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Abstract:
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which is a well-known methodology for delay-dependent stability analysis of multiple time-
delay systems (MTDS). We propose an algebraic approach to extract the stability switching
hypersurfaces in spectral delay space, instead of a numerical procedure in CTCR with Extended
Kronecker Sum (EKS) operation. The proposed algebraic approach is based on an efficient zero
location test, and the deployment of this test to an auxiliary characteristic polynomial whose
unique properties have recently been revealed. The achieved improvement is demonstrated by
applying the new CTCR procedure to a system with three delays.
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1. INTRODUCTION

In this paper, we study the stability of LTI-MTDS of
retarded type, with the general state space representation

ẋ(t) = Ax(t) +
∑p

j=1 Bjx(t− τj), (1)

where the state vector is x ∈ R
n, the system matrices are

A ∈ R
n×n and Bj ∈ R

n×n, and τj ≥ 0 are constant time-
delays, which are rationally independent from each other,
i.e. incommensurate delays.

The stability analysis of the system (1) was declared as
an NP-hard problem by Toker and Ozbay [1996], and
have been widely studied via different approaches in time
and frequency domains. The time-domain methods are
based on Lyapunov-Razumikhin functions or Lyapunov-
Krasovskii functionals (Fridman [2014]), where the prob-
lem is solved usually by the feasibility of linear matrix
inequalities (LMIs). The frequency domain approaches
mainly focus on the characteristic equation of (1) given
by

CE(s, τττ) = det
[

sI−A−
∑p

j=1 Bje
−τjs

]

= 0, (2)

where τττ = (τ1, τ2, . . . , τp) denotes the delay vector. The
general motivation is to investigate the imaginary axis
crossing of the roots of (2), which are infinitely many.
CTCR is such a frequency domain stability paradigm,
which treats the determination of characteristic roots on
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the imaginary axis (s = ±ωi), and then examines the
(in)stability switchings of these roots in the complex plane.

CTCR paradigm has been proposed for single-delay sys-
tems in Olgac and Sipahi [2002] and then extended to
multiple-delay case by Sipahi and Olgac [2005, 2006]. A
computational advantage for the method has been pro-
vided by Ergenc et al. [2007], which utilizes the Extended
Kronecker Sum (EKS) to determine the characteristic
roots of (2) on the imaginary axis. It is worth here to
refer Louisell [2001], Jarlebring [2009] that also utilize
Kronecker sum to determine crossing frequencies and crit-
ical delay values. For the system (1) with p > 3, a fre-
quency sweeping methodology and the resultant theory
were utilized in Sipahi and Delice [2011] and in Gao and
Olgac [2016] to improve the numerical procedure in CTCR
method for extracting the 2-D cross-sections of stability
switching hypersurfaces in delay space.

In this paper, we provide an algebraic approach to ex-
tract the stability switching hypersurfaces (a.k.a building
hypersurfaces) in the spectral delay space (τττω ∈ R

p
+)

of the system (1). The proposed approach brings out a
modified procedure for CTCR with EKS, which reduces
the numerical calculations in the former procedure in
Ergenc et al. [2007]. The new procedure is based on an
efficient zero location test, the Bistritz Tabulation, and
its application to an auxiliary characteristic polynomial
which was revealed and investigated recently in Alikoc and
Ergenc [2017]. Besides the employment of simple algebraic
operations in the new method, the unique properties of the

Proceedings, 14th IFAC Workshop on Time Delay Systems
Pesti Vigadó, Budapest, Hungary, June 28-30, 2018

Copyright © 2018 IFAC 324

An Algebraic Approach for a Stability

Analysis Methodology for Multiple

Time-delay Systems

Baran Alikoc ∗ Ali Fuat Ergenc ∗∗

∗ Czech Institute of Informatics, Robotics, and Cybernetics, Czech
Technical University in Prague, Jugoslávských partyzánu 1580/3,
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auxiliary polynomial are also utilized to reduce the effort
for numerical calculations.

The paper is organized as follows: In section 2, preliminary
definitions and statements of the study are given. The
main result for the extraction of building hypersurfaces,
and the modified CTCR method with EKS given in section
3. Section 4 contains an example case study. The paper is
concluded in Section 5 with the results summary.

