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Fig. 1. II-20’s novel model fully supports flexible analytic categorization of image collections, closing the pragmatic gap. The user can
categorize or discard images, and the system intelligently chooses the level of exploration and search for the categories. Pictured: the
novel Tetris interface metaphor.

Abstract—In this paper, we introduce II-20 (Image Insight 2020), a multimedia analytics approach for analytic categorization of image
collections. Advanced visualizations for image collections exist, but they need tight integration with a machine model to support the
task of analytic categorization. Directly employing computer vision and interactive learning techniques gravitates towards search.
Analytic categorization, however, is not machine classification (the difference between the two is called the pragmatic gap): a human
adds/redefines/deletes categories of relevance on the fly to build insight, whereas the machine classifier is rigid and non-adaptive.
Analytic categorization that truly brings the user to insight requires a flexible machine model that allows dynamic sliding on the
exploration-search axis, as well as semantic interactions: a human thinks about image data mostly in semantic terms. II-20 brings
three major contributions to multimedia analytics on image collections and towards closing the pragmatic gap. Firstly, a new machine
model that closely follows the user’s interactions and dynamically models her categories of relevance. II-20’s machine model, in
addition to matching and exceeding the state of the art’s ability to produce relevant suggestions, allows the user to dynamically slide on
the exploration-search axis without any additional input from her side. Secondly, the dynamic, 1-image-at-a-time Tetris metaphor
that synergizes with the model. It allows a well-trained model to analyze the collection by itself with minimal interaction from the user
and complements the classic grid metaphor. Thirdly, the fast-forward interaction, allowing the user to harness the model to quickly
expand (“fast-forward”) the categories of relevance, expands the multimedia analytics semantic interaction dictionary. Automated
experiments show that II-20’s machine model outperforms the existing state of the art and also demonstrate the Tetris metaphor’s
analytic quality. User studies further confirm that II-20 is an intuitive, efficient, and effective multimedia analytics tool.

Index Terms—Multimedia analytics, image data, analytic categorization, pragmatic gap

1 INTRODUCTION

The growing wealth and importance of multimedia data (images, text,
videos, audio, and associated metadata) is evident. Processing them
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meaningfully and efficiently has become crucial for an increasing num-
ber of domains, e.g., media and news, forensics, security, marketing,
and health. The ubiquity and availability of cameras have made casual
content more important than ever. Social networks are a multi-billion
dollar industry and user-contributed content is valuable. Visual data
(images and videos) are at the core of the multimedia explosion and
there is a great need for advanced analytics of visual data collections.

In recent years, our ability to automatically process large volumes
of visual data has improved greatly. The chief reason is the dramatic
increase of semantic quality of machine feature representations, spear-
headed by deep neural networks [23]. In many tasks, deep nets ap-
proach or surpass human capabilities, e.g., in object recognition (with
equal train and test noise levels) [12]. The semantic gap [35] has been
closed for many tasks and is rapidly closing for others. The quality and
accessibility of advanced classifiers and indexes have entrenched the
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search engine as the golden standard for analyzing image collections.
However, not all multimedia analytics tasks boil down to just search.

In a general analytics task on multimedia data, the user dynamically
oscillates between exploration and search on the exploration-task axis
[45]. Examples of tasks that are not purely search include:

T1) Structuring the collection — make sense of what is in a collec-
tion with unknown contents, and structure it based on multiple
categories of relevance.

Examples of this would be a marketing specialist analyzing her com-
pany brand’s perception on social media, or a quality control manager
visually inspecting finished products for flaws.

T2) Finding needles in the haystack — in a collection with only a
small portion of relevant items, find them based on complex, often
domain- and expertise-dependent semantics.

For example, a forensics analyst trying to establish whether there is
criminal content on a suspect’s seized computer.

T3) Subjective/highly contextual content retrieval — labeling of the
content into categories which can only be defined by the user as
they are subjective or contextual.

In this case as the notion of relevance cannot be defined beforehand or
grounded objectively, the content-based indexes have trouble matching
the user’s input to their dictionary. An example here is “show me art
that I like” which does not match predefined content labels very well.

The need to support varied tasks can be addressed by employing the
visual analytics approach, supporting knowledge/insight gain by tight
integration of advanced visualizations with a machine model [21,22,33].
Image collection analytics belongs to multimedia analytics [6], which
has a number of specifics: among others, strong focus on semantics,
high information bandwidth, and difficult summarization.

In general, multimedia analytics tasks can be modeled as analytic cat-
egorization, in which the user defines the categories of relevance herself
on the fly, and the model adapts to them as the session progresses [45].
This is different from the classic machine learning classification, and
the difference between the two is the pragmatic gap [45]. Analytic
categorization requires support for multiple categories of relevance at
once, creating/redefining/deleting categories on the fly during the ana-
lytic session, and strong emphasis on interactivity: the user interactions
drive the categorization and vice versa, and they complete in interactive
time. New visualizations and models built specifically around tight
integration of the two and support of analytic categorization are needed.

There are approaches that incorporate interactive model building
to cover a wider range of the exploration-search axis. To advance the
analytic session, they usually make use of a rich set of filters on the data
(e.g., [4, 19, 20, 26, 39, 40]), an interactive (multimodal) learning model
(e.g., [15, 44]), or a combination of both. Whilst these techniques go
beyond search, on the exploration-search axis, they tend to lean towards
search anyway: they simply fetch what the users are looking for or what
they found relevant previously. To date, multimedia analytics retains an
hourglass interface-model structure: a wide array of visualizations on
the one hand, a wide array of automatic multimedia analysis techniques
on the other, and a narrow set of interactions between the two — filter,
search, interactive learning (relevance feedback, active learning).

To enable meaningful interaction, semantic interactions are vital to
multimedia analytics. Semantic interactions translate user interactions
performed on high-level visual artifacts in the interface to low-level
analytic model adjustments, coupling cognitive and computational pro-
cesses [10]. The user does not train and adjust the model directly, but
rather interacts within her domain of expertise, the model uses those
interactions to improve. Developing new such interactions and thus
widening the hourglass would improve multimedia analytics capabili-
ties further.

