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Abstract— The ability to search for objects is a precondition
for various robotic tasks. In this paper, we address the problem
of finding objects in partially known indoor environments.
Using the knowledge of the floor plan and the mapped objects,
we consider object–object and object–room co-occurrences as
prior information for identifying promising locations where an
unmapped object can be present. We propose an efficient search
strategy that determines the best pose of the robot based on the
analysis of the candidate locations. We optimize the probability
of finding the target object and the distance travelled through
a cost function.

To evaluate our method, several experiments in simulated
and real-world environments were performed. The results
show that the robot successfully finds the target object in the
environment while covering only a small portion of the search
space. The real-world experiments with the TurtleBot 2 mobile
robot validate the proposed approach and demonstrate that the
method performs well also in real environments.

Index Terms— Object search, service robots, viewpoint selec-
tion, semantic scene understanding.

I. INTRODUCTION

Object search in human-inhabited environments has drawn
a lot of research attention recently. Many tasks in service
robotics, such as fetch-and-carry, require the robot to au-
tonomously search for an object in a dynamic environment.
A map of the environment typically includes certain objects
such as cabinets and tables, while the locations of other
objects such as cups and laptops are often unknown and can
be easily changed.

In this paper, we focus on the task of using mobile robots
to find objects in indoor environments. Given a 2D map of
the environment including walls and mapped objects, the
objective is to identify the most likely places from which
the robot can see the target object. Semantic information is
included in the map: rooms are labeled by room types, such
as bathroom or bedroom, and mapped objects are assigned
to classes, e.g., table, chair, or laptop. The search can benefit
from putting together the semantic information and prior
knowledge, which is given as probabilities of finding an
object of a given class in a particular room type or near
an object of another class. For example, a cup is likely to be
present in the kitchen and next to other kitchenware or on
the table.
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The challenge we address in this work is to find an
unmapped object in a partially known environment using
the prior knowledge. We propose a novel method for object
search guided by co-occurrence probabilities to first deter-
mine the most likely room where the object can be found.
This is further refined by choosing specific places in the room
to be visited, so that the distance travelled is minimized. The
core of the search process is in the analysis and selection of
the best locations called viewpoints.

Fig. 1. An illustration of the proposed object search method. The best
viewpoint is determined using the semantic information and viewpoint
analysis to optimize the search strategy.

An overview of the proposed method is shown in Fig. 1.
Due to the size of the room and the limitations of the robot
sensors, the object sought usually cannot be spotted at the
moment of entering the room. An exhaustive exploration
of the whole room would be time and energy consuming.
Hence, we employ a method that generates viewpoints from
which the target object is likely to be seen. Choosing the right
viewpoint has a significant impact on the robot performance.
That’s why promising robot orientations are identified as well
to further speed up the search. If the object is not found,
probabilities are updated for the next best viewpoint analysis.
The main contributions of this paper are:
• Development of a novel object search method combin-

ing semantic information about the environment with
prior co-occurrence probabilities.

• Probabilistic analysis and selection of best viewpoints to
efficiently find objects in partially known environments.

• The use of multi-objective optimization to maximize the
probability of finding the target object and to minimize
the distance travelled.

• Implementation of the object search framework on a
mobile robot and its evaluation in real-world experi-
ments.



The remainder of the paper is organized as follows. In
Section II, we review the related work in object search
and viewpoint selection. Section III introduces a general
overview of the proposed method, while Sections IV, V,
and VI explain its individual parts in detail. Experimental
results are presented in Section VII. Section VIII concludes
the paper and outlines the directions for future work.

II. RELATED WORK

Object search methods can be classified into direct and
indirect methods. Direct methods are based on searching for
the target object, whereas indirect approaches search for an
intermediate object first. The intermediate object is supposed
to be related to the object sought, easier to be found than the
object sought, and the two objects are expected to be located
close to each other. Once the robot finds the intermediate
object, it searches for the target object in the intermediate
object’s vicinity.

