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Data-driven Construction of Symbolic Process Models
for Reinforcement Learning

Erik Derner1, Jiřı́ Kubalı́k2, and Robert Babuška3

Abstract— Reinforcement learning (RL) is a suitable ap-
proach for controlling systems with unknown or time-varying
dynamics. RL in principle does not require a model of the
system, but before it learns an acceptable policy, it needs many
unsuccessful trials, which real robots usually cannot withstand.
It is well known that RL can be sped up and made safer by
using models learned online. In this paper, we propose to use
symbolic regression to construct compact, parsimonious models
described by analytic equations, which are suitable for real-
time robot control. Single node genetic programming (SNGP)
is employed as a tool to automatically search for equations
fitting the available data. We demonstrate the approach on
two benchmark examples: a simulated mobile robot and the
pendulum swing-up problem; the latter both in simulations
and real-time experiments. The results show that through this
approach we can find accurate models even for small batches
of training data. Based on the symbolic model found, RL can
control the system well.

Index Terms— Model learning for control, AI-based methods,
symbolic regression, reinforcement learning, optimal control.

I. INTRODUCTION

An RL agent optimizes its behavior by interacting with
its environment in order to find an optimal policy which
maximizes the long-term cumulative reward. Although RL
can work in a completely model-free fashion, the absence of
a model leads to slow convergence and therefore extensive
learning times [1], [2], [3]. To speed up learning, various
model-based methods have been proposed [4], [5], [6],
[7], [8], [9]. Many model-learning approaches have been
described in the literature: time-varying linear models [10],
[11], Gaussian processes [4], [12] and other probabilistic
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models [13], deep neural networks [14], [15] or local linear
regression [16], [17].

All the above approaches suffer from drawbacks induced
by the use of the specific approximation technique, such
as a large number of parameters (deep neural networks),
local nature of the approximator (local linear regression),
computational complexity (Gaussian process), etc.

In this article we propose another way to capture the
system dynamics using a symbolic model constructed by
means of symbolic regression (SR). Symbolic regression
is based on genetic programming and it has been used in
nonlinear data-driven modeling, often with quite impressive
results [18], [19], [20], [21], [22]. Therefore, we hypothesize
that also within RL, it will generate accurate, parsimonious
models based on even very small training data sets.

To date, only a few works have been reported on the use of
SR within the RL domain. For example, in [23] SR was used
to construct a symbolic function, which serves as a proxy to
the value function and from which a continuous policy can be
derived. Another work dealing with value function discovery
by means of GP is [24], where algebraic descriptions of
the value function are obtained based on data sampled from
the optimal value function. A multi-objective evolutionary
algorithm was proposed in [25] to learn a value function
capturing the user’s preferences provided through regular
interactions with the user. In [26] SR was used to construct
a smooth analytic approximation of the policy based on data
sampled from the interpolated policy. To our best knowledge,
there have been no reports in the literature on the use
of symbolic regression for building the process model in
reinforcement learning. We argue that the effective use of
symbolic regression for model learning is a valuable element
missing from the current RL schemes and we demonstrate
its usefulness.

The paper is organized as follows. Section II presents the
necessary reinforcement learning prerequisites. The proposed
method for finding symbolic process models is described in
Section III and Section IV presents the results of experiments
we performed in order to evaluate the method. Finally,
Section V concludes the paper.

II. PRELIMINARIES

The system for which an optimal control strategy is to be
learnt is described in discrete time by the following nonlinear
state-space model

xk+1 = f (xk,uk) (1)



with xk,xk+1 ∈ X ⊂ Rn and uk ∈ U ⊂ Rm. Note that the
actual process can be stochastic (e.g., the sensor readings
are corrupted by noise), but for the sake of RL control, we
aim at constructing a deterministic model. The control goal
is specified through a reward function which assigns a scalar
reward rk+1 ∈ R to each state transition from xk to xk+1:

rk+1 = ρ(xk,uk,xk+1) (2)

The reward function ρ is defined by the user and typically
calculates the reward based on the distance of the current
state to a given goal state that should be attained.