To address the above challenges, we present II-20 (Image Insight
2020), a multimedia analytics approach for image collections that
brings the following contributions:

• A new analytic categorization model that supports multiple
categories of relevance and dynamically slides on the exploration-
search axis without explicit user involvement. The model is fully
interactive even on large (> 1M) datasets and metaphor-agnostic.
To the best of our knowledge, II-20’s model is the first to fully
support analytic categorization of image collections.

• The Tetris metaphor that streams the images in one-by-one, with
the user steering them to the correct categories of relevance. As
the model learns, it starts playing the Tetris game by itself with
the user only correcting the model’s mistakes. The metaphor
is tightly integrated with the model with a clear benefit to the
user: the number of interactions required from her is inversely
proportional to the quality of the model whilst providing the same
or better analytic outcome.

• The fast-forward interaction that allows the user to swiftly cat-
egorize a large number of images at once based on the current
state of the model.

The rest of the paper is organized as follows. Sect. 2 overviews the
related work. Sect. 3 describes II-20. Sect. 4 outlines the experimental
setup, results are discussed in Sect. 5. Sect. 6 concludes the paper.

2 RELATED WORK

Analytic categorization of image collections is iterative, requiring tight
integration between the visual metaphor and the machine model that
provides image suggestions. This is in line with the established visual
analytics theory [21, 22, 30, 33]. True support of analytic categorization
as a task involves semantic interactions (this challenge is shared with
general visual analytics [10]), dynamic sliding on the exploration-
search axis, and closing the pragmatic gap [45]. In this section, we
review related work on the constituent parts of a multimedia analytics
system (interface and model) and on means of integrating the two.

There is a great variety of visual metaphors available. The classic,
time-tested approach used by the vast majority of systems visualizing
image collections is the grid. Grids score near-perfectly on efficiency
of screen space utilization and are very intuitive. They can be enhanced
to convey collection structure [4, 31, 46]. Beyond grids, there are many
other metaphors, such as spreadsheet-based that integrate the image
content tightly with metadata [8, 19, 40], semantic-navigation-based
that allow the user to pursue threads of interest, often semantic [5, 9],
or even metadata-driven [38, 41]. Rapid serial visual presentation
(RSVP) presents images dynamically, flashing images or video clips
in a fast-paced manner, with the user providing simple, rapid response
[14, 36, 37]. There are plenty of metaphors with various niches.

Models supporting multimedia analytics can be split roughly into
index-based and interactive-learning-based (hybridization possible).
Index-based techniques precompute a collection index which is used
for filtering and/or search queries. The basic, yet still effective approach
is the metadata-based index. Content-based indexing requires feature
and/or concept label extraction, and the contemporary computer vision
standard is to use deep convolutional neural networks [23]. The features
(esp. semantically meaningful ones, such as concept labels) can be
used as metadata (e.g., [39]) or to build a content-based index to fuel
search. Indexing approaches include clustering-based approaches such
as product quantization [17] or hash-based approaches [3, 7]. The
current state of the art offers a broad range of techniques that establish
a semantic structure of the collection. Relying on indexing alone in
multimedia analytics, however, reduces analytics to just search. The
model is rigid, non/adaptive, and does not address the pragmatic gap.

Interactive-learning-based approaches collect feedback from the user
in the form of explicit “relevant” and “not relevant” labels, then train a
new model based on those labels, rank the data according to the new
model, and suggest more relevant items. Each interaction round should
happen in interactive time. Following visual analytics theory [32], this
means operating in the real-time (<0.1 s latency) or direct manipulation
(0.1 – 2-3 s) regime. There are two dominant approaches. Firstly,
relevance feedback [48], which suggests images the model deems most
relevant. Secondly, active learning [2, 34], which suggests images the



Fig. 2. II-20’s interface-model scheme. The components innovated by
II-20 are coloured orange.

model is least sure about. This maximizes the model’s learning gain
and minimizes the number of user interactions. Algorithmically, most
of the techniques come from the 2000s (the aforementioned surveys
provide a good overview). In the 2010s, interactive learning struggled
with the rapid increase in data scale. Recently, it has been improved
to work on modern large-scale collections by introducing efficient
compression [42] and clustering [18]. Interactive learning is adaptive,
dynamic, and flexible: it learns only from the user, making it a good fit
for closing the pragmatic gap. On its own, however, it still gravitates
towards search, and is limited by latency: there is only so much that
can be computed in interactive time.

In the 2000s and 2010s, there have been a number of systems that
integrate advanced visualizations with machine learning-based models
in both visual analytics [11] and multimedia analytics [45]. Moreover,
visual analytics has been employed to explain machine learning models.
A recent notable instance is the effort to explain deep neural nets [16].
In most of the visual analytics systems, users directly manipulate the
machine learning model, which is useful for the data scientist, but
might be difficult for an analyst who is not a machine learning expert.
The multimedia analytics systems, where semantic navigation is of
paramount importance, usually operate with a narrow semantic interac-
tion dictionary: ‘filter”, “search”, and “perform interactive learning”.
Additional semantic interactions would definitely be a big boon for
both visual and multimedia analytics [10, 45].

As discussed in the introduction, II-20 brings three main contribu-
tions. II-20’s machine model combines the advantages of index-based
and interactive-learning-based approaches. By flexibly supporting dy-
namic sliding on the exploration-search axis, it is to the best of our
knowledge the first model closing the pragmatic gap [45]. The Tetris
metaphor, beyond expanding the family of metaphors for image collec-
tions, has a tighter integration with the model than others, decreasing the
number of interactions as the model improves. Finally, the fast-forward
interaction expands the semantic interaction dictionary, answering a
clear visual and multimedia analytics research challenge [10, 45].

3 II-20

II-20 is tailored for full support of analytic categorization, defined as
the task of assigning images i1, ..., in from the collection I into analytic
categories, which we henceforth call buckets consistently with the termi-
nology introduced in related work [8, 40]. The machine model requires
the images to be represented with a semantic feature representation.