Indirect methods, such as [1] and [2], use an object search
strategy based on qualitative spatial relations (QSR). In
[2], the probability of the target object is defined through
relations such as left to, in front of, etc., which are set
between the sought object and other objects. During the
search process, supporting surfaces (such as tables) are found
and after that, the target object is sought. The selection of
viewpoints is based on the number of voxels that form a
part of a supporting plane. Authors in [3] use object–object
relations to find the target object via a chain of intermediate
objects. In [4] and [5], the search process is based on spatial
relations between objects of the environment to obtain the
probability distribution of the target object in a room. In
[6], the search process starts by looking for environmental
objects (defined as objects with less movability) and then
looking for the dynamic target object. Although the purpose
of indirect strategies is to reduce the search space in order to
decrease the computational complexity, these methods have
some drawbacks. Searching for an intermediate object can
be sometimes as difficult as searching for the target object
itself. In addition, relations between intermediate and target
objects are not always available.

For these reasons, some authors focus on direct methods,
approaching the search problem as an exploration problem.
In [7], a search for specific objects is performed directly in
large and unknown environments. Relations between objects
and rooms are defined to build a probabilistic model of the
environment, revealing the promising areas where the target
object can be located. As the exploration is a part of the
problem presented, a cost function is used to decide where
to explore and search at the same time. In [8], a reactive
search strategy for unknown environments is presented,
which predicts promising directions for the robot based on
decision trees. In [9] and [10], an unknown environment
is also considered. The proposed methods only consider as
prior information the assumption that the target object is
located on one of the tables of the environment. Also in [9],
multiple cost functions are evaluated to reduce not only the
distance travelled, but also the number of actions performed

by the robot. In [11], the search problem is modeled as a
Partially Observable Markov Decision Process (POMDP).
Only object–room relations are used and are encoded in a
belief map.

As neural networks have become widely used in the past
years, the object search can be solved through deep learning
techniques. Works such as [12] and [13] present a framework
based on deep reinforcement learning. In [12], the model
learns policies considering only visual inputs (sequence of
RGB images) without any contextual information. Given an
image of the target object, the robot decides the best actions
to find the object through a reward function based on the size
of the bounding box of the target object. In [13], an object
proposal method is applied to create a hypothesis about the
target object location. The environment is represented as a
voxel grid and in each cell, the probabilities of the target
object being there are updated. The main drawback of these
approaches based on deep learning is that they require a
highly time-consuming training. Computational complexity
also increases if the object detector needs to be continuously
running.

In the sequel, we focus on works addressing viewpoint
generation and selection. In [14], a set of poses reachable
by the robot are generated. Then, a visibility analysis of
the object candidate from each viewpoint is performed.
The analysis considers the occlusions and the visible object
features to define the best viewpoint. In other works, such as
[1], [2], [7], and [10], the viewpoints are randomly generated
in the reachable space. Every viewpoint is computed until
a covered area threshold is reached. In [1], the selection
of the best pose is based on the maximum probability of
finding the target object. In [2], the full area covered by
each viewpoint is evaluated until the object is found. In [10],
the target object is expected to be placed over a flat surface
and the selection of the best viewpoint considers the highest
portion of the room covered by the viewpoint. In some of
the aforementioned methods, a fixed number of viewpoints
is generated in advance and the selection of the best location
is made at random. In other cases, the pose selection strategy
deems only a single objective, e.g., the highest visibility of
the object, or the minimum time or distance travelled.

To overcome these shortcomings, we propose a direct
search method that combines the semantic information in-
cluded in the map and prior knowledge about the object–
object and object–room relations. It uses co-occurrence prob-
abilities to infer the best viewpoints from which the target
object could be seen. New positions of the viewpoints are
generated in case the object is not found at the first attempt.
Two criteria, the probability of finding the target object and
the distance travelled, are optimized simultaneously through
a cost function. The method is computationally lightweight
and it can be run on a low-cost mobile robot.

III. OBJECT SEARCH METHOD OVERVIEW

In this section, a conceptual overview of the proposed
object search method is given. The implementation details
about the method follow in Sections IV–VI.



A schematic overview of the method is shown in Fig. 2.
There are three inputs of the algorithm. The first one is a
2D floor plan previously built by the robot that includes
the room layouts and the information about the position
and class of the mapped objects. The second one is a
probabilistic representation of the object–room and object–
object co-occurrences. Finally, the method is given the class
of the target object to be found, e.g., a cup. Even though the
method can be used to search also for mapped objects, we
focus mainly on the more challenging case when the location
of the object sought is not known in advance.