2. PRELIMINARIES

In this section, we represent an auxiliary characteristic
polynomial obtained via EKS, its unique features, and
its relation with the imaginary characteristic roots of (2).
Then, a review of CTCR procedure is given. Finally, a zero
location test named Bistritz Tabulation, which constitutes
the basis of the improved methodology, is represented.
We omit the proofs due to space limitation, an interested
reader may see the cited studies for details.

2.1 Kronecker Sum and Imaginary Characteristic Roots

The following theorem was proposed in Ergenc et al.
[2007], taking the advantage of “eigenvalue addition” fea-
ture of Kronecker summation operation.

Theorem 1. Define the Auxiliary Characteristic Equation
(ACE) of the system given in (1), with zj = e−τjs:

ACE(z) = det

[

A⊗ I+ I⊗A+
∑p

j=1(Bj ⊗ Izj + I⊗Bjz
−1
j )

]

= 0. (3)

Then, for the system (1), the following findings are equiv-
alent:

(i) A vector of p-dimensional unitary complex numbers
z = {zj} ∈ T

p, |zj | = 1, ∀j = 1, . . . , p satisfies ACE
given in (3).

(ii) There exists at least one pair of imaginary character-
istic roots, ±ωi, of (2).

(iii) There exists a corresponding delay vector τττ ∈ R
p
+

which satisfies CE(±ωi,τττ) = 0.

Theorem 1 states necessarily and sufficiently that one pair
of imaginary characteristic poles, ±ωi, of (2) for a certain
value of set τττ correspond to a unitary root set, z ∈ T

p.
Note that ACE is free of s terms. Let the complete unitary
solution set of (3) be

Z = {z ∈ T
p | ACE(z) = 0} . (4)

Then the set of imaginary crossing frequencies and the set
of corresponding delays which cause stability switching can
be given, respectively, as

Ω = {ω ∈ R | CE(s = ωi, z) = 0, z ∈ Z} , (5)

℘℘℘ =

{

τττ ∈ R
p
+

∣

∣ �τττ , ω, z�, τττ =
arg(z) + 2kπππ

ω
, ω ∈ Ω, z ∈ Z

}

,

k = 0, 1, . . .
(6)

where arg(·) denote the elementwise argument operation
and πππ = (π, . . . , π) ∈ R

p. Also, �·, ·, ·� notation implies a
causal relation that the p members of the first argument
result in the second argument as the imaginary root of
CE, and the first and second arguments together result in
a unitary root of ACE. The whole delay set (6) resulting
imaginary characteristic roots can be obtained easily after

finding the switching hypersurface for k = 0 which is called
kernel hypersurface (℘℘℘0). Note that the hypersurfaces
generated from the kernel are called offspring. Together
with the hypersurfaces in delay space, a perspective with
a conditional mapping from delay space, τττ ∈ R

p
+, only

for the points τττ ∈ ℘℘℘, to a spectral delay space, τττω ∈
R

p
+, generated via �τττ , ω� correspondence was defined in

Fazelinia et al. [2007]. With this perspective, the building
hypersurface is defined where τττ ∈ ℘℘℘0 are mapped into
a bounded space named the building block, which is a p-
dimensional cube with edge length of 2π, i.e. 0 ≤ τjω ≤ 2π,
∀j. Clearly, this building hypersurface is defined as

∆∆∆ =
{

τττω ∈ [0, 2π]p
∣

∣ τττω = arg(z), z ∈ Z
}

(7)

considering (4)–(6) as also mentioned in Ergenc et al.
[2007]. The notation τττω ∈ [0, 2π]p means that τττω is a
vector of Rp

+ whose entries belong to the interval [0, 2π].

Let us now focus on the properties of auxiliary character-
istic function –ACE, which is a multinomial in terms of
z where the degree of any zk is smaller than or equal to
n2. We have proven recently that the unitary zero sets of
(3) can be represented via a self-inversive polynomial in
terms of any zk ∈ z with complex coefficients zj �=k, ∀j; see
the following definition and lemma.