The support for flexible buckets is formalized as follows. Let B
denote the set of user-defined buckets and b ∈ B an individual bucket.
To cater for the pragmatic gap, B is a mutable set: the user can create,
redefine, activate/deactivate, and remove buckets at any time throughout
the analytics session. In II-20, the user can have between 1 and 7
buckets active at any given time, which is consistent with related work
on visualization theory [13]. Individual buckets are mutable as well,
images can be added, removed, and transferred between buckets at
any time. In addition to B, II-20 adds the implicit discard pile bucket
(d) which at all times contains images that were discarded by the user
(marked not relevant). The user can add images to d and restore them
to any b ∈ B as she sees fit. Further, d is always active, it cannot be
deactivated, redefined, or deleted. Finally, P is the set of processed
images the user has provided feedback on. At all times, P = B∪d.

The main challenge of supporting analytic categorization is its flexi-
bility. There are no constraints, predefined rules, or prior knowledge
concerning images the user can add to the buckets. Yet the model
must “read the user’s mind”, supplying suggestions that are relevant
to B in its current state. Moreover, it must do so in interactive time,
placing challenging constraints on computational efficiency. However,
the payoff for the flexibility is significant: buckets can be fit by the user
to a variety of tasks, including T1 – T3 from the introduction.

II-20’s interface-model scheme is depicted in Fig. 2. The model
suggests images that cover the entire exploration-search axis: from pure
search through dynamic interactive learning to exploration candidates
that take the user to previously unseen parts of the collection. The
suggestions come with a bucket confidence score that expresses the
model’s confidence an image belongs to the bucket. This is visualized
in the UI as additional information to enhance the decision making.

User agency is a core design tenet for II-20. The user starts in
the familiar grid interface and the model is deliberately a black box:
there are no required inputs from the user to control the sliding on
the exploration-search axis, the model determines everything from the
user’s actions and an internal assessment of its own performance. When
the user feels comfortable, she can switch back and forth between grid
and Tetris and engage the fast-forward interaction.

3.1 Interface
II-20 interface is depicted in Fig. 1. The main view has three compo-
nents. The image view occupies the main portion of the screen and
displays images from the collection. The bucket banner below the
image view shows the buckets that are active. Finally, the control panel
on the right side of the screen provides bucket management, image
view settings, and the fast-forward button.

3.1.1 Interaction
II-20’s interaction protocol is based on the standard used in interactive
learning: the user labels images for the buckets and discards the non-
relevant ones, the model learns from those interactions and provides
relevant image suggestions. This approach is especially suited for tasks
T1 (the user can easily follow multiple categories of relevance) and T3
(given the classifier is able to capture the nuances important to the user).
In addition, II-20 provides a small number of exploration candidates
not tied to a bucket to increase coverage of the exploration-search axis.

The grid image view is the static, batch mode showing multiple
images at once. Due to the familiarity of the grid, it is II-20’s default
image view mode. It is integrated into the model rather loosely: it
waits for the user’s explicit feedback (the user selects the bucket to be
labelled and the images to be assigned there) and explicit instructions
to show more relevant images. Image suggestions for a bucket appear
with a dashed border in the bucket’s color with brightness proportional
to bucket confidence. The grid is resizable, so the user can choose to
see more images or more detail. The user can also preview individual
images by right-clicking the thumbnail. This enlarges the image and
provides ample space for displaying any associated text and metadata.

3.1.2 Tetris metaphor
The grid is a familiar, time-tested metaphor, but working with a series
of grids for too long might be perceived as tedious. In addition to the
static, batch-mode grid, we investigate the topic of dynamic, 1-image-
at-a-time (D1I) metaphors which show an image for a limited amount
of time, after which they get automatically assigned to the bucket
suggested by the model unless the user intervenes. A D1I metaphor
complements the grid, providing a possibly welcome change of pace,
as well as three key strengths:

• Tight integration with the model, with a degree of autonomy — a
well-trained model simply feeds images into the correct bucket
on its own and the user interacts only once in a while to correct
wrong suggestions.

• Potentially lower number of processed images in total — the
model learns incrementally and the UI only shows the top relevant



image, so the user needs to process fewer images in total to get the
same number of relevant images. In other words, a D1I metaphor
reaches the same or higher precision and recall growth compared
to the grid (we evaluate this claim in the experiments).

• Focus on detail — with one image shown at a time, the user’s
attention naturally focuses on details of the image in question,
making D1I metaphors a natural candidate for applications where
the detail decides the analytic outcome, such as medical imag-
ing or security. This complements the grid, which is better at
overviewing the collection and broader-category analytics.

II-20’s instantiation of a D1I metaphor is the new Tetris metaphor
(shown in Fig. 1) inspired by the famous game. Tetris operates as
follows: images flow from the top one at a time, and descend to one of
the buckets in the bucket banner. When an image reaches the bucket,
it gets assigned to it, the model processes the assignment, and the
next image starts flowing from the top. The user can steer the images
between buckets by pressing the left and right arrow keys, pause the
flow by hitting spacebar and increase/decrease the descent speed by
hitting the down and up arrow, respectively. Speed and pause/play can
also be controlled by buttons in the control panel. Finally, hitting the I
key opens up an overlay with any associated text and metadata.

The model will mostly suggest images for the buckets that are ac-
tive. These flow in already positioned above their suggested bucket,
connected to the bucket by a line in the bucket’s colour. Exploration
suggestions appear over the discard pile without a connecting line to any
bucket: they tend to be from previously unseen areas of the collection,
so whilst providing exploration directions, they are likely incorrect.

3.1.3 Control panel and bucket banner
Each bucket has an entry in the top part of the control panel. Bucket
deactivation is useful whenever the user wants to focus on something
else and return to the bucket in the future. A bucket can be activated
and deactivated at any time by clicking its name or icon. Deactivating
will remove the bucket from the bucket banner, gray it out in the control
panel, and pause model suggestions for that bucket. However, the
bucket will be preserved and the user can reactivate it again.

The eye button next to the bucket name in the control panel opens up
the bucket view, showing all bucket images in a grid. The grid can be
switched between 3 (default) and 1 images per row, toggling between
more images and more detail. The brightness of an image border is
proportional to bucket confidence. The bucket view allows sorting
by bucket confidence and the time the image was added to the bucket
(newest/oldest first). Finally, the bucket view allows transfer of images
between buckets with two modes: move and copy. This implements
bucket splitting (the user can transfer images in bulk to a new bucket),
and bucket redefinition (moving images between bucket triggers model
retraining on both the sending and the receiving bucket), both crucial
for analytic categorization flexibility. The edit button allows renaming
the bucket. The trash bin button deletes the bucket.