Based on model (1), we compute the optimal control
policy π : X →U such that in each state it selects a control
action so that the cumulative discounted reward over time,
called the return, is maximized:

Rπ = E
{ ∞

∑
k=0

γ
k
ρ
(
xk,π(xk),xk+1

)}
(3)

Here γ ∈ (0,1) is a discount factor and the initial state x0 is
drawn uniformly from the state space domain X or its subset.
The return is captured by the value function V π : X → R
defined as:

V π(x) = E
{ ∞

∑
k=0

γ
k
ρ
(
xk,π(xk),xk+1

)∣∣∣x0 = x
}

(4)

An approximation of the optimal V-function, denoted by
V̂ ∗(x), can be computed by solving the Bellman optimality
equation

V̂ ∗(x) = max
u∈U

[
ρ
(
x,π(x), f (x,u)

)
+ γV̂ ∗

(
f (x,u)

)]
(5)

To simplify the notation, in the sequel, we drop the hat and
the star superscript: V (x) will therefore denote the approxi-
mated optimal V-function. Based on V (x), the corresponding
optimal control action is found as the one that maximizes the
right-hand side of (5):

u = argmax
u′∈U

[
ρ(x,u′, f (x,u′))+ γV ( f (x,u′))

]
(6)

In this paper, the above equation is used online as the control
policy and U is a set of discretized actions, so that the near-
optimal action can be found by enumeration. To find the
approximation of the optimal value function V (x) we employ
the fuzzy V-iteration algorithm [27].

The prerequisite for this model-based RL approach is the
availability of the process model (1). In the following section,
we propose an approach for constructing such a model by
using symbolic regression.

III. METHOD

A. Model-based reinforcement learning scheme

The RL scheme we use is depicted in Fig. 1 and it consists
of the following elements:

1) Low-level control loop with the RL controller. This
controller can be either the policy (6) based on the V-
function learnt offline using value iteration, or it can be
any model-based RL algorithm whose parameters are

real time

Value function,
policy, model

Value iteration

Symbolic model

real-time loop

Symbolic
regression

Data buffer

u

Robot
x

RL Controller

Fig. 1. Model-based reinforcement learning scheme: the RL control loop
and the data logging in the buffer run in real time, symbolic regression and
value iteration are computed offline in a parallel process.

adjusted online. Examples of such algorithms are the
standard DYNA [28], [29] or more recent ones, such
as MLAC [16].

2) Input-state samples of the form (uk,xk) are collected
in the data buffer. In this paper we assume that the
states are measured, but the method equally well
applies to input-output models of the form yk+1 =
f (yk,yk−1, . . . ,uk,uk−1, . . .), where the state is repre-
sented by the vector of past inputs and outputs.

3) Symbolic regression is periodically applied to the
available data set, yielding a symbolic model of the
process, described in the form of analytic equations.
This model can be used in several ways: a) offline to
(re)compute the value function and policy, b) online by
the RL algorithm to assist the parameter update [16],
c) online to generate transition samples in the parallel
DYNA setting [29]. Note that also the data stored in
the buffer can be used by the on-line RL algorithm
using experience replay [14].

In the sequel we describe in detail the application of sym-
bolic regression to the process data collected online and the
validation of the model obtained.

B. Data collection

Two different situations can be distinguished:
a) Initial model learning: when a control policy is not

yet available, the system can be excited by a test signal in
order to obtain a sufficiently rich data set. There is a large
body of system-identification literature on designing suitable
test signals, such as the generalized binary noise (GBN)
sequence [30]. The important parameters to be selected are
the input signal amplitude, the way the random signal is gen-
erated (e.g., the ‘switching’ probability) and the experiment
duration. In the experiments section we detail the choice of
these parameters for our examples.

b) Model learning under a given policy: as soon as
an acceptable control policy has been obtained, the system
can be operated such that it executes the task required. Data
from trajectories obtained during the task execution can then
be used to further improve the model. Depending on the
task, some care has to be exercised when collecting such



data. The information content of data collected under steady
operating conditions is usually insufficient for model learning
purposes. Therefore, also in this situation, the system can be
deliberately excited with a test (exploration) signal added
to the control input determined by the policy. This test
signal typically has different characteristics (e.g., a lower
amplitude) than when learning the initial model.