Definition 1. Consider the following polynomial with com-
plex coefficients:

Pn(z) =
n
∑

i=0

diz
i . (8)

The reciprocal of Pn(z) is

P ∗
n(z) =

n
∑

i=0

d̄n−iz
i = znP̄n(1/z), (9)

where d̄ denotes the complex conjugate of d. Then, the
polynomial is called as symmetric or self-inversive if
Pn(z) = P ∗

n(z).

Lemma 1. (Alikoc and Ergenc [2017]) Define the Auxiliary
Characteristic Function in (3) as ACE(z) = n(z)/d(z).
Then, the roots of (3) are equal to the zeros of the
“Auxiliary Characteristic Polynomial (ACP )”,

ACP (z) = zρk

k ACE(z) (10)

where ρk is the maximal degree of zk in d(z), ∀k ∈
(1, . . . , p), and ACP (z) is a self-inversive polynomial of
even degree in terms of zk with complex coefficients
(z1, . . . , zk−1, zk+1, . . . , zp) for zj = eiωτj .

Let us rewrite (10) as

ACP (zk,υυυ) =

mk
∑

l=0

b
(k)
l (υυυ) zlk, (11)

where mk ≤ 2n2 and b
(k)
l (υυυ) are complex coefficients in

terms of eiυj , where υj := τjω for all j �= k. Obviously, the
set

ΥΥΥ =
{

υυυ ∈ [0, 2π]p−1
∣

∣ ACP (zk,υυυ) = 0, |zk| = 1
}

(12)

is a subset of building hypersurfaces ∆∆∆ in (7), i.e. ΥΥΥ ⊂∆∆∆,
and υk ∈ τττω is represented by an unitary complex variable

zk. By the fact that b
(k)
l (υυυ) , ∀l, has a periodicity of 2π

and ACP is self-inversive, the following lemma was also
proposed.

Lemma 2. (Alikoc and Ergenc [2017]) Any set of υυυ′ ∈ ΥΥΥ
resulting a unitary zero z∗k of (11) is symmetric to the point
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υυυ′′ ∈ ΥΥΥ which satisfies ACP (z̄∗k,υυυ
′′) = 0 where also z̄∗k is

a unitary zero, with respect to the point πππ(π, π, . . . , π) ∈
R

p−1. That is,

υ′
j + υ′′

j

2
= π, j = 1, 2, . . . , k − 1, k + 1, . . . , p. (13)

Notice that Lemma 2 provides the investigation of unitary
zero sets of ACP by sweeping one of the parameters υj in
the range [0, π] and the others in [0, 2π] instead of sweeping
all for [0, 2π]. This fact is one of the utilized advantages to
reduce computational load of the former CTCR procedure.

Remark 1. Self-inversive polynomials have zeros which are
all unitary and/or reciprocal; meaning conjugate pairs
symmetrical to unit circle. We also take the advantage of
this feature of ACP .

2.2 Cluster Treatment of Characteristic Roots (CTCR)

CTCR is based on two distinctive properties: first, the de-
termination of the stability switching hypersurfaces (℘℘℘) re-
sulting imaginary characteristic roots from a finite number
of (kernel) hypersurfaces – ℘℘℘0, and secondly, the invariance
property of root tendency (RT) on ℘℘℘. Besides the approach
presented by Theorem 1, these hypersurfaces can also be
obtained by different approaches, e.g. by Rekasius Sub-
stitution in Sipahi and Olgac [2005, 2006] or by building
block concept in Fazelinia et al. [2007].

RT defines the crossing direction of the characteristic
roots on the imaginary axis. This direction is invariant
to delay changes on the switching hypersurfaces, which
occurs as a direct result of root continuity argument.
With this invariance property, the determination of the
number of the unstable roots in delay space is provided
systematically. RT for a purely imaginary characteristic
root (ωi) with respect to one of the time-delays, τj , is
given in (Sipahi and Olgac [2006]) as

RT = RT|
τj
s=ωi = sgn

�

ℜ

�

∂CE/∂τj
∂CE/∂s

�

�

�

�

s=ωi

��

, ∀j. (14)

The RT function represents the direction of the root at
s = ωi crossing when only one of the delays varies. If
RT = +1, the imaginary root crosses to the right half
complex-plane. Otherwise (RT = -1), it crosses to the left
half complex-plane. Then, for each region in delay space
whose boundaries are created by ℘℘℘ in (6), the number of
roots in left (or right) half complex plane, i.e. the number
of unstable roots, can be determined by obtaining the RT
values and counting the roots in each plane. Calling the
number of unstable roots as NU, clearly the system is said
to be stable for the delay values in a generated region by
hypersurfaces if and only if NU=0.

