
the smallest ResNet-based networks has only 32kB
model size while achieving 83.70% test accuracy and
only 2.17% absolute accuracy loss to its full preci-
sion version.

Ternary weights and binary activations improve on
binarized networks introduced by [3]. Nevertheless,
the full precision to all-quantized accuracy gap re-
mains quite large (8.3% absolute) in case of the com-
pact SqueezeNet architecture. The binarized BCNN
network works better (only 1% accuracy loss as re-
ported by [3]]) likely because it is 19x larger than
SqueezeNet, providing higher parameter and activa-
tion redundancy. We have not compared our results
to the better XNOR-net baseline [4], because most
of their experiments were performed on the Ima-
geNet benchmark using larger networks and we have
not been able to reproduce their methods sufficiently
well.

We have introduced binary dithering activation,
as a method motivated by better information preser-
vation in quantized feature maps. However, our ex-
periments show that the default 2D dithering brings
overall only a mild accuracy improvement. In addi-
tion, the attempt to preserve even more information
in the feature maps by 3D dithering yields almost
the same classification accuracy as 2D dithering on
SqueezeNet.

The higher performance boost achieved by dither-
ing on SqueezeNet (1.25% absolute vs. —0.87% on
BCNN) could be explained by its upscaled input im-
ages (128128 vs. 32x32 pixels in BCNN). An up-
scaled image has more low frequency components
which can be better preserved by dithering binariza-
tion. Whether this larger classification accuracy im-
provement thanks to dithering applies to higher reso-
lution images as well remains an open research ques-
tion.

Acknowledgements

I would like to thank to Viclav Hlava¢ and Ra-
doslav Skoviera for text corrections and suggestions,
as well as to the three anonymous reviewers for in-
spiring insights into the content of this paper.

This work was supported by the Euro-
pean Regional Development Fund under the
project Robotics for Industry 4.0 (reg. no.
CZ.02.1.01/0.0/0.0/15-003/0000470).

One part of the computations was perfomed on
CTU CIIRC resources. The other part of the com-

putations was performed on resources provided by
the Swedish National Infrastructure for Comput-
ing (SNIC) at PDC (Tegner computer) and HPC2N
(Kebnekaise computer).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

A. Krizhevsky and G. Hinton, “Learning multiple
layers of features from tiny images,” 2009. []

C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained
ternary quantization,” ICLR 2017 poster, 2017.
[Online]. Available: http://arxiv.org/abs/1612.01064

DE2BHEE

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,
and Y. Bengio, “Binarized neural networks: Train-
ing deep neural networks with weights and ac-
tivations constrained to+ 1 or-1,” arXiv preprint

arXiv:1602.02830, 2016. 11 21 Bl 5 [6]

M. Rastegari, V. Ordonez, J. Redmon, and
A. Farhadi, “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in European
Conference on Computer Vision. Springer, 2016,

pp. 525-542.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-
level accuracy with 50x fewer parameters and; 0.5
mb model size,” arXiv preprint arXiv:1602.07360,

2016. MBI

F. Chollet, “Xception: Deep learning with
depthwise separable convolutions,” arXiv preprint
arXiv:1610.02357,2016. [11 3]

O. Holesovsky, “Compact convnets with ternary
weights and binary activations,” Master’s thesis,
KTH, 2017.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, 1. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/ 2]

PyTorch, “Pytorch,” http://pytorch.org/, 2017. 2]

Wikipedia, “Multiply—accumulate op-
eration,” https://en.wikipedia.org/wiki/
Multiply-accumulate_operation, 2017. [2]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097-1105. E]

P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser,
and D. Modha, “Deep neural networks are robust

to weight binarization and other non-linear distor-
tions,” arXiv preprint arXiv:1606.01981, 2016.

F. Li, B. Zhang, and B. Liu, “Ternary weight net-
works,” arXiv preprint arXiv:1605.04711, 2016.

S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Net-
work trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures,” arXiv
preprint arXiv:1607.03250, 2016.

B. Bayer, “An optimum method for two-level
rendition of continuous-tone pictures,” IEEE
International Conference on Communications,
archived from the original (PDF) on 2013-05-12,
https://web.archive.org/web/20130512190753/http:
/Iwhite.stanford.edu:80/~brian/psy221/reader/
Bayer.1973.pdf, 1973.

R. A. Ulichney, “Void-and-cluster method for dither
array generation,” in IS&T/SPIE’s Symposium on
Electronic Imaging: Science and Technology. In-
ternational Society for Optics and Photonics, 1993,
pp. 332-343. {4

@yvind Kolés, “a dither,” http://pippin.gimp.org/a_
dither/, 2017. @

http://arxiv.org/abs/1612.01064
https://www.tensorflow.org/
http://pytorch.org/
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
https://web.archive.org/web/20130512190753/http://white.stanford.edu:80/~brian/psy221/reader/Bayer.1973.pdf
https://web.archive.org/web/20130512190753/http://white.stanford.edu:80/~brian/psy221/reader/Bayer.1973.pdf
https://web.archive.org/web/20130512190753/http://white.stanford.edu:80/~brian/psy221/reader/Bayer.1973.pdf
http://pippin.gimp.org/a_dither/
http://pippin.gimp.org/a_dither/