Each data set is divided into a training set and a validation
set. The training set is used to evolve symbolic models
and the validation set to rank the model according to their
predictive power.

C. Symbolic regression

The system to be controlled is described by (1), where the
state-transition function f is unknown and we approximate
it by an analytic model constructed by using symbolic
regression. Symbolic regression is a suitable technique for
this task, as we do not have to assume any detailed a priori
knowledge on the structure of the nonlinear model. The class
of symbolic models is defined as:

f (x,u) =
n f

∑
i

βi fi(x,u) (7)

where the nonlinear functions fi(x,u), called features, are
constructed by means of genetic programming and n f is
the number of features (a user-defined parameter). The
coefficients βi are estimated by least squares.

To evolve the features fi, we define a set of elementary
functions whose combination is deemed sufficient to produce
a precise model. These functions can be nested and combined
using basic arithmetic operators, such as plus, minus and
multiply. To avoid over-fitting, we control the complexity of
the regression model by imposing a limit on the maximal
depth of the evolved symbolic expressions.

The specific algorithm used in this work is a modified
version of Single Node Genetic Programming (SNGP) [31],
[32], which is a graph-based genetic programming method.
For further details on the modifications we introduced, refer
to [33]. SNGP evolves the symbolic model so that the
mean-squared error calculated over the training data set is
minimized.

IV. EXPERIMENTAL RESULTS

We have carried out experiments with two non-linear
control problems: a mobile robot and the under-actuated
pendulum swing-up task.

A. Parameters

In all experiments, the SNGP population comprised 500
individuals and the evolution duration was set to 30000
generations. The operator and elementary function set was
{∗,+,−, sin, cos, sign}. The maximum depth of the evolved
expressions was limited to 7 and the number of features n f
in regression models varied between 1 and 10.1

1For further information on the SNGP configuration and other implemen-
tation details, please refer to our code at the GitHub repository:
https://github.com/erik-derner/SR4RL

The sampling period we used in all experiments was
Ts = 0.05s. In RL experiments we used γ = 0.95 and the
value function was approximated by an RBF network with
49 Gaussian basis functions.

B. Complexity

A single run of the SNGP algorithm with the configura-
tion used for the experiments presented in this paper took
between 10 seconds and 5 minutes on a standard desktop
PC (the algorithm was tested on a computer with a quad-
core processor Intel Core i7-4790 @ 3.6 GHz and 32 GB
RAM). The computational complexity increases linearly with
the size of the training data set.

C. Mobile Robot

1) System description: The state of a two-wheel mobile
robot (see Fig. 2) is described by x = [xpos,ypos,φ]

>, where
xpos and ypos are the position coordinates of the robot and
φ is the robot’s heading. The control input is u = [v f ,va]

>,
with v f and va the desired forward and angular velocity of
the robot, respectively.

(a) (b)

Fig. 2. Mobile robot schematic (a) and photograph (b).

The continuous-time model of the mobile robot dynamics
is:

ẋpos = v f cos(φ),
ẏpos = v f sin(φ),

φ̇ = va .

(8)

2) Data sets: To verify that symbolic regression can re-
cover the model equations from data, we have first generated
noise-free input-state data by using the Euler method to
simulate the above differential equations. The discrete-time
approximation of (8) then becomes2:

xpos,k+1 = xpos,k +0.05v f ,k cos(φ),
ypos,k+1 = ypos,k +0.05v f ,k sin(φ),

φk+1 = φk +0.05va,k .