The procedure for CTCR method with EKS approach in
Ergenc et al. [2007] is summarized as follows:

(i) Obtain the ACE in (3) for the system (1).
(ii) Select any zk, k ∈ (1, . . . , p), as the complex variable

and substitute zj = eiυj , ∀j �= k, υj ∈ [0, 2π], into
(3). Solving the roots of (3) for all υυυ ∈ [0, 2π]p−1,
form the corresponding zk values with unity magni-
tude. This yields the complete unitary solution set
(4) of ACE and the building hypersurfaces (7).

(iii) Compute the set of all imaginary crossing frequencies
(5) by inserting each z ∈ T

p found in step (ii) and
s = ωi to CE in (2).

(iv) Calculate the switching hypersurfaces of delays de-
scribed in (6) with the corresponding z and ω, found
respectively in step (ii) and step (iii).

(v) Finally, determine the directions of stability switch-
ing on the boundaries of hypersurfaces and NU for
the regions in delay space, by RT function given in
(14). The regions with NU=0 are stable.

Apparently, step (ii) and (iii) in the above CTCR proce-
dure constitute the part with the severest computational
load. As the main contribution of this work, we propose
a new procedure for CTCR to reduce the mentioned com-
putational load, based on the features of the auxiliary
characteristic polynomial ACP given by (10)-(11), and the
utilized zero location test represented below.

2.3 Bistritz Tabulation Method

Bistritz Tabulation (BT) is a Routh-like tabular method
to find the number of the zeros of polynomials with respect
to unit circle, which provides computational efficiency and
easier implementation for unknown parameters, compared
with the alternative methods based on Schur-Cohn matri-
ces and Jury-Marden tables (see Bistritz [1984]). Before
outlining the framework, let us first provide the necessary
definitions below, for the method.

Definition 2. Pn(z) in (8) is called normal if dn �= 0.
Otherwise it is called abnormal. In other words, being
normal is the equivalence of the formal degree (n) and
the exact degree of the polynomial.

Definition 3. The deficiency parameter, λk, is the differ-
ence between the formal (i.e. expected) degree and the
exact degree of a polynomial Pk(z) where k denotes the
degree of the polynomial. Pk(z) is normal if λk = 0 and
abnormal if λk > 0.

BT determines the number of the zeros of a polynomial
inside (D), on (T) and outside (S) the unit circle. It is
based on a three-term recursion of symmetric polynomials
and the number of sign variations of these polynomials
at z = 1. The method was extended for polynomials
with complex coefficients in Bistritz [1986]. Moreover, the
algorithm was improved to overcome one of the singularity
types and a more compact form is given in Bistritz [2002]
that we outline below.

For a complex coefficient (di ∈ C) polynomial Pn(z)
defined in (8), such that Pn(1) �= 0 ∈ R and dn �= 0,
the regular recursion algorithm is as follows:

Tn(z) =

n
�

i=0

tniz
i = Pn(z) + P ∗

n(z), (15)

Tn−1(z) =

n−1
�

i=0

t(n−1)iz
i =

Pn(z)− P ∗
n(z)

z − 1
, (16)

For k = n− 1, . . . , 0

δk+1 =











t(k+1)0

tkλk

, if Tk(z) �≡ 0

0, if t(k+1)0 = 0
not required, if t(k+1)0 �= 0 & Tk(z) ≡ 0
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Tk−1(z) = z−1
[(

δk+1z
−λk + δk+1z

λk+1
)

Tk(z)− Tk+1(z)
]

,
(17)

where P ∗
n(z) is the reciprocal of Pn(z), given by (9).

The following theorem is for counting the number of
zeros inside and outside the unit circle in regular (i.e.
nonsingular) case.