The bucket banner provides a quick overview of the state of the
buckets. It shows the number of images in the bucket, as well as bucket
archetypes, i.e., the images that the model thinks best represent the
bucket. Their number is determined by the screen space available (at
least one will be shown for each bucket). The user can thus quickly
gauge if the model understands her bucket definition.

3.2 Machine model
II-20’s model’s pipeline for suggesting relevant images is depicted in
Fig. 4. The core (employing just the black-coloured steps) is simply
the interactive learning pipeline. II-20’s model enhances it signifi-
cantly, producing exploration and search suggestions dynamically by
monitoring its own performance without direct involvement of the user.

3.2.1 Data structures
To extract image features, we use the ImageNet Shuffle deep neural
net [25] with 4437 concepts representing visual presence of nouns
in the image. We extract two feature representations: the concept

representation with the 4437 concepts, i.e., recording the net output,
and the abstract representation with the output of the second fully-
connected layer containing 1024 dense, abstract features that encode
the same semantic information (meaningless to the user, but suitable for
indexing). The features are used to construct two key data structures.

Firstly, the collection index, establishing an efficient semantic sim-
ilarity structure on the collection. To compute the index, we employ
product quantization (PQ) [17] on the abstract representation. PQ splits
the feature matrix column-wise into m equally-sized submatrices (in our
case, m = 32, i.e., 32 submatrices of 32 features each), then quantizes
each submatrix using k-means (in our case, k = min(1024,

√
n), where

n is the number of images in the collection), preserving the centroid co-
ordinates for each subquantizer. The PQ representation of each image
is the concatenation of subquantizer centroid IDs, with lookup tables
of centroid distances set up for quick similarity search.

Secondly, the interactive learning representation built using Black-
thorn [42]. We use the concept feature representation, compressed
using Blackthorn to preserve the top 25 concepts by value per image.
This number is deliberately larger than the recommendation of 6 [42]
due to our concept dictionary being∼4x the size of theirs. The resulting
sparse representation preserves image semantics and reduces the size
by more than 99 percent. II-20’s prototype uses scikit-learn [29]
which directly supports efficient sparse matrix computations.

3.2.2 Model components

To cover the entirety of the exploration-search axis, II-20’s model has
three components capable of suggesting images (as outlined in Fig. 2):
the interactive classifier, nearest-neighbour search, and the randomized
explorer. The position of each component on the exploration-search
axis is shown in Fig. 3.

The interactive classifier maintains a linear SVM model σb for
each non-empty bucket b ∈ B. This classifier choice is consistent with
the state of the art in interactive multimodal learning [18, 42], linear
SVM exhibits good performance in interactive time on even very large
datasets. The interactive classifier’s suggestions are the top images i∈ I
by classifier score (score(σb, i)). Since each interactive classifier is
explicitly tied to a bucket, it is also used to compute bucket confidence,
the belief that an image i ∈ I belongs to bucket b ∈ B:

con f (i,b) = min(max(
score(σb, i)

maxib∈b(score(σb, ib))
,0),1) (1)

As described in Sect. 3.1, bucket confidence is used throughout II-
20’s UI to provide additional information about the model’s reasoning.
Easy translation to bucket colour brightness is the reason bucket confi-
dence is confined to the [0,1] range. If σb =∅, bucket confidence is
undefined (but in that case, the model is not suggesting for b anyway).

Nearest neighbour search uses the collection index to search for
images with the lowest distance to a bucket. It has two modes: k-NN
(k nearest neighbours) and aNN (approximate nearest neighbours). As
shown in Fig. 3, they occupy different positions on the exploration-
search axis, and also on the “exactness vs. computational efficiency”
tradeoff: the k-NN mode is more exact, but requires a full k-NN matrix
of the dataset (especially difficult for datasets of >1M images), whereas
the aNN mode is more randomized, but utilizes no precomputed struc-
tures. We experimentally evaluate both modes.

The k-NN mode relies on a precomputed k-NN matrix that records 10
nearest neighbours by PQ distance for each image in the collection. To
produce suggestions for bucket b, the k-NN mode uniformly samples
images from the set of all recorded neighbours of the images in b
(for computational efficiency reasons, if |b|> 50, the neighbours of a
uniform random sample of size 50 drawn from b are used instead).

The aNN mode first uniformly samples 50000 candidates from all
unseen images. Then, it computes their distance to up to 25 images
in b (sampling uniformly if |b| > 25). The distance of each candidate
to the bucket is the minimal distance between itself and any image in
the bucket (sample). Finally, it returns the top candidates sorted by the
distance to bucket b in ascending order. The aNN sample caps of 50000
and 25 were chosen to preserve interactive response time.
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Fig. 3. The position of II-20 model components on the exploration-search
axis.

Finally, II-20 has a randomized explorer component to support ex-
ploration. It suggests random images that are as far away from what
the user has already processed as possible. This allows quick semantic
traversal to the unseen parts of the collection. The randomized explorer
first randomly samples candidate suggestions from all unseen images.
Then, it sorts the candidates by maximum distance to P: the distance
of each candidate to P is equal to the minimal distance to any image in
P. The top images in the sorted set are the randomized explorer sugges-
tions. The number of candidates is a performance-bounded parameter:
the larger without violating interactive response time, the better. In
II-20, it is set to 100 times the number of requested suggestions.

3.2.3 Bucket model
To model buckets, II-20 maintains three extra sets of images per bucket.
Firstly, bucket suggestions (Sb), i.e., all images suggested for bucket
b ∈ B throughout the session. Secondly, correct bucket suggestions
(Cb), all images in Sb which were also subsequently added to the bucket
by the user. Thirdly, wrong bucket suggestions (Wb), all images in Sb
which were then discarded or added to a different bucket. Further, Sclass

b
and Snn

b denote the suggestions produced by the interactive classifier
and nearest neighbour search, respectively (similarly for Cb and Wb).
Let J·Kw denote the sliding window operator, which selects exactly
those images added in the last w interaction rounds to an image set.