(9)

2Note that the value of Ts = 0.05s is already inserted in the equations to
facilitate the comparison with the symbolic models presented in the sequel.

https://github.com/erik-derner/SR4RL


The initial state x0 and the control input uk at each time step
k are randomly chosen within the following limits:

xpos ∈ [−1,1]m,

ypos ∈ [−1,1]m,

φ ∈ [−π,π] rad,

v f ∈ [−1,1]m · s−1,

va ∈
[
−π

2
,

π

2

]
rad · s−1.

(10)

We generate ns training samples.
A validation data set was created in order to evaluate the

performance of the symbolic models on data different from
the training set. The validation data set entries were sampled
on a regular grid with 11 points spanning evenly each state
and action component domain, as defined by (10). These
samples were stored together with the next states calculated
by using the Euler approximation.

3) Experiment setup: In Experiment 1, symbolic process
models were evolved using SNGP on training data sets of
varying sizes. The purpose of this experiment was to test the
ability of SNGP to recover from the data the process model
described by a known state-transition function. Different
combinations of the number of features n f and the size of
the training set ns were tested. As the SNGP algorithm only
allows modeling one output at a time, the algorithm was
run independently for each of the state components xpos,k+1,
ypos,k+1 and φk+1.

4) Results: The symbolic models found by SNGP were
evaluated by calculating the median of the root mean squared
error (RMSE) on the validation data set over 30 independent
runs. The results are summarized in Table I. The cells with
‘–’ in the configuration with 10 features and only 10 training
samples indicate that a symbolic model could not be reliably
found, as the least-squares problem was poorly conditioned.

An example of a symbolic process model found with the
parameters n f = 2 and ns = 100 is:

x̂pos,k+1 = 1.0xpos,k +0.0499998879v f ,k cos(φk)

ŷpos,k+1 = 1.000000023ypos,k +0.0500000056v f ,k sin(φk)+

+0.0000000191

φ̂k+1 = 0.9999982931φk +0.0500000536va,k−
−0.0000059844

(11)

The coefficients are rounded to 10 decimal places in order to
demonstrate the order of magnitude of the symbolic model
error w.r.t. the Euler approximation (9). The results show that
even with a small training data set, a precise parsimonious
symbolic process model can be found based on noise-free
data.

In addition, the results show that the choice of the number
of features n f plays a significant role. In general, the RMSE
decreases with increasing number of features, whereas the
complexity naturally grows by adding more features to the
final model. If the number of features is smaller than the
underlying function, the results get substantially worse. This

is caused by the fact that the least squares method can easily
and accurately find the coefficients of the features, while
the symbolic regression would have to develop the constants
(parameters) by the evolution of the population, which is
considerably more difficult. Therefore, it is advised to set the
number of features equal to the expected number of terms
in the underlying function, which might be known or easy
to estimate in practice.

D. Pendulum Swing-up

1) System description: The pendulum system consists of
a weight of mass m attached to an actuated link which rotates
in the vertical plane, see Fig. 3(a). The state vector is x =
[α, α̇]>, where α is the angle and α̇ is the angular velocity of
the link. The control input is the voltage u. The continuous-
time model of the pendulum dynamics is:

α̈ =
1
J
·
(

K
R

u−mgl sin(α)−b α̇− K2

R
α̇− csign(α̇)

)
(12)

with J = 1.7937 × 10−4 kg ·m2, m = 0.055kg,
g = 9.81m · s−2, l = 0.042m, b = 1.94×10−5 N ·m · s · rad−1,
K = 0.0536N ·m ·A−1, R = 9.5Ω and c = 8.5 ×
10−4 kg ·m2·s−2. The angle is α = 0 or α = 2π for
the pendulum pointing down and α = π for the pendulum
pointing up.

(a) (b)

Fig. 3. Inverted pendulum schematic (a) and the real inverted pendulum
system (b).

The reward function used in the RL experiments was
defined as follows:

ρ(xk,uk,xk+1) =

=−0.5|αr−αk|−0.01|α̇r− α̇k|−0.05|uk|,
(13)

where [αr, α̇r]
> is a constant reference (goal) state.

2) Data sets: Both simulated and real measured data were
used in the experiments with the Pendulum Swing-up system.

