
Simultaneous task allocation and motion scheduling for complex tasks
executed by multiple robots

Jan Kristof Behrens1 Karla Stepanova1 Robert Babuska1,2

Abstract— The coordination of multiple robots operating
simultaneously in the same workspace requires the integration
of task allocation and motion scheduling. We focus on tasks in
which the robot’s actions are not confined to small volumes, but
can also occupy a large time-varying portion of the workspace,
such as in welding along a line. The optimization of such
tasks presents a considerable challenge mainly due to the fact
that different variants of task execution exist, for instance,
there can be multiple starting points of lines or closed curves,
different filling patterns of areas, etc. We propose a generic
and computationally efficient optimization method which is
based on constraint programming. It takes into account the
kinematics of the robots and guarantees that the motions
of the robots are collision-free while minimizing the overall
makespan. We evaluate our approach on several use-cases
of varying complexity: cutting, additive manufacturing, spot
welding, inserting and tightening bolts, performed by a dual-
arm robot. In terms of the makespan, the result is superior to
task execution by one robot arm as well as by two arms not
working simultaneously.

Index Terms— task scheduling, dual-arm manipulation, mo-
tion planning, multi-robot systems,

I. INTRODUCTION

In a multi-robot system, the individual robots are pro-
grammed to collectively perform a given task. Such a system
not only can achieve goals that are infeasible for a single
robot, but it also increases the overall performance thanks
to the parallelization and combination of complementary
robot capabilities. However, to fully leverage the robots’
capabilities and to reduce their idle times, the individual tasks
and motions must be properly coordinated. Coordination of
multiple robots operating in the same workspace requires the
integration of task allocation and motion scheduling. Proper
task scheduling determines the effectiveness and efficiency
of the manufacturing process, while motion planning is
necessary to compute collision-free plans for each of the
robots. This is a non-trivial problem, given the huge state
space spanned by the many degrees of freedom at task and
motion planning level [1].

In the sequel, we refer to the integration of task allocation
and motion scheduling as task optimization. The tasks to be
optimized can be divided into two categories: (i) tasks in
which the robot’s actions are confined to a small portion of
the workspace (e.g., pick, place, apply glue to a point, etc.) –
we call them confined tasks, and (ii) tasks occupying a larger
volume which also varies in time (e.g., welding along a line,

1Czech Technical University in Prague, Czech Institute of Infor-
matics, Robotics, and Cybernetics,jan.kristof.behrens@cvut.cz,
karla.stepanova@cvut.cz, 2Delft University of Technology, De-
partment of Cognitive Robotics, r.babuska@tudelft.nl.

Allocating and sequencing
tasks to optimize the makespan

Collision-free motion planning

 x x x

 x x x

Right
arm

Left
arm

Fig. 1. Scheduling tasks and motions for confined and extended tasks with
a dual-arm robot. Left: Swept volumes are represented as voxels which
allow for efficient collision checking and are naturally representable for
the constraint solver used. Right: Task allocation, sequencing, and motion
scheduling of two robotic arms offers many opportunities to optimize the
makespan.

cutting a metal sheet, etc.) – we call them extended tasks.
While the optimization of confined tasks has been sufficiently
addressed in the literature [2], [3], extended tasks present
a considerable challenge. This is due to the time-varying
space usage of the manipulator during task execution, and
mainly due to the fact that different variants of task execution
exist, for instance, there can be multiple starting points of
lines or closed curves, different filling patterns of areas,
etc. In this paper, we extend the constraint programming
based STAAMS solver [3], to find collision-free and for
short makespans optimized plans for use-cases with extended
tasks.3 The main improvements to [3] follow. The proposed
method:
• is generic, i.e., not restricted to a specific family of tasks

and able to schedule both confined and extended tasks,
• guarantees that the planned motions are collision-free

and can exploit the time-dependent space occupancy of
extended tasks,

• can handle alternative, mutually exclusive task variants,
e.g., multiple starting points or allocation to robot arms.

The method also (same as [3]):
• is computationally efficient and scales well with the

number of tasks,
• enables easy definition of the task requirements as well

as changes of the individual system parameters,
• takes into account the kinematics of the robot.

