Proceedings of INTERSPEECH, DOI: 10.21437 /Interspeech.2019

Framework for conducting tasks requiring human assessment

Martin Griber, Adam Chylek, Jindfich Matousek

New Technologies for the Information Society (NTIS)
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

gruber@ntis.zcu.cz, chylek@ntis.zcu.cz, jmatouse@ntis.zcu.cz

Abstract

This paper presents a web-based framework that im-
proves and simplifies the design and the deployment of
tasks that require human input. These tasks may include
speech, text or image transcription, annotation and eval-
uation. The focus is on listening tests for the purpose of
a speech synthesis quality assessment. The framework is
quite flexible, i.e. many different types of tasks can be
prepared and presented to participants. The participants
can then work on the tasks via a user-friendly GUI and
their responses are recorded in a database. The frame-
work is ready to be integrated as an external task for
Amazon Mechanical Turk but it can also be used as a
stand-alone platform.

Index Terms: listening test, speech synthesis, Mechanical
Turk

1. Introduction

As speech synthesis techniques are, during their develop-
ment, producing speech of many quality levels depend-
ing on what specific technique is used or what setting is
applied, there is a need to compare various versions of a
synthetic speech to be able to determine which technique
or setting produces speech of a better quality. To get in-
formation about the synthetic speech quality, there are
several types of listening tests including but not limited
to MOS, MUSHRA or preference tests. To design differ-
ent types of listening tests, a general tool is required.

Although the possibility to conduct various types of
listening tests within a single framework was the main
motivation, there are other scientific areas that require
some human processing of either input or output data.
Other applications of this framework might include e.g.
audio and/or video transcription or annotation, text an-
notation, identification of objects in images, etc.

The presented web-based framework (ARTIC) allows
a task designer to define a flexible structure of a task.
The task consists of queries where each query can, in
general, have different structure. The query is composed
of samples (optional), questions (possibly related to the
samples), and possible answers to these questions. The
questions/answers can be of various forms like input text
fields, check-boxes, radio-buttons, simple buttons with
text labels, tree-like menu or numeric sliders. The design
of the system emphasizes extendibility and incorporates
suggestions and needs from the users and test designers
of a previous more limited version of such framework.

The framework is implemented as a single page appli-
cation using Angular framework for the frontend, PHP
for the backend and MySQL database for storing the re-
sults, logs, and the information about participants. It’s

fully integrable into Amazon Mechanical Turk platform
as an external task. It requires Turkers to register only
once into the framework and then they are automatically
logged in when accepting a task.

The task structure is described in Section E and the
application frontend GUI in Section B.

2. Task structure

A task is the main unit the framework works with. For
example, a single listening test is a task. The task con-
sists of queries. Each query is presented to participants
on a single page with (optional) samples and questions
with possible answers. Questions can be organized into
groups and categories in order to create complex layouts.
If a complex layout is not necessary for a query, a simpli-
fied question definition can be used. The queries can be
shown to the user in a predefined order or randomized.
If randomization is enabled, the order of the queries is
random for each participant, i.e, each participant is pre-
sented with the queries in a different random order.

Generally, each query can have different structure, as
each query is defined independently. However, for most
use cases (e.g. listening tests), the structure is the same
for all queries, just the samples vary. This further sim-
plifies automatic generation of such tests (which is not
a part of this framework, it’s rather an extension out of
this paper’s scope).

2.1. Query structure

A query contains a description, samples (see Section 2.2)
and questions with possible answers (see Section)

For a complex layout, the query can be structured into
groups. A group can also contain samples and be fur-
ther structured into categories. A category then contains
questions with possible answers related to the samples in
the superior group. Apart from a visual separation of
groups and categories, this structure allows the designer
to create customized layout, choosing from horizontal,
vertical or grid alignment of the contained items.

2.2. Sample types

There are several sample types a query can include. The
test designer is free to use any combination of sample
types and any number of samples in each query.

Mainly for the listening tests and audio transcrip-
tions, there is an audio sample - the user is presented
with a player that plays an audio file either on request
or automatically. At least WAV and MP3 formats are
guaranteed to work. For other formats, the availability
depends on the browser.

DOI: 10.21437/Interspeech.2019

)

s of INTERSPEECH,

Proceeding

Query 1

Please ple (A ittothe ol

Previous Skip

Reference sample

bim] [i= [le] [1e] [E]e]

A B C D E

This is a transcription of the audio.
024 climb to fight level 150

5 7 & 7 &

What does the sentence contain?
callsign flight level
command heading

speed greeting

command a=

Comment

Checkif true.

[Sample A has incorrect pronunciation
Sample 8 has incorrect pronunciation
[sample c has incorrect pronunciation
[sample 0 has incorrect pronunciation
Sample € has incorrect pronunciation
[Reference sample has incorrect pronunciation

Is the theme of this picture related to the audio sample?
O very related Somewhat related
O somewhatunrelated O Completely unrelated
O cantdecide

Figure 1: Example of the ARTIC framework GUI (available also onlineﬁl).