The Euler data set was generated using the Euler approx-
imation of (12):

αk+1 = αk +0.05 α̇k,

α̇k+1 = 0.9102924564 α̇k−0.2369404025sign(α̇k)+

+1.5727561084uk−6.3168590065 sin(αk).

(14)

The Runge-Kutta data set was created by integrating (12) by
using the fourth-order Runge-Kutta method. The initial state
was α = 0, α̇ = 0 and the control input was random in the
range uk ∈ [−5,5]V for each time step k.



TABLE I
COMPARISON OF SYMBOLIC PROCESS MODELS FOR THE MOBILE ROBOT OBTAINED IN EXPERIMENT 1. THE TABLE SHOWS THE RMSE MEDIANS

OVER 30 RUNS OF THE SNGP ALGORITHM FOR VARYING NUMBER OF FEATURES n f AND NUMBER OF TRAINING SAMPLES ns .

Variable n f
Number of training samples ns

10 20 50 100 200 500 1000

xpos

1 9.44×10−1 1.77×10−1 1.37×10−1 9.98×10−2 7.88×10−1 3.25×10−2 2.87×10−2

2 7.18×10−8 6.44×10−8 3.19×10−9 2.05×10−9 3.55×10−9 5.93×10−9 1.53×10−9

10 – 3.78×10−5 2.29×10−7 1.09×10−7 1.45×10−7 5.21×10−9 2.68×10−9

ypos

1 9.11×10−1 9.06×10−1 4.34×10−1 1.39×10−1 1.74×10−1 3.21×10−2 3.16×10−2

2 3.44×10−1 4.87×10−1 1.81×10−8 1.18×10−8 4.09×10−9 1.93×10−8 2.39×10−8

10 – 4.48×10−4 2.04×10−7 4.11×10−7 1.91×10−7 1.60×10−8 1.25×10−8

φ

1 2.15×100 9.81×10−2 2.60×10−2 6.44×10−4 6.57×10−5 6.79×10−4 5.55×10−3

2 1.07×10−7 7.05×10−8 1.36×10−8 6.16×10−9 3.78×10−8 7.78×10−9 5.16×10−8

10 – 5.35×10−6 1.85×10−6 2.09×10−6 4.01×10−8 6.00×10−9 3.69×10−8

The validation data set was created similarly as in Sec-
tion IV-C.2. The samples were generated on a regular grid
of 31×31×31 points, spanning the state and action domain:
α ∈ [−π,π] rad, α̇ ∈ [−40,40] rad · s−1 and u ∈ [−5,5]V. In
experiments where the Euler data set is used as the input for
the SR algorithm, the next states for all samples in validation
data sets were calculated using the Euler approximation too.
Likewise, the fourth-order Runge-Kutta method was used to
calculate the next states for all samples in the validation data
sets that were used in experiments with the Runge-Kutta data
sets.

The real data sets were measured on the real inverted
pendulum system shown in Fig. 3(b). The real random data
set was created initially by applying a uniformly distributed
random control input uk within the range [−5,5]V at each
step k. The length of the random run was 100 steps (5 sec-
onds). This data set is shown in Fig. 4.
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Fig. 4. Initial data set obtained on the real inverted pendulum system as
a response to the random input shown in the bottom panel.

Finally, the real policy data sets were recorded while
applying policy (6) to perform the swing-up task on the real
system. The control goal was to stabilize the pendulum in the
unstable equilibrium xr = [αr, α̇r]

>= [π,0]>, with the control
input limited to the range u ∈ [−2,2]V. The available torque
is insufficient to push the pendulum directly up from the

majority of initial states. Therefore, from certain states (e.g.,
when the pendulum is pointing down), it needs to be swung
back and forth to gather energy, prior to being stabilized.

All real data sets were split into training and validation
subsets. Every third sample was used for the validation
subset, the other samples formed the training subset.

In all experiments, the reported RMSE values are calcu-
lated on the respective validation data set.