II. PROBLEM DEFINITION

We address the following problem: Let P = {P,C} be
a set of tasks P to be executed while maintaining the set
of constraints C. Individual tasks Pk ∈ P, k ∈ {1, . . . , N}
can have multiple degrees of freedom (e.g., multiple starting

3Videos and additional materials can be found at the project webpage:
http://imitrob.ciirc.cvut.cz/schedulComplex.html.

locations, etc.). Let R be a set of available active components
(robots). Each robot Rj ∈ R, j ∈ {1, . . . ,M} has its given
kinematic model. The execution of task Pk during the time
interval [tSk

, tFk
] by a robot Rj leads to time and robot

dependent occupancy of space: at each time interval [ti, ti+1],
where i ∈ {Sk, Sk + 1, ..., Fk − 1} a region V j

i ⊂ V (V
denotes the whole workspace) is occupied by robot Rj . A
solution to the problem is given by a selection of the to be
executed variant of each task Pk ∈ P, an allocation of all
Pk ∈ P to the individual robots R ∈ R, a sequencing S
of tasks and motions between the task executions for each
robot R ∈ R, such that (i) the robots do not collide, (ii) the
constraints C on the tasks are satisfied, and (iii) the overall
execution time (makespan) is minimized: minmaxk∈N tFk

,
w.r.t. C.

III. RELATED WORK

We first give a brief overview of the literature on sequenc-
ing complex tasks with volume occupancy. Then, we describe
existing works on integrating sequencing of such tasks with
motion planning, with a focus on robot-specific approaches.

Task sequencing. A thorough survey on robotic task se-
quencing is given in [1]. The sequencing of tasks which allow
freedom in their execution order can be modeled as Traveling
Salesman Problem with Neighborhoods (TSPN) [4]: given a
set of polygons, the goal is to find a minimal-cost cyclic tour,
such that it visits each polygon at its internal point. Alatertsev
et al. [5] proposed a heuristic to optimize the sequencing of
closed-contour robotic tasks and demonstrated the solution
on a robot cutting holes in plastic. However, robot kinematics
and motion planning are not included into this approach.
In [6], the authors deployed the solution on one KUKA
arm and demonstrated how the production time decreases
on test instances from the cutting-deburring domain. In [7],
integrated task sequencing and motion planning for a welding
robot was specified as an instance of TSPN problem. Also
here, only one robotic arm was used. In [8], a solution to
the robotic task sequencing problem is proposed which has
a very short computational time. The authors applied their
solution to the airbus shopfloor challenge and discussed the
relation to TSPN. In [9], a disjunctive temporal constraint
network is used to deal with scheduling tasks including
temporal and ordering constraints and their allocation to 2
Barrett arms with no close cooperation.

The limitations of the above works are that they: (i) only
address the sequencing of abstract actions and do not con-
sider robot kinematics and motion planning; (ii) deal with
one robot and do not address collision avoidance for multi-
robot systems; (iii) do not allow for constraints in the form
of task subsequences with a fixed order.

Integrated task and motion planning. Although task and
motion planning are often considered separately, in the case
of multiple robots, it is important to plan both simultane-
ously. This entails decisions about what has to be done
by which robot, when each subtask has to be performed
and what is the concrete sequence of motions to realize.

Integrated task and motion planning (ITAMP) is a subset
of hybrid planning which deals with such problems. The
difficulty of these planning problems stems from the fact
that a task-level decision might be geometrically infeasible
on the motion-level. The ratio of geometrically infeasible
actions determines the best way to combine task and motion
planning [10], [11]. Kimmel et al. [2] employ a time-scaling
approach to schedule two given sequences of pick-and-place
tasks. In [3], we compared simultaneous task allocation and
motion scheduling approach for primitive tasks with pure
time-scaling using an experimental setup similar to the one
used by Kimmel et al. Akbari et al. [12] used ITAMP for a
dual-arm robot in constrained table-top problems where the
arms do not operate simultaneously. However, these planning
problems try to generate sequences of actions which lead
ultimately to the goal. In the industrial problems we are
considering, it is by design known which actions have to be
performed. The ITAMP approaches so far do not consider
the optimization of cost criteria.
Constraint-based approach to task scheduling. The appli-
cations of constraint programming (CP) to multi-robot task
planning and scheduling often use a simplified robot motion
model and ignore the spatial interaction among robots in
the scheduling process [13]. In this work, we employ CP to
model the abstract task specification and the robot motion.
Similarly, Ejenstam et al. [14] use CP to solve the problem of
dual-arm manipulation planning and cell layout optimization
via a coarse discretization of the workspace. Conversely, we
create dense roadmaps to enable the close coordination of
arms, thus allow simultaneous movements of arms.