3.2.4 Suggesting relevant images
The relevant images suggestion procedure takes two inputs: Firstly,
user feedback (F), a set of key-value pairs with an image as key and its
user-assigned bucket as value. Secondly, sb, the number of requested
suggestions for each bucket. The suggestion procedure (see Fig. 4) for
each bucket operates as follows.

Feedback processing — Establish Fb, the set of all images concern-
ing bucket b in F . Split the feedback into positive (images suggested
for bucket b and added there by the user), neutral (images added to
bucket b, but not suggested for it), and negative (images suggested for
b, but added elsewhere); process each separately. Positive and neutral
feedback images are added to b, negatives are added to Wb.

Train images pruning — By default, σb uses all images in b as
positive training examples. For increased quality, it may be worthwhile
to prune the training set. Generally, the more data, the better, but rein-
forcing the importance of archetypal images or clarifying the decision
boundary might lead to increased performance. To that end, we propose
three strategies to construct the positive training set for σb (if σb =∅,
II-20 falls back to the default of taking all images from b):

• Relevance feedback — The ntr images from b with the highest
score according to the current σb, emphasizes the archetypes.

• Active learning — The ntr images from b with the lowest score
according to the current σb, focuses on the decision boundary
between the bucket and the remainder of the collection.

• Hybrid — ntr
2 relevance feedback images and ntr

2 active learning
images are obtained, the result is the union of the two sets. Trims
images that are neither archetypal nor near the decision boundary.

We experimentally compare all four strategies with various ntr to
each other and to the default setting (simply taking all images from b).

Classifier training — If b 6= ∅, train the classifier. The set of
positives is taken from the previous step, the set of negative training
examples is initialized to Wb. For classifier robustness, we want at
least twice as many negatives as positives. If that is not the case, the

negatives are supplemented with a random sample of the images in the
discard pile, and if that is still not enough, they are filled to the desired
size by a random sample from all images in the collection.

Null classifier case — If σb = ∅, return sb randomized explorer
suggestions.

Oracle queries — Employing active learning often leads to im-
proved classifier quality whilst reducing the required number of user
interactions [2, 34]. II-20 must chiefly employ relevance feedback, as
the user is looking for relevant images, but it might help to ask the
user (= the oracle) for judgment on a a couple of difficult images. An
oracle query means that instead of the image with the highest σb score,
II-20 shows an image with the score closest to 0 (= nearest to the de-
cision boundary) and marks it with a question mark. Let o denote the
proportion of oracle queries within suggestions (o = 0: pure relevance
feedback, o = 1: pure active learning). II-20 produces oracle queries
by replacing each suggestion with an oracle query with probability o.
Then, sb is reduced by the number of oracle queries such that the correct
requested number of suggestions is maintained. In the experiments, we
vary o to gauge the benefits of employing active learning.

Exploration-search split — The model decides the proportion be-
tween classifier, nearest neighbour, and randomized explorer sugges-
tions based on the precision achieved by the classifier (pclass) and
nearest neighbour search (pnn) in the last w interaction rounds (w is a
parameter subject to experimentation):

pclass =
JCclass

b Kw

JSclass
b Kw

(2)

pnn =
JCnn

b Kw

JSnn
b Kw

(3)

If JSclass
b Kw =∅, pclass := 1 (similarly to pnn). For each suggestion

to be produced, roulette selection is performed. A uniform random
number r ∈ [0,1) determines the suggestion source:

• 0≤ r < pclass: interactive classifier

• pclass ≤ r < pclass +(1− pclass) · pnn: nearest neighbour search

• pclass +(1− pclass) · pnn ≤ r < 1: randomized explorer

In other words, the percentage of interactive classifier suggestions
is equal to current precision. Should the interactive classifier start
faltering, nearest neighbour search comes in, shifting the position on
the exploration-search axis. If neither provides meaningful suggestions,
both pclass and pnn fall to zero and most of the suggestions will be
produced by the randomized explorer, which is traversing to yet unseen
parts of the collection. Over a couple of exploration rounds, new bucket
images (or even buckets) will hopefully manifest, the sliding window
will “forget” the bad streak and the analytics will shift toward search
again. Task-wise, this enables the model to support tasks incl. T1 – T3
and allows the user to shift between them on demand (e.g., structuring
the collection at first, and looking for needles in the haystack later).

Final suggestions — Based on the exploration-search split, image
suggestions are produced by each of the model components, concate-
nated with the oracle queries, and returned to the user.

3.3 Fast-forward
The fast-forward interaction quickly expands a bucket using the current
model. Fast-forward takes two inputs from the user: the bucket to
be expanded (b f f ∈ B∪d,b f f 6=∅), and the number of images to be
added to b f f (denoted n f f ). As the shorthand notation, we propose
“fast-forwarding b f f by n f f ”.

After receiving the input, the model directly adds the top n f f images
by interactive classifier score to b f f . The user is immediately taken to
the bucket view with the fast-forwarded images shown at the top of the
grid, marked with the fast-forward symbol (double right-pointing trian-
gle). The user can review the fast-forwarded images and transfer the
incorrectly-added ones to the discard pile. Note that the fast-forwarded
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then suggestions covering the entire exploration-search axis are produced. The components innovated by II-20 are coloured orange.

images have already been added to the bucket: not interacting with
them will keep them in the bucket, i.e., fast-forward does not merely
provide n f f regular suggestions. Closing the bucket view commits the
fast-forward; the images will subsequently appear as regular images.

Fast-forwarding brings the following advantages:

• Good model = sped up session — Fast-forward provides a gear
shift for the session: it is much faster than producing the same
number of regular suggestions, regardless of the metaphor. This
is useful whenever the user wants to quickly focus on a bucket
and expand on insight related to it, without having to grind the
broader analytics session to a halt. By enabling this focus shift,
fast-forward greatly enhances II-20’s capabilities w.r.t. task T2.

• Responsive — The model processing part of a fast-forward always
completes in interactive time, regardless of n f f , due to the model
scoring all images in the collection whenever producing sugges-
tions (Sect. 3.2.4). The final list of fast-forwards is produced by
simply trimming the list to n f f , which is computationally trivial.