3) Experiment setup: In Experiment 2, SNGP was run in
order to test the ability of SR to generate precise models
for the Pendulum Swing-up system using the Euler data set,
similarly to Experiment 1 on the mobile robot.

Experiment 3 demonstrates how the symbolic process
models are evolved using the Runge-Kutta simulation data
set with noise. The states xn = [αn, α̇n]

> with Gaussian noise
are defined as

αn = α+πλrn,1 ,

α̇n = α̇+40λrn,2 ,
(15)

where rn,1, rn,2 are random numbers drawn from a normal
distribution with zero mean and a standard deviation of 1, the
constant λ∈ {0,0.01,0.05,0.1} controls the amount of noise
and the constants π and 40 are chosen so that the added noise
is approximately proportional to the range of each variable.
The number of features n f in the SNGP algorithm was set
to 10 in order to facilitate the evolution of models capturing
the more complex underlying function. This experiment tests
the behavior of the method in environments with noisy
measurements.

We conclude the experiments with Experiment 4, which
shows the intended use of the method within RL. First, we
constructed 30 symbolic models using the real random data
set and then selected the best one based on its performance
on the validation set. This model was employed to calculate
the policy for the swing-up task (see Section II). We applied
the policy to the real system in eight independent runs:
four with exploration noise added to the control input and
four without. The exploration noise was normally distributed
with the standard deviation ranging from 0.2 to 0.5 V. These
experiments yield data in important parts of the state space,
around the trajectory to the goal state. All eight real policy



data sets, each consisting of approximately 50 measurements,
were added to the initial random data set. Using this extended
data set, 30 refined symbolic process models were learned
and the model with the lowest error on the validation set was
chosen as the final refined model. Like in Experiment 3, the
number of features was set to n f = 10.

4) Results: In Experiment 2, the RMSE medians of the
symbolic process models over 30 runs were calculated on
the validation data set and the results for varying number of
features n f and varying number of samples ns are summa-
rized in Table II. The cells with ‘–’ in the configuration with
10 features and 10 training samples denote the cases where
the symbolic models were not reliably found, as the least
squares estimation problem was poorly conditioned.

An example of a symbolic process model found with
parameters n f = 2 for α, n f = 4 for α̇ and ns = 20 is:

α̂k+1 = αk +0.05 α̇k−0.0000000001,
ˆ̇αk+1 = 0.9102924745 α̇k−0.2369403835sign(α̇k)+

+ 1.5727561072uk−6.3168589936 sin(αk)+

+ 0.0000000013.

(16)

The error of the found model w.r.t. the Euler approxi-
mation (14) is very small. These results confirm that the
proposed method can find reliable models even on small data
sets. The conclusion we made in the case of Experiment 1
regarding the number of features holds here too.

The results for the Runge-Kutta data set with different
levels of added noise in Experiment 3 are shown in Table III.
The algorithm was run 30 times and we report the RMSE
median on the validation data set. The results show that
the symbolic models are able to approximate the transition
function well even on data with a reasonable amount of noise.
The use of the Runge-Kutta data results in substantially
more complicated models than the data generated with the
Euler method. In contrast with Experiment 2, the number of
training samples ns influences substantially the performance.
In this case, more training samples are needed to achieve
better performance, mainly because the underlying model is
much more complex.

In Experiment 4, we have shown that SR is able to find
process models using data collected on the real system.
Already after a short (5 s) interaction under the random
input, a symbolic process model is found which is capable of
performing the swing-up, see Fig. 6(a). The RMSE median
of the initial models over 30 runs of the SNGP algorithm is
1.70×10−2 for α and 6.03×10−1 for α̇. Moreover, Fig. 6(b)
shows that the performance of the model further improves
after adding data collected while performing the swing-
up task with the initial model. Fig. 5 captures a detailed
comparison of the swing-up response with the initial and
refined model. The histogram in Fig. 7 and a two-sample t-
test with unpooled variance applied to the discounted return
show that the performance improvement between the policy
based on the initial and refined symbolic process model is
statistically significant (p = 2× 10−22). The RMSE median
of the refined models over 30 runs of the SNGP algorithm is