Theorem 2. (Bistritz [2002]) Consider Pn(z) with the as-
sumptions Pn(1) �= 0 ∈ R and dn �= 0. Assume that the
procedure is regular. Then,

(i) the number of zeros in D: αn = n− νn,
(ii) the number of zeros in S: γn = νn

where νn = Var {σn, σn−1, . . . , σ0} such that σk := Tk(1)
and Var{.} denotes number of sign variations.

The only singularity situation which interrupts the regular
recursion occurs if and only if a normal polynomial Tη(z)
(λη = 0) is followed by an identically zero polynomial,
i.e. Tη−1(z) ≡ 0, in the recursion algorithm given above.
Actually, this situation arise when the polynomial has unit
circle and/or reciprocal zero(s), which is precisely the case
for the self-inversive polynomial ACP (recall Remark 1).
Instead of handling the obvious singularity that is to be
faced at the beginning of BT applied toACP , the following
theorem is utilized in the main results.

Theorem 3. (Sheil-Small [2002]) Let P is a self-inversive
polynomial of degree n. Suppose that P has exactly β zeros
on the unit circle T (multiplicity included) and exactly µ
critical points in the closed unit disc D (counted according
to multiplicity). Then,

β = 2(µ+ 1)− n. (18)

Remark 2. It is useful to mention the case where the
examined polynomial has complex variable coefficients for
application of Bistritz method. In this case, the term
(z − 1) in the denominator of the polynomial obtained
by recursion eq. (16) is not vanished. This issue is fixed
in Bistritz [1996] with a simple modification in the algo-
rithm by applying the recursion algorithm to (z− 1)Pn(z)
yielding the sequence σ̄k = {0, Tn(1), Tn−1(1), . . . , T0(1)}
where the first element is always zero as a consequent of
multiplication with (z−1). Then, the zero location of Pn(z)
is examined same as in Theorem 2 with respect to the
sign variation in the list extracting first “0” element, i.e.
σk = {Tn(1), Tn−1(1), . . . , T0(1)}.

The modification described above will also be utilized to
test the location of zeros of ACP for determining the set
ΥΥΥ in (12), and correspondingly the ∆∆∆ in (7).

3. MAIN RESULTS

Based on the represented results in the previous section,
we provide the following corollary.

Corollary 1. Consider ACP (zk,υυυ) in (11) obtained by (3)
and (10) for any zk, k ∈ (1, . . . , p) for the system (1).
Defining the polynomial,

D(zk,υυυ) := (zk − 1)
∂ACP (zk,υυυ)

∂zk
(19)

of degree mk, the set of υυυ resulting unitary zeros of ACP
is given as

ΞΞΞ = {υυυ ∈ ΛΛΛ | νk(υυυ) �= mk/2} (20)

where

ΛΛΛ =
{

υυυ ∈ R
(p−1) | υj �=t ∈ [0, 2π] and υt ∈ [0, π]

}

,

t ∈ (1, . . . , k − 1, k + 1, . . . , p)
(21)

and νk(υυυ) = Var{σ
(k)
mk−1(υυυ), σ

(k)
mk−2(υυυ), . . . , σ

(k)
0 (υυυ)} such

that σ
(k)
l (υυυ) = T

(k)
l (1,υυυ) are obtained by the recursion

equations in (15)–(17) from D(zk,υυυ).

Proof. Let β denote the number of the unitary zeros
(|zk| = 1) of ACP (zk,υυυ) for any υυυ ∈ ΛΛΛ, where ΛΛΛ is
given by (21). Note that we consider only the half of
the set ΥΥΥ in (12), which is represented by the new set
ΛΛΛ, since the other half of ΥΥΥ can be achieved by the
symmetricity in Lemma 2. From Theorem 3, ACP (zk,υυυ)
has at least one unitary zero, i.e. β �= 0, if and only if the
number of zeros of D̄(zk,υυυ) := ∂ACP (zk,υυυ)/∂zk in D is
µk �= (mk − 2)/2, where mk denotes the degree of ACP .
Then, considering Theorem 2 of the Bistritz method, the
number of zeros of D̄(zk,υυυ) in Dmust be µk �= (mk−1)−νk
for any υυυ, where νk is the number of sign variations in