• Easy discarding — Fast-forwarding the discard pile allows the
user to quickly dispose of large chunks of non-relevant data,
which comes in handy e.g., whenever she has not received rele-
vant suggestions for a while (discards provide valuable negative
examples to the model). Model judgments on which images are
not relevant tend to be more reliable than on the relevant ones,
allowing setting a large n f f .

• Semantic — “Fast-forwarding a bucket” is a comprehensively,
clearly defined interaction universally usable across domains of
expertise which directly translates to a model adjustment. As
such, it answers the call for more semantic interactions [10, 45].

4 EXPERIMENTAL SETUP

We evaluate II-20 twofold: firstly, we verify the analytic quality of
the model with automated experiments, secondly, we perform an open-
ended user study gauging II-20’s usability and ability to provide insight.
In addition, we also report on time complexity.

4.1 Datasets
We have selected three datasets with different analytic niches: VOPE-
8hr, a needles-in-the-haystack dataset with a clear associated real-world
task (used for both experiments), and two computer vision benchmark
datasets that we use for the automated experiments: CelebA, a portrait

dataset with high binary annotation coverage, and Places205, a large-
scale scene recognition dataset with categories of varied granularity.

VOPE-8hr is a dataset on the topic of violent online political extrem-
ism (VOPE). VOPE-8hr was constructed for a real use case: the video
analytics component of VOX-Pol [1], a European network of excel-
lence project connecting social science and forensics research focused
on combatting VOPE. The dataset comprises 8 hours of video. 8%
is VOPE content from 3 categories: neo-Nazi, Islamic terrorism, and
Scottish ultra-nationalism. 28% of the content is “red herring” content,
which exhibits some visual similarity to the VOPE content, but is safe
(e.g., comedy skits featuring Nazi paraphernalia in a mocking manner).
The rest, 64% of the content, is fluff, ranging from gaming streams
through feature-length films to fashion and football documentaries. We
have extracted 1 frame per 3 seconds of video, resulting in a dataset
of 9618 images. VOPE-8hr is a challenging dataset: only a small part
is relevant (VOPE), and it is obfuscated by three times as much red
herring content. The clearly-defined needles-in-the-haystack task and
its basis in a real-world use case makes VOPE-8hr very suitable for
insight-based evaluation [27, 28].

CelebA contains 202K face images annotated with 40 binary at-
tributes such as “eyeglasses” or “wearing hat” [24]. There can (and
often are) be more attributes per image, resulting in a large over-
lap of image sets per attribute. CelebA is a narrow-domain dataset.
Places205 comprises 2.5M scene images, each from one of 205 scene
categories [47]. Places205 brings the challenge of scale (it is not triv-
ial to process 2.5M images interactively), as well as variation in the
scope of individual categories: some are quite general (e.g., “ocean” or
“office”), some more nuanced (e.g., “herb garden” or “shoe shop”).

4.2 Automated experiments
The automated experiments aim to answer these research questions:

Q1) Does II-20’s model yield better performance (precision, recall)
than classic interactive learning?

Q2) How does the Tetris metaphor perform in comparison to the grid?

Q3) What parameter configuration of II-20 performs the best?

The experimental baseline is Blackthorn [42], the state of the art
in interactive learning, in two oracle strategy variants. The first,
baseline-rf, employs pure relevance feedback (o = 0), the second,
baseline-al_0.2, is an active-learning modification with o = 0.2.
Blackthorn is a pure relevance feedback approach, the active learning
variant is an adaptation that allows evaluating mixing in active learning.
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Fig. 5. Precision and recall over the number of images processed by the actor, with x-ticks at 300, 600, 900, 1800, and 2700 images, corresponding
to 5, 10, 15, 30, and 45 minutes at 1 image processed per second.

The baselines are pitted against II-20, varying the parameters defined
in Sect. 3.2 independently. Firstly, the nearest neighbour mode: ann on
all three datasets, knn on VOPE-8hr and CelebA (Places205 is too large
for k-NN matrix computation). Secondly, w ∈ {5,10}, the number of
interaction rounds in the exploration-search split. Thirdly, o ∈ {0,0.2}
(rf, al_0.2), the proportion of oracle queries within the suggested
images. Fourthly, the train pruning strategies: all (no pruning), rf
(relevance feedback), al (active learning), hybrid. Finally, ntr ∈
{100,500,1000}, the number of bucket images to be kept when pruning.
Henceforth, ii20-<nn_mode>_w-<oracle>-<pruning>-ntr identi-
fier is used for II-20 configurations.

For the automated experiments, we employ an enhanced version of
the analytic quality evaluation protocol [43]: artificial actors interact
with II-20 in place of a user, putting relevant images in buckets and
discarding the non-relevant ones, and we report their achieved precision
and recall over time. These actors base their judgment on ground truth
annotations that come with each dataset: VOPE categories in VOPE-
8hr, facial attributes in CelebA, and scene categories in Places205. For
evaluation purposes, the ground truth is known only to the actors and
withheld from II-20 in all sessions; II-20 only sees unannotated images.
Each actor considers images from a subset of ground truth annotations
as relevant and discards all others. Each annotation is treated as a
separate bucket. For the VOPE-8hr dataset, we run the experiment on
all combinations, i.e., 7 notions of relevance in total. For both CelebA
and Places205, we randomly sample 5 notions of relevance for each
bucket cardinality from 1 to 7 (matching the active buckets limit as
described in Sect. 3), i.e., 35 notions of relevance for each dataset.

In addition to a notion of relevance, each actor has an inherent error
rate erra ∈ {0,0.2}: users can make mistakes in their interactions and
it is important to test the robustness of the model. Introducing actor

errors not only acknowledges the fact that human users are fallible,
but also tests resilience against fast-forward errors overlooked by the
user. For each label to be produced by the actor, we sample a uni-
form random number r ∈ [0,1). If r < erra, the actor makes one of
the following mistakes (with uniform probability): ignores the image
(provides no feedback at all), flips relevance (a non-relevant image will
be assigned to a random bucket, a relevant image will be discarded),
or confuses buckets if applicable (adds the image to a different bucket
than it belongs to). The actors vary erra and the notions of relevance
independently, resulting in 14 actors total for VOPE-8hr and 70 actors
for CelebA and Places205 each.