1.16×10−2 for α and 3.35×10−1 for α̇. The refined model
with coefficients rounded to five decimal places is:

α̂k+1 = 0.99987αk +0.04942 α̇k +0.03358uk−0.00469sign(α̇k+

+ 2.24017uk)−0.13979 sin(αk)+0.00342sign(cos(uk)(α̇k+

+ 0.58579)(α̇k−1.22508))−0.01208 cos(cos(αk))sign(α̇k−
− 0.84090)−0.00271 cos(αk)(α̇k− sin(cos(uk)−0.85154))+
+ 0.00291 cos(8.0αk)(sign(α̇k)− cos(αk)+1.31607)−
− 0.00150sign(cos(α̇k)−uk +0.87758)(2.24017uk + sign(α̇k))−
− 0.00522,

ˆ̇αk+1 = 0.90686 α̇k−7.53947uk +0.12185 sin(sin(0.18629uk))+

+ 0.17778sign(α̇k− sign(uk)+0.47189)−0.12185 sin(cos(uk))+

+ 0.92217 sin(sin(αk))−5.64919 sin(αk)−0.04695sign(cos(α̇k+

+ 1.0))−0.17778 cos(sin(8.17576uk))+0.00285uk (uk+

+ 2998.41001)−0.16883 cos(sin(sin(αk)) sin(uk)(α̇k−
− 24.23152)) cos(sin(α̇k− cos(αk)+1.0))−0.11136 α̇k cos(αk−
− 18.84956)−0.07441 cos((cos(αk)−4.13321)(sign(uk)−αk+

+ 18.84956))(2.0 cos(αk)−0.5)−1.25205 sin(αk)(sign(sin(αk))−
− sin(αk))+0.00222 sin(sin(αk))(α̇k−24.23152)+
+ 0.01109uk sign(α̇k + sign(uk))(cos(sin(αk))− cos(αk)+1.0)(α̇k+

+ uk− cos(αk)− cos(uk)+1.0)+0.26063.
(17)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-4

-2

0

2

4

A
n

g
le

 [
ra

d
]

Desired angle (upright position)

Swing-up with initial model

Swing-up with refined model

Fig. 5. Comparison of the real swing-up response with the initial model,
learnt from the random data, and the refined model, learnt from the random
data merged with additional data from eight real swing-up experiments.

We compared our modeling results with local linear re-
gression (LLR) [34]. We selected the Runge-Kutta data set
with 1000 samples and zero noise as a reference training set
and the regular grid as a validation set (see Section IV-D.2
for details). The LLR memory contained 1000 samples and
the number of nearest neighbors was set to 10. The RMSE
achieved by LLR was 1.73×10−1 for α and 6.93×100 for α̇.
In both cases, our method achieved a better RMSE by at least
one order of magnitude (6.11×10−3 for α and 5.04×10−1

for α̇).
We also compared the results of our method to a neural

network. The network had one hidden layer, consisting
of 40 neurons, and it was trained using the Levenberg-
Marquardt algorithm. The number of neurons in the hidden
layer was tuned by testing networks with 5 to 100 neurons
and choosing the one that performed best on the validation
data. The RMSE achieved on the aforementioned reference
data set was 6.82× 10−2 for α and 2.59× 100 for α̇. The
performance of the neural network is inferior to our method.

V. CONCLUSIONS

Symbolic regression is a suitable tool for constructing
process models in reinforcement learning tasks. The advan-



TABLE II
COMPARISON OF SYMBOLIC PROCESS MODELS FOR THE PENDULUM SWING-UP SYSTEM IN EXPERIMENT 2.THE TABLE SHOWS THE RMSE MEDIANS

OVER 30 RUNS OF THE SNGP ALGORITHM FOR VARYING NUMBER OF FEATURES n f AND VARYING NUMBER OF TRAINING SAMPLES ns .