Kurosu et al. [15] describe a decoupled MILP-based
approach to solve a simultaneous task allocation and motion
planning, where the motion planner is prone to failure due
to simplified motion and cost models used in the one-
shot MILP formulation. This is not the case for us, as a
single CP solver finds a mutually feasible solution for all
sub-problems. In our previous work [3], we introduced a
coherent formalism to model the robot and workspace as
well as the abstract task plan and its invariants. We proposed
ordered visiting constraints (OVCs) as task model primitives
and time-scalable motion series as motion model primitives.
In [16], we show how these tasks can be specified in a
user-friendly manner by natural language and demonstration.
However, only confined tasks were considered, without the
freedom in action execution (e.g., selecting a starting point).

This paper’s approach goes beyond the state-of-the-art in
the works mentioned. The main contribution is that it per-
forms simultaneous task and motion scheduling for multiple
robots in the case of extended tasks including trajectory
actions. It also handles constraints on the order of subtask
sequences.

IV. TASKS AND MOTION SCHEDULING FOR EXTENDED
TASKS

Simultaneous task and motion scheduling (STAAMS) is
concerned with the scheduling and allocation of high-level
actions, while taking into account constraints at the motion

level. Robot-robot collisions must be prevented, kinematic
constraints and joint limits may not be violated. The result
is a time-scaled trajectory for every robot arm that does not
violate any constraints at the task and motion level during
the task execution. The solver is based on constraint opti-
mization, that is sequentially solving constraint satisfaction
problems. The structure of such a problem is shown in
Fig. 2. A Constraint Satisfaction Problem (CSP) is generally
specified by the triple (X,D,C), where X is a set of
variables, D a set of domains, and C a set of constraints.
The solution of a CSP is a complete assignment of values
to variables that satisfies all constraints C. To find such
a solution, the underlying solver performs a backtracking
search over the variables with suitable variable and value
selection heuristics. The search is interleaved with constraint
propagation, which prunes the search by removing from the
variables’ domains those values that violate constraints in
C. For the subsequent optimization of the makespan mend, a
series of CSPs with additional constraints on the makespan:
mend ≤ ci (ci being a current upper bound for the makespan),
where ci < ci−1, is solved.

The extended STAAMS model as shown in Fig.2 is
organized in a task layer and a robot layer (similar to [3]).
The changes and extensions (of [3]) to handle extended tasks
are described in the following subsections.

motion series σ2

𝐼1
𝑤 𝐼2

𝑤 𝐼3
𝑤𝐼1

𝑡 𝐼2
𝑡 ⋯ 𝐼𝑛

𝑡

C1 C2 C3
Cg

n

OVC ω2

Motion

Model

Task

Model

Connection

Variables

resource r1

I5I1

A

⋯ X5X1

⋯

OVC ω1

I3I1

A

⋯ X3X1

Ls
1

⋯

makespan

Ls
3

Cs
nmotion series σ1

𝐼1
𝑤 𝐼2

𝑤 𝐼3
𝑤𝐼1

𝑡 𝐼2
𝑡 ⋯ 𝐼𝑚

𝑡

Cs
1

Cs
3

= integer variable = interval variable = index-based assignment

motion series σ1

motion series σ2

Lg
1 Lg

3

Cg
1

Cg
2Cs

2 Cg
3

Cg
m

Cs
m

Ls
1 Lg

1
Ls

5 Lg
5

R
o

b
o

t
la

y
er

T
a

sk
 l

a
y

er

Fig. 2. CP model for task (task layer) and motion (robot layer) scheduling.