the sequence of σ
(k)
l (υυυ) = T

(k)
l (1,υυυ), l = 0, 1, . . . ,mk − 1,

which are obtained by the recursion equations in (15)–
(17) from D̄(zk,υυυ). Combining two conditions for µk, we
get νk(υυυ) �= mk/2 for any υυυ ∈ ΛΛΛ to result the existence
of at least one unitary zero of ACP (zk,υυυ). However, as
referred to in Remark 2, the recursion algortihm is to be
applied to the polynomialD(zk,υυυ) = (zk−1)D̄(zk,υυυ) since
ACP is a polynomial with complex variable coefficients in

terms of υυυ. The degree of D(zk,υυυ) is mk and σ
(k)
mk(υυυ) ≡ 0

due to the latter added zero at zk = 1 and the rest of

the sequence {σ
(k)
mk−1(υυυ), σ

(k)
mk−2(υυυ), . . . , σ

(k)
0 (υυυ)} is exactly

related to the zeros of D̄(zk,υυυ) = ∂ACP (zk,υυυ)/∂zk. ✷

Notice that the numerical unitary root checking procedure
of ACE in step (ii) of the CTCR method given above, is
avoided with the Corollary 1 since the algebraic condition
for ACP to have a unitary root, i.e. |z∗k| = 1, is derived
by means of Bistritz Tabulation. Moreover, the building
block parameter (υυυ) space, i.e. [0, 2π]p−1, is reduced by half
with Lemma 2 giving the symmetricity property for υj ’s,
i.e. [0, 2π]p−1 → ΛΛΛ, where ΛΛΛ is as in (21). Actually, this
symmetry property is a result of the imaginary crossing
of CE at s = iω for a delay set τττ ∈ ℘℘℘ and its conjugate
correspondence at s = −iω for the same delay set; see
Alikoc and Ergenc [2017]. Thus, the computational load
for the determination of Ω in (5) is also reduced by
half consequently, as in the step (v) of the new CTCR
procedure given below.

As a result, the new procedure for CTCR method with
EKS approach is presented as follows:

(i) Calculate the ACP (zk,υυυ) in (11) for the system (1)
as described in (3) and (10), then derive D(zk,υυυ)
given by (19).

(ii) Obtain the set ΞΞΞ in (20) which consists only the υυυ
value sets resulting unitary zeros, z∗k, of ACP by
applying recursion algorithm (15)–(17) to D(zk,υυυ).

(iii) Solving the roots of ACP for all υυυ ∈ ΞΞΞ, achieve the
corresponding z∗k values with unity magnitude.

(iv) Compute the imaginary crossing frequencies (ω) by
inserting each z ∈ T

p found in step (iii) and s = ωi
to CE in (2).
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(v) Obtain υυυ ∈ ΥΥΥ in [0, 2π]p−1 applying the symmetry
property in Lemma 2, and the corresponding crossing
frequencies by inverting the sign of ω found in step
(iv). This yields the complete building hypersurface
∆∆∆ in (7) and the set of all imaginary crossing fre-
quencies Ω in (5).

(vi) Calculate the switching hypersurfaces of delays de-
scribed in (6) with the corresponding z and ω, found
in steps (iii)–(v).

(vii) Finally, determine the directions of stability switch-
ing on the boundaries of hypersurfaces and NU for
the regions in delay space, by root tendency given in
(14). The regions with NU=0 are stable.

Note that the determination of the unitary root set of
ACE is improved with an algebraic approach, namely
Bistritz Tabulation. This actually avoids unnecessary com-
putation of solving the roots of ACP for the building
block elements in [0, 2π]p−1, which do not correspond to
a unitary root. By the proposed method, one can find
the complete spectral delay space ΥΥΥ in (12) to accomplish
stability posture in delay space in a more computationally
efficient way compared to the procedure given in Ergenc
et al. [2007]. These advantageous facts are illustrated by
applying the new procedure to a previously studied 3-delay
system, in the following section. For further discussion on
the computational complexity to obtain ACE and ACP,
one can refer to Alikoc and Ergenc [2017].

4. CASE STUDY

To compare the proposed DDS method with the former
one, we borrow an example from Ergenc et al. [2007].
Consider the system (1) where n = 2 and p = 3 with
the system matrices

A =

[

0 1

−8 −3

]

, B1 =

[

0 0

−1 −3

]

,B2 =

[

0 0

−8 1

]

,

B3 =

[

0 0

−5 0

]

.