Fig. 2. The proposed object search method. First, the semantic information
and prior knowledge is fused. Then, an exhaustive analysis of the generated
candidate viewpoints is performed to obtain an optimal strategy to search
for the target object. If the object is not found, the probabilities are updated
and a set of new candidate viewpoints is generated.

When the search process starts, the semantic information
included in the map and the prior co-occurrence probabilities
are fused to create an initial probability map. Note that
for a more intuitive understanding, top-view maps of the
environment as well as the probability maps calculated by
the method can be represented as images, where a pixel
corresponds to a real-world square with a fixed size (e.g.,
0.1 × 0.1m). If the target room to search for the object is
not explicitly specified by the user, we start in the room
with the highest probability of containing the target object.
This information can be inferred from the object–room co-
occurrences. The probability map of the room, which can be
visualized as a heat map, encodes the promising areas of the
room where the target object is likely to be present.

In the second step, a set of random candidate viewpoints
is generated with the goal of maximizing the room coverage.
Then, in the third step, the viewpoints are analyzed, taking
into account the visibility model of the camera. It provides
the information about the minimum and maximum distances
for the perception. As a result, the probability of finding

the target object in the area covered by each viewpoint is
calculated. The area covered by each viewpoint is afterwards
divided into a given number of segments, according to the
horizontal field of view (FOV) of the camera. The probability
of the target object being in each segment of the viewpoint
is calculated. The fourth step consists in selecting the best
viewpoint and, in turn, the best segment. The best viewpoint
selection maximizes the probability of finding the target
object while minimizing the distance travelled by the robot.
To achieve this, we have designed a utility function and
automatically tuned its parameters.

Finally, the best segment is sent to the robot navigation
system. When the robot reaches the desired pose, an object
detector based on deep learning is executed. If the object
is found, the process ends. If not, the robot moves to the
next best segment and attempts to detect the object again.
If there are no more candidate segments available and the
target object has not been found yet, the probabilities in the
explored area are updated and then, the process returns to
the second step to determine a new best viewpoint. Also,
the covered area is calculated and used as a termination
condition. When the room is considered covered, the process
ends. This may indicate that the target object is not in that
room and the search process can start again in other rooms.

IV. INITIAL PROBABILITIES ASSIGNMENT

An efficient object search approach is fundamental to
reduce the search space and thus minimize the length of the
robot trajectory, decrease power consumption and computa-
tional costs. A possible way to achieve this is by using prior
knowledge about the environment [15]. Prior information
available to the robot has several sources: a 2D floor plan
of the environment, including the type lj of each room rj
(e.g., a kitchen), and the information about the previously
seen objects os in the room. The latter includes the object
class cs, the detection confidence p(os) given by the object
detector, and the space occupied by the object in the map.
This space is represented as a function g(os, Px,y)→ {0, 1},
which is equal to one if the object os is present in the pixel
Px,y of the top-view floor plan and zero otherwise.

The last component of the prior knowledge are the co-
occurrence probabilities. We use two publicly available
datasets to obtain the co-occurrence probability values. The
probabilities for the object–room co-occurrences, denoted
p(os|rj), have been extracted from the NYU-Depth V2
dataset [16]. Object–object co-occurrences p(os|os′) for all
pairs of object classes cs, cs′ were calculated using the
COCO dataset [17].

Using the co-occurrence probabilities between the room
type and the target object class, the most likely room r∗j is
selected:

r∗j = argmax
j∈{1,...,m}

p(oτ |rj) , (1)

where m is the number of rooms in the environment. The
robot will explore the room r∗j first.

Next, we generate the room probability map, which iden-
tifies the most likely areas where the target object oτ can be



located. The probability of finding the target object in each
pixel of the room is defined as:

p(oτ |Px,y) =

=


n∑
s=1

f(os, Px,y)p(oτ |os) if
n∑
s=1

f(os, Px,y) > 0 ,

p(oτ |r∗j ) otherwise ,
(2)

where f(os|Px,y) = g(os, Px,y)p(os). The number of all
mapped objects in the environment is n. The values of
p(oτ |Px,y) are normalized. Then, a Gaussian filter is applied
around each detected object. As pixels are further from
the detected object, they receive a gradually decreasing
probability. Fig. 3 shows the room probability map for four
target objects visualized as a heat map. The brighter the area,
the more likely it is to encounter the target object.