The actors interact with II-20 in a flow identical to a real user, i.e.,
a series of interaction rounds: II-20 presents the actor with images,
the actor submits its judgment, II-20 updates its model and starts a
new interaction round. This allows automatic simulation of metaphor
performance: in Tetris mode, the actor reacts to 1 image at a time, in
grid mode, the actor reacts to 25 images at a time (a 5x5 grid). Since
the model gets updated between user (actor) judgments, labelling a grid
results in a different model — and different image suggestions — than
running Tetris on 25 images. Note that the actors cannot be matched
1:1 to real user behaviour: they only have a static notion of relevance,
they do not truly reason, they simply try to find all relevant images
based on ground truth. Still, given that they do exhibit key artifacts
of real user behaviour, they are useful for automatic approximation of
analytic quality of a large combination of II-20 model’s parameters,
which would be infeasible to evaluate rigorously in user studies.

4.3 User study
The user study aims to answer the following research questions:

Q4) What are the main strengths and weaknesses of II-20?
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Fig. 6. Parameter tuning results (relative precision and recall).

Q5) How does the Tetris metaphor fare in the eyes of the participants?

Q6) How efficient/useful is the fast-forward interaction?

We employ an open-ended insight-based evaluation protocol, in
which the users think aloud, recording their insights as they progress
with their evaluated task [27, 28]. The evaluated system’s analytic
efficiency is then gauged by analyzing these insights. The II-20 user
studies are designed to be remote, so the “thinking aloud” is replaced
by the users hitting the "Record insight" button and recording whatever
is on their mind at any point in their session.

The user study scenario has four steps:

1. Introduction — The user is greeted by a description of II-20,
analytic categorization, and an outline of the user study. Further,
the user is linked to a YouTube tutorial and informed that they
can refer back to the video at any time during the user study. The
importance of using the “Record insight” functionality liberally
throughout the session is heavily stressed. No special attention
is drawn to the novel functionality (innovated model, Tetris, fast-
forward) anywhere for the sake of unbiased feedback.

2. Warm-up — The user tries II-20 out on a toy dataset (same as
in the tutorial video). Her objective is to familiarize herself with
II-20 controls. The user is not being recorded in this step.

3. User study task — After the warm-up, the user performs the
evaluated task proper (described in detail below).

4. Final questionnaire — The user answers 3 open-ended questions:
strengths of II-20, weaknesses, and any other comments.

The user study task is conducted on VOPE-8hr, and it closely
matches its real use case. The user investigates extremists that post
propaganda on the Internet. She has just received data from a suspect’s
computer and is asked to establish whether they contain VOPE content
and if so, what kind. In addition, the user is asked to record insights
about any content encountered in order to profile the suspect. The user
should (among other insights) be able to establish that there indeed is
extremist content. The user is instructed to take as much time as needed
and can stop the analytic session at any time. In addition to explicit
insight, we record user actions and all II-20’s image suggestions.

11 users participated in the user study: 9 computer scientists and
2 robotics experts. 9 participants have a master’s degree or higher, 2
participants are master students. None of the users are VOPE domain
experts; the role of a digital forensics investigator was a role-playing
task for them. None of the users have seen the dataset before.

5 RESULTS AND DISCUSSION

Fig. 5 reports the precision and recall of the evaluated algorithms, split
by dataset and metaphor. Each curve is the average across all actors
running on the dataset. In each plot, for each metaphor, we report the
results of the baselines and the best-performing II-20 variants. The
x axis is the number of images processed by the user, which has a

direct mapping to time (e.g., considering a hypothetical fast user that
processes 1 image per second, the x axis is time in seconds).

II-20 outperforms the baselines on all datasets with respect to both
precision and recall, except for the later stages of analytics on CelebA,
where the baselines pull ahead slightly (even then, II-20’s performance
remains quite acceptable). This makes sense: CelebA has high cover-
age of the annotations used to construct the actors. There are plenty of
positive examples, which increases the reliability of the vanilla interac-
tive learning approach. VOPE-8hr and Places205, however, have more
of a needles-in-the-haystack nature: positives are a rarer asset. II-20 is
strictly dominant on these datasets, often by a large margin. Therefore,
we answer Q1 positively, in favour of II-20.

Comparing the metaphor usage simulations reveals that Tetris indeed
shows analytic promise: Tetris outperforms the grid on both precision
and recall for most of the session on all three datasets. This validates the
“potentially lower total number of processed images” strength claimed
in Sect. 3.1.2. It appears that Tetris’s performance is tied to whether
II-20’s model was used: Tetris works well with II-20, baselines are
better off with the grid. Also, there seems to be a breakpoint where
switching from Tetris to the grid increases performance. We explain
this by the difference in availability of training positives. At first, they
are rare, and fine-grained feedback after each image (Tetris) is very
beneficial to the model. Later on, there are usually enough positives
to train the model, but the remaining ones are trickier to find, so it’s
beneficial to “fish” for more by showing a larger portion of the ranking
in the grid. Whenever this stage of difficult positives is encountered, it
might be worthwhile for the user to switch to the grid. We answer Q2
by remarking that Tetris certainly has strong analytic potential.

To answer Q3, we have performed parameter tuning and report the
results in Fig. 6: normalized precision at 900 processed images (15
minutes at 1 image/s) and normalized recall at 1800 processed images
(30 minutes at 1 image/s), i.e., early precision, late recall. Each bar
reports the average normalized precision/recall across all experiments,
metaphors, and datasets. Each normalized value is obtained by dividing
the absolute value by the maximum achieved on that dataset. This is
done to remove differences in absolute performance between datasets.

The differences are not statistically significant: none of the parame-
ters seem to drastically influence the performance (within the evaluated
values). However, certain observations can be made. The parameter
tuning confirms what Fig. 5 shows as well: the aNN nearest neighbour
mode edges ahead of k-NN. This is fortunate: aNN does not require
a k-NN matrix. The shorter exploration-search window came ahead,
which hints at confirming the importance of the exploration-search
sliding being dynamic. Oracle queries seem to improve the model, and
pruning should not be done too aggressively (if at all).