Targeting for example sentiment annotation, we pro-
vide a simple text sample that also supports HTML for-
matting. For a more complex annotation, e.g. finding
named entities, there is an advanced text sample that
allows the participants to select a part of the text and
mark or annotate it with a label.

Concluding the sample types, we offer also a simple
image. The common formats are supported, i.e. JPG,
PNG, GIF, etc.

Other sample types are planned to be supported in
the near future (e.g. video) or can be easily added later
if necessary (e.g. selectable audio or video).

2.3. Answer types

Various answer types are available allowing the designers
to choose just the right input option for their use case.

There is a text input field for an arbitrary text answer
that is useful for example for transcription or comments.
Restrictions on the length (minimum, maximum) can be
set.

Getting an answer from a set of choices (e.g. pref-
erence tests) can be achieved using a group of labelled
radio-buttons for single-choice answers or labelled check-
boxes for multiple-choice answers. The minimum and the
maximum number of selected check-boxes can be defined.

To get the most out of the advanced text sample type,
it is possible to create a group of buttons with labels.
The selected part of a sample may be marked with a
label of the corresponding button. A menu or a tree-like
structure of buttons is also useful. The labels of the menu
are derived from a more complex, multi-level hierarchy of
labels, e.g. in a 2—tier hierarchy that marks the severity
of audio quality issues the participant would first chose
the ”pitch issue” or ”stress issue” category and then has
to select either ”severe” or "minor” severity of the issue.
The minimum and the maximum number of selections
for both the buttons and the menu can be defined.

A slider can be used for numerical values, e.g. per-
ceived quality in MUSHRA tests. The minimum and the
maximum value, the increment and the orientation of the
slider can be altered.

2.4. Participants

The framework can be configured to either allow par-
ticipants to register themselves or use a pre-existing
database of participants. A limit on the number of par-
ticipants can be set. The participants can be registered
either locally (within each task) or globally. Global par-
ticipants can then participate in other tasks without a
need to register again and they have a permanent profile
storing all information they provided so far.

Each task might require the participants to meet
some demands, e.g. a specific mother tongue, an age
range, or a gender. If a new participant fills in informa-
tion that indicates that he doesn’t meet the requirements,
he is not allowed to participate. If a global participant
is trying to access the task, his profile is also checked
whether he meets the current task requirements.

3. Frontend

The frontend is an interface used by participants to ac-
cess tasks. Questions in queries can be answered using
this_interface. An example of a query is depicted in Fig-
ure [l| showcasing most of the available sample and answer
types.

In the upper part of the page, there is a query de-
scription and buttons to submit the answers and to move
through the queries. The middle part of the page is filled
with samples, questions and possible answers. Several
answer types are presented in this example. On the very
left, there are audio samples with sliders along with a
reference audio sample (MUSHRA test). On the mid-
dle left, there is an advanced text sample with a group
of buttons — parts of the text sample can be selected,
assigned with labels and thus highlighted (e.g. using
colours). On the middle right, there is an image sam-
ple with single-choice answers (radio-buttons). There is
also a panel with multiple-choice answers (check-boxes;
related to the set of audio samples) on the very right.
In the bottom, there is a simple text input where any
arbitrary comment might be filled in.

After the participant submits the answers using the
”Save and next” button, either a next query is presented
or, if there isn’t any next query, an end screen is shown
that allows the participant to flag the answers as final.
When the answers are marked as final, the user can no

Proceedings of INTERSPEECH, DOI: 10.21437 /Interspeech.2019

longer access the test and payment through the Mechan-
ical Turk can be approved.

4. Conclusion

This paper presents an application which serves for pre-
senting a task to participants who are supposed to go
through queries and provide answers to questions defined
in each query. The main purpose of this framework is to
assess various types of listening tests to improve speech
synthesis quality. Due to its flexibility, it can be used
also in other areas requiring human assessment.

5. Acknowledgements

This research was supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic, project
No. LO1506 and by the European Regional Develop-
ment Fund under the project Robotics for Industry 4.0
(reg. no. CZ.02.1.01/0.0/0.0/15_003/0000470).

Thttp://artic-tests.zcu.cz/demo_ interspeech 2018 — use
demo/demo credentials or try to register yourself. You can
watch a demo at https://youtu.be/Aq_MecqOrvk.

http://artic-tests.zcu.cz/demo_interspeech_2018
https://youtu.be/Aq_MecqOrvk

	 Introduction
	 Task structure
	 Query structure
	 Sample types
	 Answer types
	 Participants

	 Frontend
	 Conclusion
	 Acknowledgements