A. Task layer

The tasks are specified as a set of Ordered Visiting Con-
straints (OVC) with combinatorial and temporal constraints.
Each OVC specifies a series of tasks which have to be
executed by a single robot in a given order, e.g., a pick
action followed by a place action, depositing of material
along a trajectory followed by coating. In [3] these tasks were
considered to (i) only consist of very small movements with
a near constant spatial footprint and controllable execution
time, and (ii) start and end in the same configuration.
Also it was assumed that (iii) all motions follow roadmap
edges and therefore pre-computed collision tables for the
roadmap nodes could be used (see Section IV-C). However,
many relevant tasks violate these assumptions. Therefore, we

extend the model to drop these assumptions. Consider, for
instance, a welding seam: the robot positions the welding
torch at the beginning of the seam, activates it and then
tracks the seam at a constant speed. These extended tasks
are characterized by the following properties:
• The start and ending configurations can be distinct and

far apart.
• The volume occupied by the whole motion (swept

volume) is large and the ratio of actually occupied
volume to the swept volume is low.

• There might be multiple valid starting points for exe-
cuting the task (e.g., each end point of the seam).

• The task duration can be long.
An extended task is defined by a list of possible starting lo-

cations Ls
j , corresponding goal locations Lg

j and trajectories
Tj each represented by a list of k tuples (Li, tci), where Li

denotes the six degrees of freedom of the end-effector at time
tci . When the solver assigns the task to a given robotic arm
and selects a starting location, then the motion plan of the
robot is created and the corresponding robot configurations
are assigned to each of these locations. The result is a list of k
tuples (ci, tci), where ci denotes the configuration robot visits
at time tci . These motion plans can be precomputed for each
task variant in advance to save planning time. The system
in [3] would require to reserve the whole space occupied
by the execution of the extended task and the robot would
have to return to the task start location after execution. The
extensions described in the following enable closer and more
efficient cooperation of the robots.

Extended Ordered Visiting Constraints. Since extended
tasks can be used interchangeably with confined tasks in
OVCs, we add starting (Ls) and ending (Lg) locations in
the OVCs (note that for confined action Ls = Lg) and
corresponding robot configurations cs and cg to the motion
series (see Fig. 2 top).

An OVC generalized for extended tasks is defined as the
tuple

ω = (A, [P1, ..., Pl], [[L
s
1], ..., [L

s
l]], [[L

g
1], ..., [L

g
l]],

[I1, ..., Il], [cal1, ..., call], Cintra).
(1)

An OVC ω models a sequence of confined and extended
tasks to be executed at different locations Li (6DoF of end-
effector) by a given manipulator. A is a variable representing
the active component, i.e. the manipulator, Pi defines the
task type, e.g. apply glue, pick up an object or follow a
line. These tasks have to be executed from an initial robot
configuration corresponding to starting location Ls

i to a final
robot configuration corresponding to location Lg

i . To execute
the given task at the given starting location, a scripted
task definition cali is called. This scripted task definition
navigates the robot from the starting location Ls through the
task, ending at a specified ending location Lg . Compared to
[3], we replaced the task locations Li with the pair of start
and goal locations Ls

i , L
g
i . These scripted task definitions can

be defined by the user. The time interval variables Ii model
the time windows for the task execution and Cintra is a set

of constraints to model arbitrary relations between the OVC
internal variables.

Extended tasks often can be fulfilled in multiple ways.
Open contours can be started at either end and circular
paths can be started anywhere on the path. With the OVC
constraint variables, defining these variants is very easy. An
example for the line task to be executed by arm ’r1’ would
be: ([r1],’make line’,[l1, l2],[l2, l2]), where l1 and l2 are the
respective end points of the line. For each of the possible
variants, the corresponding robot motion plan is generated
based on the predefined scripted task definition ’make line’.