Variable n f
Number of training samples ns

10 20 50 100 200 500 1000

α

1 2.63×10−1 9.19×10−4 3.80×10−4 2.45×10−2 2.28×10−3 1.89×10−3 2.38×10−3

2 9.76×10−8 2.09×10−7 2.39×10−7 1.06×10−7 1.82×10−9 1.94×10−8 4.60×10−9

10 – 5.03×10−9 4.44×10−7 4.41×10−9 1.35×10−9 8.45×10−10 4.56×10−10

α̇

1 7.55×100 7.97×10−1 3.17×10−1 2.51×10−1 2.61×10−1 2.34×10−1 5.11×10−1

4 2.81×10−2 1.12×10−6 5.61×10−7 1.19×10−6 1.61×10−6 8.17×10−7 6.75×10−7

10 – 5.16×10−7 1.83×10−7 2.64×10−7 4.40×10−7 5.15×10−7 2.66×10−6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

A
n
g
le

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-2

-1

0

1

2

C
o
n
tr

o
l 

in
p
u
t 

[V
]

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

A
n
g
le

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-2

-1

0

1

2

C
o
n
tr

o
l 

in
p
u
t 

[V
]

(b)

Fig. 6. A typical real swing-up experiment with the initial model (a) and refined model (b).

TABLE III
COMPARISON OF SYMBOLIC PROCESS MODELS FOR THE PENDULUM

SWING-UP SYSTEM IN EXPERIMENT 3. THE TABLE SHOWS THE RMSE
MEDIANS OVER 30 RUNS OF THE SNGP ALGORITHM DEPENDING ON

THE STANDARD DEVIATION COEFFICIENT λ AND THE NUMBER OF

TRAINING SAMPLES ns .

Variable λ
Number of training samples ns

20 100 1000

α

0 9.58×10−2 1.79×10−2 6.11×10−3

0.01 3.95×10−1 1.45×10−1 2.80×10−2

0.05 1.15×100 4.89×10−1 1.43×10−1

0.1 1.90×100 7.61×10−1 3.55×10−1

α̇

0 4.56×100 7.65×10−1 5.04×10−1

0.01 4.22×100 2.28×100 8.13×10−1

0.05 7.89×100 6.07×100 3.14×100

0.1 1.26×101 9.61×100 6.65×100
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Fig. 7. Histograms of 50 real experiments with the initial model and refined
model measured by the discounted return. The performance improvement
is statistically significant (p = 2×10−22).

tage of symbolic models is that they are parsimonious and
understandable for humans. Prior knowledge on the type of
nonlinearities and model complexity can easily be included
in the symbolic regression procedure.

Experimental validation on the pendulum swing-up task
shows that already after a short interaction with the system
(5 seconds), an initial symbolic process model is found,
which not only accurately predicts the process behavior, but
also serves as a reliable model for the design of an RL con-
troller. The performance on the swing-up task significantly
improves when adding samples from several runs with the
swing-up policy found using the initial symbolic model.

We compared the performance of symbolic regression
with two alternative methods: local linear regression and a
feed-forward neural network. Both these alternative methods
achieve performance in the order of magnitude worse than
the symbolic regression. This is most likely due to the small
amount of training data.

We propose several future extensions of this work. The
main objective is to apply symbolic methods within the entire
RL scheme, i.e., also for approximating the V-function, and
also to use symbolic models in combination with actor-critic
online RL.

In our future work, we will evaluate the performance of
the proposed method on higher-dimensional problems. In
some cases, especially when using many features, symbolic
models tend to be unnecessarily complex. Therefore, we
will investigate systematic reduction of symbolic models,
especially for higher-order, multi-variable systems.
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[22] J. Žegklitz and P. Pošı́k, “Linear combinations of features as leaf
nodes in symbolic regression,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’17.
New York, NY, USA: ACM, 2017, pp. 145–146. [Online]. Available:
http://doi.acm.org/10.1145/3067695.3076009

[23] E. Alibekov, J. Kubalı́k, and R. Babuška, “Symbolic method for deriv-
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