Fig. 3. Room probability maps of four target objects: (a) laptop, (b) cup,
(c) bowl, and (d) bottle. Darker areas represent lower probabilities, whereas
lighter areas indicate promising zones where the target object can be located.

Once the initial room probability map is calculated, the
next step is the generation of a set of candidate locations on
the map, and the selection of the best one in order to execute
a detector that locates the target object.

V. VIEWPOINT GENERATION AND SELECTION

The viewpoint selection is one of the most important steps
in the search strategy. Choosing the right viewpoint has a
significant impact on the robot performance. In this section,
a detailed explanation about the process of generating, ana-
lyzing and selecting the best viewpoint is presented.

A. Candidate Viewpoints Generation
In this step, an initial set of N candidate viewpoints is

generated in the room r∗j . Each candidate viewpoint Vx,y
represents a position in the map. This process considers
the hardware limitations of the camera: the minimum and
maximum distance dmin and dmax, from which the sensor
can perceive the objects, and the horizontal FOV of the
sensor, see Fig. 4.

To cover the room with candidate viewpoints, we follow
an iterative process. The process starts by placing an initial
viewpoint at a random position in the free space F(r∗j ) of
the room r∗j . The free space is defined as:

F(rj) =

{
Px,y

∣∣∣∣∣
n∑
s=1

g(os, Px,y) = 0

}
. (3)

Fig. 4. Visibility model of the camera. In (a), dmin and dmax represent
the limits of the coverage area of each viewpoint. In (b), Av denotes the
search area covered by a particular segment of a viewpoint.

Next viewpoints are randomly generated in the free space
while keeping a minimum Euclidean distance dmin from the
previously generated viewpoints.

Each candidate viewpoint Vx,y covers a set of pixels in rj .
The union of all pixels inside the detection zone determined
by dt, see Fig. 4, represents the area A(Vx,y) covered by
the viewpoint Vx,y . The total room area R(rj) is defined
as the union of all pixels Px,y belonging to that room. The
coverage C(rj) for the room rj is then calculated as:

C(rj) =

∣∣∣⋃Vx,y
A(Vx,y)

∣∣∣
|R(rj)|

. (4)

The coverage C(rj) is updated after the insertion of each
viewpoint. A threshold ρ determines when the room is
assumed to be sufficiently covered. The viewpoint generation
process terminates once C(rj) > ρ.

B. Viewpoints Analysis

Each candidate viewpoint is analyzed to determine the
most promising location from which the target object can
be seen. First, the probability of finding the target object
inside the area covered by each viewpoint is calculated:

p(oτ |Vx,y) =
∑
Px,y∈A(Vx,y)

p(oτ |Px,y)
|A(Vx,y)|

. (5)

This measure represents how good a certain viewpoint Vx,y
is for the search task.

Next, we analyze the segments of each viewpoint. Accord-
ing to the visibility model of the camera, the area covered
by a viewpoint Vx,y can be divided into Q segments θx,y,q.
In this work, Q = 8 segments have been used, given the
FOVhorizontal of the camera 58◦. Note that the segments
are partially overlapping, which is desirable for improved
performance as the chances of detecting objects that are in
the limit between two segments are increased.

The probability of finding the target object oτ in a given
segment θx,y,q of a viewpoint Vx,y is defined as:

p(oτ |θx,y,q) =
∑
Px,y∈S(θx,y,q)

p(oτ |Px,y)
|S(θx,y,q)|

. (6)

Analogously to viewpoint probability calculation (5),
S(θx,y,q) denotes the set of pixels that belong to the segment
θx,y,q.



C. Best Viewpoint Selection

Using the information available at this point, the best
viewpoint can be selected. To maximize the probability
of finding the target object while minimizing the distance
travelled, we adapt the utility function Ux,y from [9]. It is
calculated for a given viewpoint Vx,y as follows:

Ux,y = p(oτ |Vx,y)
(
1 +

β

d(Vx,y)

)
, (7)

where d(Vx,y) is the distance between the current (starting)
pose of the robot and the viewpoint Vx,y .