B. Robot layer

Industrial robots typically follow a workflow of alternating
phases of effective and supporting movements [17]. In the
case of multiple robots cooperating on the same task, this
model does not provide enough flexibility, as the robots
might block each other on their way to the next positions.
Therefore, we allow waiting times after or instead of actions.
This allows a time-scaling of the effective motions and
evading movements during the support motions. The robot’s
motions are represented as a series of n joint configurations,
n intervals modeling the time spent in these configurations,
and n− 1 intervals modeling the traveling time between the
configurations (see Fig. 2 bottom). Precomputed roadmaps
[18] are used to discretize the configuration space per arm
(see Fig. 3). Therefore, the domain of the configuration
variables is the set of all roadmap nodes of the corresponding
arm. Path planning for supporting movements is performed
by graph search on these roadmaps. In the case of the
extended tasks when the occupancy of the space changes
in time or when the starting and ending points are different,
we have to allow connections of the starting and ending point
of the task to different nodes of the roadmap, see Fig. 3.

Fig. 3. Starting and
ending locations of the
extended tasks are con-
nected to the closest
nodes in the roadmap.
This is done for the
roadmaps of both arms
(roadmap only for the
left arm is displayed).

C. Collision-free plans

Space representation for collision-free plans. The intro-
duction of extended actions brings a huge number of robot
configurations which have to be checked for collisions.
To avoid extensive pair-wise collision checks, we utilize a
voxel-based swept volume representation [19] for collision
checking with precomputed swept volumes for each of the
extended task trajectory. Additionally, we show how this
space representation can be used that we do not have to
reserve the whole swept volume (volume occupied by the
whole motion) for the task duration, which would prevent
multiple robots from working efficiently in parallel.

Collision bodies of robots are typically represented as
(triangular) meshes or compositions of primitive bodies like
spheres, cylinders or cuboids. Although, optimized methods
exist to check for the intersection of two bodies, the general
case of checking two meshes against each other is computa-
tionally expensive. Since the solver considers a large number
of sequencing and task allocations, many robot configura-
tions have to be checked for robot-robot collisions. As the
STAAMS solver is implemented as a constraint program, the
notion of resources is a natural way of modeling. Therefore,
we create a partition of the robot’s workspace set V into n
subsets vi (vi treated as unary resources). A voxelization of
the volume V fulfills these requirements.

The space occupancy of a robot in configuration ci can
then be expressed as the set Vi ⊆ {v1, . . . , vn}. Figure 4
shows voxel occupancy for KUKA robot during a line
movement. The space occupancy is piece-wise constant, i.e.
Vi is constant from ti to ti+1. A new interval is added when
the occupancy of the space changes. For efficiency reasons,
this discretization can be limited by a temporal resolution or
a maximum number, without sacrificing the safety of the ex-
ecution. To account for kinodynamic constraints, we require
that the robot always has enough free space in the direction
of the movement to perform an emergency stop. The overall
stopping time Te is dependent on the velocity of the joints
ẋj and the acceleration limits aj,min ≤ ẍj ≤ aj,max, tjstop,i

denominates the minimal stopping time for a joint j at time
ti: Te = maxj∈Joints t

j
stop,i. Let Te be the time to break to the

full stop at time ti. Then the volume to be reserved is V r
i =S

k∈K
Vk, where K = {i, i + 1, ..., p}, p and corresponding

time tp is determined by the condition that: tp − ti ≥ Te

(see Fig.5). We determined empirically the worst-case run-
time of the stopping trajectory calculation tcalc ≤ 0.5 s. The
task execution has to be deterministic for in the sense that
the actual motion is always contained in the reserved space
V r
i . Violations of this have to be handled by communication

during execution (changed resource requirements). There is
a trade-off between reserving the resources early and being
able to move quicker and reserving less resources at the time.

To enable efficient use of resources, we free the space after
a part of the task is fulfilled and the arm moves out of the
given region.

Collision-checking To ensure collision-free motions of the
arms, we determine the set of required resources and their
timing relative to the respective action or traveling interval
and cast temporal disjunctive constraints on potentially col-
liding motions. This ensures that intervals of the actions or
supporting robotic movements which spatially overlap do not
occur concurrently in the robotic plan. A fast collision check
for two sets of voxels (vox1 and vox2) is done with the worst
case runtimeO(mn), where m and n are the sizes of the sets.
For colliding sets, the runtime is quicker as we can report
collision after the first common element is found. For a voxel
size of 10 cm the occupied volume is represented by 80−90
voxels. Empirically, the runtime was found to be 10−5s. This
sparse volume representation enables collision checks for