(22)

The characteristic polynomial of the system is

CE(s, τττ) = s2+3s+8+(3s+1)e−sτ1+(8−s)e−sτ2+5e−sτ3

which is Hurwitz stable for τττ = 0. The corresponding self-
inversive auxiliary characteristic polynomial is found by
(3) and multiplying it by z23 as in (10), as

ACP (z) = 25z43 + z33
(

140 + 45z−2
1 + 125(z−1

1 − z−1
2 ) + 55z1

+ 5z−2
2 − 30z−1

1 z−1
2 − (15z1z

−1
2 + z2z

−1
1 ) + 65z2)

+ z23
(

178 + 82(z−2
1 + z21) + 253(z−1

1 + z1)

+ 48(z−2
2 + z22)− 23(z1z

−2
2 + z−1

1 z22)

+ 127(z−1
2 + z2) + 37(z1z2 + z−1

1 z−1
2 )

+143(z1z
−1
2 + z−1

1 z2) + 69(z21z
−1
2 + z−2

1 z−1
2 )

)

+ z3
(

140 + 45z21 + 125(z1 − z2) + 55z−1
1 + 5z22

−30z1z2 − (15z−1
1 z2 + z−1

2 z1) + 65z−1
2

)

+ 25
(23)

of degree m3 = 4, where z1 := e−iωτ1 , z2 := e−iωτ2 ,
and z3 := e−iωτ3 . One can rewrite the above ACP in
the form (11), i.e. ACP (z3, υ1, υ2), by defining υ1 := ωτ1
and υ2 := ωτ2. Applying the recursion algorithm in
(15)–(17) to the polynomial D(z3, υ1, υ2) derived as in

(19) in Corollary 1, σ
(3)
l (υ1, υ2) = T

(3)
l (1, υ1, υ2), l =

0, 1, 2, 3, are obtained. Then, the subset ΞΞΞ in (20) of ΛΛΛ =
{

υυυ ∈ R
2 | υ1 ∈ [0, 2π] , υ2 ∈ [0, π]

}

in Corollary 1 (ν3(υυυ) �=

2) is attained. The set ΥΥΥ ∈ [0, 2π]p−1 given by (12) yielding
|z3| = 1 is shown in Fig. 1-(a) which is achieved applying
the symmetry w.r.t. (π, π) for ΞΞΞ, i.e. ΥΥΥ = ΞΞΞ ∪ ΞΞΞs where
ΞΞΞs = {υυυ ∈ R

2 | υ1 ∈ [0, 2π] , υ2 ∈ (π, 2π], ν3(υυυ) �= 2}.
Also, the building hypersurface ∆∆∆ = {υυυ ∈ [0, 2π]3 | υυυ =
arg(z), z ∈ Z} where Z is as in (4), is depicted in Fig. 1-
(b). Note that, the number of points (with a sufficient
resolution -∆υj-) in (υ1, υ2) space for which the zeros
of ACP (z3,υυυ) to be calculated, is reduced to one sixth
with the new proposed algebraic approach compared to
the former numerical methodology in Ergenc et al. [2007].

The stability posture of the system (1) with the matrices
(22) in delay space is reproduced for τ3 = 2 s and for
τ3 = 2.5 s in Fig. 2. The cross-sections of kernel and
offspring hypercurves with constant τ3 values are shown
in red and black, respectively. The number of unstable
roots, which are determined by the invariance property
of the root tendency (14) on switching hypersurfaces,
are indicated for some of the regions generated by these
hypercurves. The stable regions where NU=0, are shaded.
The stability outlook matches with that of Ergenc et al.
[2007] precisely.

5. CONCLUSION

A well-known CTCR procedure via EKS to obtain stability
maps in multiple-delay space is improved by checking
the sign variations instead of solving polynomials to find
unitary roots ofACP , and by using the symmetricity prop-
erty of the spectral delay space, which reduces the com-
putational load. The numerical procedure in the previous
methodology has been significantly reduced to determine
the switching hypersurfaces in delay space. The possible
direction of the subsequent research will be the extraction
of the stability regions in the space of system parameters
and delays together.
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