Fig. 7 shows the insights recorded by the user study participants over
time, split into five categories. The first are insights related to II-20’s
functionality, the second are general insights related to the task (for
example: “user plays a lot of video games”), and the remaining three
correspond to the VOPE content categories — neo-Nazi, ISIS, Scottish
ultranationalism — being explicitly referred to by the user (e.g., as
one user wrote, “At the moment I can tell that the suspect does have
extremist content from islamic terrorist.”). The triangular markers mark
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the user’s first encounter of an image from a VOPE category.
II-20 was able to sufficiently support the task. All participants were

suggested VOPE content, 9 out of 11 participants noted extremism in
their insights: all 9 have found Islamic terrorism, 5 have found evidence
of neo-Nazi content, and 1 has found out about Scottish ultranationalism
(note: this is a difficult, highly contextual category, and none of the
users were Scottish). None of the users ended the session prematurely
due to being confused or finding the system unusable.

Regarding main strengths and weaknesses, the received feedback is
diverse. The strengths reported in the final questionnaire were: intuitive
interface and user-friendliness (6 users), full control of the buckets
(4 users), and good performance in finding similar images (4 users).
The main reported weakness was receiving very similar, non-diverse
images from the system (7 users). To an extent, this is an artifact of
the dataset (frames extracted from videos, often mono-topical), but that
of course does not invalidate the feedback. Other weaknesses include
missing progress bar (percentage of content seen) mentioned by 2 users,
and diverse feedback by 1 user each, such as the dark design of the
UI or unintuitiveness of certain tools (e.g., grid bucket selection and
the meaning of discard). Regarding Q4, we conclude that II-20 has
succeeded as a tool, it is intuitive and provides good performance, but
additional diversification capabilities and UI improvements are needed.

The Tetris metaphor has received a mixed response. It is fair to say
that the majority of the users’ time was spent in the grid, with 5 of the 11
users swapping to Tetris at any point in the session. That makes sense,
the grid is a familiar, useful, and also the default metaphor. Moreover,
we have deliberately not drawn any attention to Tetris so as to obtain
unbiased feedback. One user has strongly liked Tetris, one has found it
not useful, and one stated that it would be much better if it had a static
variant with immediate accept/reject. To answer Q5, Tetris comes out as
a niche metaphor that polarizes users somewhat: extended functionality
and/or implementation of another D1I metaphor (e.g., images flashing
on the screen for a certain, user-controlled amount of time that get
assigned to the suggested bucket unless the user intervenes) might be
beneficial, especially given Tetris’s strong analytic performance.

Fast-forward has been used by 8 users at least once. The fast-
forwards were by 10–25 images, all concerned user buckets (no user
fast-forwarded the discard pile). One user has lauded fast-forward as
one of the main strengths of II-20, there has been no negative feedback
or suggestions for improvement. Therefore, to answer Q6, we conclude
that fast-forward has been shown as a useful, intuitive interaction to
those users that have chosen to use it.

Finally, a word on time complexity. Table 1 reports the average
time per interaction round1. Following visual analytics theory [32],

1Does not include UI image loading, but that is negligible in II-20: it only
loads images with the suggested IDs, which is a very fast DB query.

baseline ii20_ann ii20_knn

VOPE-8hr 0.01 ± 0.01 s 0.06 ± 0.01 s 0.02 ± 0.01 s
CelebA 0.07 ± 0.02 s 1.45 ± 0.23 s 0.08 ± 0.02 s
Places205 0.8 ± 0.12 s 2.44 ± 0.42 s N/A

Table 1. Average time per interaction round.

II-20’s model operates in the direct manipulation (≤ 2–3 s/int. round)
regime on all datasets incl. the large Places205 with 2.5M images,
on the VOPE-8hr and CelebA datasets even reaching real-time perfor-
mance (< 0.1 s/int. round). Using just vanilla interactive learning is
unsurprisingly the fastest option, as it is a lower bound: all II-20 con-
figurations perform at least interactive learning every interaction round.
Regarding nearest neighbours, k-NN is faster, as it frontloads a lot of
the computation, but is intractable on large datasets and might yield
lower precision/recall as reported above. The aNN mode, while slower,
is still interactive even on large data and yields good performance. In
the user study, none of the users complained that the system is slow
or unresponsive: on the contrary, all received feedback on speed was
positive.

6 CONCLUSION

In this paper, we have presented II-20, an approach for multimedia
analytics on image collections that contributes towards resolving open
challenges in visual and multimedia analytics and closing the prag-
matic gap. II-20’s new machine model is the first to fully support
dynamic sliding on the exploration-search axis without explicit input
from the user, and in the automated experiments, it has proven superior
to state-of-the-art interactive learning. The Tetris metaphor is a dy-
namic metaphor with high synergy with the model: an accurate model
can “play the game” fully autonomously. Tetris has been shown to offer
strong analytic numbers and potential. Functionality enhancements, ad-
ditional metaphor variants, and user study evaluation of the metaphor’s
impact on the user reasoning capacity would help to establish Tetris and
the broader dynamic, 1-image-at-a-time family of metaphors further.
The fast-forward interaction expands the family of semantic interac-
tions. It provides an intuitive, fully controllable way to speed up the
analytics process.

We especially value that II-20’s contributions, in addition to passing
the evaluation, have turned out to be considered intuitive by the users.
User agency is one of II-20’s key design paradigms: the basis is a
familiar interface backed by a powerful model, and it’s completely up
to the user when she wants to engage with the new interactions and
interface elements. The II-20 prototype is a complete system, which is
available under an open source license for the research community and
applied domains alike2.

II-20’s model, even though tested on image data only, is extensible
to the multimodal setting (metadata and/or text associated with the im-
ages). Features would be extracted for each modality separately. When
asked for suggestions, each model component could either split the
suggestions between modalities or fuse rankings per modality by rank
aggregation (late fusion). As evidenced by recent work on interactive
learning [18, 42], late fusion does not break the interactive response
time requirement even on large datasets. Both approaches are plausible
as direct extensions to II-20.

We hope that II-20 has contributed to kicking off truly intelligent
and pragmatic multimedia analytics on image collections fit for the new
decade.
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