In [9], the parameter β is set to 1 to relax the requirement
of distance minimization. In our work, we have decided to
apply the Levenberg-Marquardt algorithm [18] [19] in order
to find the optimal β value. The algorithm was provided with
a set of 100 measured data points. To obtain this data, the
search method has been applied with different β values and
looking for different oτ . Using the ground truth location of
the target object, the objective function is minimizing the
distance travelled until the target object is found.

The best viewpoint V ∗x,y is selected as follows:

V ∗x,y = argmax
Vx,y

Ux,y . (8)

The viewpoint V ∗x,y specifies the most likely position in the
map from which the robot is expected to be able to detect the
object sought. To specify also the orientation of the robot,
a set of best segments is determined, given an empirically
chosen threshold σ:

θ∗x,y,q ∈ {θx,y,q | p(oτ |θx,y,q) > σ} . (9)

This way, the segments with lower probabilities are dis-
carded, making the search process more efficient. The robot
visits the best segments, as for mobile robots it is typically
faster to turn on the spot. As soon as the best segment is
determined, it is sent to the robot navigation system. Once
the robot reaches it, an object detector is run to identify the
objects present in the segment.

VI. PROBABILITY MAP UPDATE

In case the processing of the best viewpoint has terminated
and the target object has not been found, the room probability
map and the percentage of the room’s covered area should be
updated for a new iteration. This update allows for deciding
whether to continue the search process in the current room
or whether other actions, such as searching in another room,
should be taken. If the object detector reports that oτ is not
found for a given viewpoint, the next viewpoint generation
considers the areas already explored by the robot and the
detection results in order to avoid looking at these parts
again. In some cases, areas of the viewpoints may overlap.
Because of this, the probability of finding the target object
in the pixels belonging to an already explored viewpoint has
to be reduced. We introduce a discrete time variable t and
we define how p(oτ |Px,y)t decreases in a new iteration:

p(oτ |Px,y)t+1 = 0.5 p(oτ |Px,y)t . (10)

Through (10) the room probability map is updated in each
pixel. As a termination condition, the covered area of the
room C(rj) is updated according to (4). In this work, the
threshold ρ has been empirically set to 0.85 to declare when
the room has been completely covered. It is not always
possible to cover 100 % of the environment, in particular in
cases when the free space F(rj) in the room rj is limited by
many obstacles. If the threshold is not reached, the search
process begins a new iteration. This time, the new set of
viewpoints is generated taking into account the current pose
of the robot and considering the updated probabilities after
an unsuccessful detection.

VII. EXPERIMENTS

To evaluate the validity and efficiency of our approach, the
proposed search strategy has been tested in both simulated
and real environments.

A. Experimental Setup

We have selected the widely-used mobile robotic platform
TurtleBot 2 to perform the real-world experiments. It is
equipped with an ASUS Xtion Pro Live camera and a
Hokuyo URG-04LX-UG01 laser scanner. For object detec-
tion, we have implemented an object recognition framework
based on deep learning. The model architecture is based
on ResNet-101[20] and it has been trained with the COCO
dataset [17]. The components of the framework are integrated
through the middleware ROS. To build a map of the environ-
ment, the ROS gmapping package has been used. For path
planning, the Adaptive Monte-Carlo Localization (AMCL)
algorithm has been implemented.

B. Simulated Experiments

We set up a simulated environment inspired by real-world
homes that includes common objects and different types
of rooms. The 12 m × 8 m environment was created using
Gazebo simulator ( Fig. 5) and consists of a typical house
with 6 different rooms: a bedroom, a child’s room, a corridor,
a bathroom, a living room, and a kitchen. We have tested the
method with four target objects: a laptop, a cup, a bowl, and
a TV.

0

Fig. 5. The simulated home environment used in the experiments. (a) A
home environment with six rooms. (b) The target objects selected for the
experiments.

We explain the working of the method on an example of
searching for a cup. Fig. 6 illustrates the steps to select the



best viewpoint during the search process. At first, the robot
has determined the room that most likely contains the object
sought and is standing at its entrance. The prior knowledge
about the object–object co-occurrences and the information
about the mapped objects are fused into a room probability
map. The map provides the initial prediction of the promising
areas where the target object can be located. In Fig. 6(a), the
lighter areas are the most probable locations for the target
object. In this example, the cup is on a small dining table
in the living room. Then, a set of random viewpoints is
iteratively generated considering the distance between the
viewpoints and the covered area of the room (b). After that,
the viewpoint analysis begins. The probability of finding the
target object in the entire viewpoint area is calculated (c).
Similarly, the probabilities of finding the target object in each
segment of the viewpoint are determined (d).

Fig. 6. The proposed search strategy operating in a home simulated
environment. The most probable room is the living room. (a) The prior
information is fused to generate a room probability map. (b) The random
viewpoints are generated inside the room. In (c) the analysis of the all
viewpoint areas is conducted. Finally, (d) shows the best candidate segment.

Through the utility function maximization, the best view-
point is chosen. Next, the set of best segments is determined.
Then, the best viewpoint is sent to the robot navigation
system. The robot moves to the given viewpoint and adjusts
its orientation to visit the best segment. If the object is not
found, the probabilities in the explored area are updated.
Fig. 7 illustrates the subtasks of the robot during the search
process. In (a) and (b), the target object, the best view-
point and the best candidate segments are shown. In (c),

a representation of the covered area of the room after the
processing of the first best segment can be observed. In
this case, the covered area was 10.3 %. In (d), the results
of the object detector are shown. Table I shows the results
of the proposed method. The starting robot pose is at the
entrance to the room. We calculate the covered area of the
room, the time spent and the total distance travelled by the
robot until it finds the object. Total viewpoints visited and
the number of segments explored during the search process
are also counted. We have repeated the search for each of
the four target objects three times.

Fig. 7. Illustration of the subtasks in the search process. (a), (b) the best
viewpoint and the best candidate segments are chosen; (c) the covered area
of the room after exploring the best segment; (d) object detections.

TABLE I
EVALUATION OF THE PROPOSED SEARCH STRATEGY IN A SIMULATED

HOME ENVIRONMENT.

Target Time Distance Covered Total Total
object (s) traveled (m) area viewpoints segments

laptop 120.66 1.27 0.21 1 2
laptop 63.43 1.18 0.10 1 1
laptop 82.20 1.11 0.10 1 1

cup 270.50 2.44 0.30 2 3
cup 245.50 2.04 0.16 1 2
cup 451.22 2.75 0.29 3 3
tv 63.01 0.56 0.19 1 1
tv 91.55 0.75 0.16 1 1
tv 118.24 1.24 0.21 2 2

bowl 152.59 0.92 0.19 1 2
bowl 135.27 1.02 0.10 1 1
bowl 186.42 1.94 0.25 2 2

Avg. 157.87 1.44 0.19 1.42 1.75

The results show that the method limits the search area
through an analysis of the viewpoints and only the most
promising areas are considering for searching. On average,
the search process takes 157.87 seconds and the covered area
of the room is 19 %.

C. Real-World Experiments

The experiments were carried out in a living room of
14 m × 4 m. The room was first mapped and the information
about some objects in the room such as tables, chairs, and



sofas was therefore available to the robot. Fig. 8 shows the
environment and the target objects selected for the exper-
iments. The robot has to search for two different objects:
a cup and a laptop, each of them placed at two different
locations in each execution. In Fig. 9, the search for a cup is
illustrated: (a) shows the map of the environment, (b) shows
the room probability map for the target object, and (c) the
covered area of the room.

Fig. 8. The real environment used in our experiments. The robot is asked
to find a cup and a laptop in different locations of the room.

Fig. 9. Execution of proposed search strategy. (a) The map of the envi-
ronment and the execution of the path planning. (b) The room probability
map built for the target object cup. (c) The covered area of the room (grey)
after the evaluation of the best viewpoint.

Table II show the results of evaluating the proposed search
strategy in the real-world environment.

TABLE II
EVALUATION OF THE PROPOSED SEARCH STRATEGY IN THE

REAL-WORLD ENVIRONMENT.

Target Time Distance Covered Total Total
object (oτ ) (s) traveled (m) area viewpoints segments

cup 1 275.34 0.95 0.18 2 2
cup 2 140.71 1.94 0.19 1 2

laptop 1 139.11 0.36 0.10 1 1
laptop 2 383.44 1.05 0.20 2 3

Avg. 234.65 1.08 0.17 1.5 2

In some cases, the detector fails to recognize the object,
although the target object is within the field of view of the
camera. This forces the robot to explore another segment or
a new viewpoint from which the object detector is able to
identify the object. Despite this, the results demonstrate the
feasibility and the efficiency of the proposed method for the
task of searching for objects in real scenarios.

D. Comparison with Other Approaches

1) Quantitative Comparison: To the best of the authors’
knowledge, there is no dataset publicly available that would
be specifically designed for comparison of object search
methods in human-inhabited environments. To obtain valid
results in a comparison, the compared methods have to be
evaluated under the same conditions of the environment,
target objects and the position of the objects. To overcome
this issue, we have built a baseline approach to object search
based on random viewpoint selection. The method has been
executed 12 times in the same simulated environment and
looking for the same target objects as in Fig. 5. This method
does not take into account any prior information to select the
best viewpoint. Table III shows the results of the baseline
method compared to our proposed search strategy.

TABLE III
COMPARISON BETWEEN THE PROPOSED SEARCH STRATEGY AND THE

BASELINE SEARCH METHOD.

Search Avg. Avg. Avg. Avg. Avg.
method time (s) distance (m) coverage viewpoints segments

random 395.31 4.41 0.28 2.16 9.09
our approach 157.87 1.44 0.19 1.42 1.75

The results show that, the random strategy is substantially
less efficient than the proposed method. On average, finding
an object through the random selection of viewpoints takes
395.31 seconds and the average distance travelled is 4.41
meters. On the contrary, with our search strategy, the task
takes an average of 157.87 seconds with a distance travelled
of 1.44 meters. Our approach allows to determine the best
viewpoint and the best segments to search for an object in a
more efficient way. The number of viewpoints explored and
the covered area are also lower than those obtained with the
random method. An appropriate viewpoint selection reduces
the search space and the robot trajectory, yielding better
results in less time.

2) Qualitative Comparison: In [2] and [10], the authors
associate the target object with supporting planes to reduce
the search space. The search space is limited to objects
that can be found, for example, on tables. If the objects do
not have associated supporting planes or if the tables are
not identified, then, the target object can not be found. In
our work, we incorporate object–room and object–object co-
occurrences to generate promising areas where a target object
can be, regardless of whether they are in supporting planes
or, for instance, on a chair or a sofa. In [6], an intermediate
object with a strong relationship with the target object is
found first to guide the search process. The problem is that



sometimes the detection of the intermediate objects can be as
difficult as identifying the target object. In our approach, the
robot searches for the object directly, based on a probability
map of the room. Our efforts are focused on an analysis of
the viewpoints to determine the most promising poses. In
addition, the room probability map is updated after visiting
a viewpoint if the object is not found, which influences the
selection of the new best viewpoint.

As for the viewpoint generation, in [2] the number of
random viewpoints is set to 20. Similarly, in [10], the fixed
number of viewpoints is 1000, assuming that the area of
the rooms is always the same. In our method, we build
a set of random viewpoints, in which the size of the set
depends on the covered area of the room. Therefore, our
method ensures that the room is completely covered and
that the amount of points is sufficient to carry out the search
task. Another contribution of our paper is the optimization of
the utility function. Our utility function is adapted from [9],
where the authors set the β value to 1 to relax the distance
minimization. In contrast to that, we use an optimization
algorithm to find the β value to satisfy not only the maximum
probability of finding the target object, but also the minimum
distance travelled until the object is found.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel search strategy
to efficiently find unmapped objects in partially known
environments based on prior knowledge and the analysis of
candidate locations. Prior knowledge in the form of object–
object and object–room co-occurrences has been employed
to build a probability map with the most promising locations
of the target object. The core of the method is the selection of
the best viewpoint through an analysis of the probabilities of
finding the target object in the area covered by the viewpoint.
In addition, the best segments within the viewpoint are
determined to further speed up the search and to partially
address the occlusions. An optimized cost function is used
to maximize the probability of finding the target object while
minimizing the distance travelled.

We have evaluated the method in simulated and real-
world environments, demonstrating its validity and efficiency
on the task of finding the target object. The quantitative
and qualitative comparison has shown the advantages of
the proposed method. In the future work, we plan to do
an ablation study and large-scale experiments. We will also
study searching for objects in long-term operation. The room
probability map should be maintained in time for future
searches. Other line of research would be to adapt the method
to consider the user preferences during an object search task.
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