
Noname manuscript No.
(will be inserted by the editor)

Path Planning Algorithm Ensuring Accurate
Localization of Radiation Sources

David Woller · Miroslav Kulich

Received: date / Accepted: date

Abstract An autonomous search for sources of gamma radiation in an outdoor
environment is a domain suitable for the deployment of a heterogeneous robotic
team, consisting of an Unmanned Aerial (UAV) and an Unmanned Ground (UGV)
Vehicle. The UAV is convenient for fast mapping of the area and identifying re-
gions of interest, whereas the UGV can perform highly accurate localization. It is
assumed that the regions of interest are identified by the UAV during an initial
reconnaissance, while performing a simple motion pattern. This paper proposes
a path planning algorithm for the UGV, which guarantees accurate source local-
ization in multiple preselected regions and minimizes the total path length. The
problem is formulated as the Generalized Travelling Salesman Problem (GTSP)
defined for discrete sets of suitable maneuvers (circular arcs), ensuring source lo-
calization in the given regions. The problem is successfully solved by a modified
version of the state of the art GTSP solver, Generalized Large Neighborhood
Search with Arcs (GLNSarc). Apart from adapting the GLNS, other aspects of
the planning task are addressed: problem discretization and informed sampling
of valid circular arcs, variants of weighting the nonrestricted trajectory segments
between the arcs and postprocessing of the discretely planned trajectory in the
continuous domain.

Keywords Search for radiation sources · Combinatorial optimization · Gener-
alized Large Neighborhood Search · Generalized Travelling Salesman Problem ·
heuristics · metaheuristics

David Woller (�)
wolledav@cvut.cz

Miroslav Kulich
kulich@cvut.cz

Czech Institute of Informatics, Cybernetics and Robotics
Czech Technical University in Prague, Czech republic

This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is
not the Version of Record and does not reflect post‑acceptance improvements, or any corrections. The Version of Record is available online
at: https://doi.org/10.1007/S10489‑021‑02941‑Y/FIGURES/23ʺ

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889
https://doi.org/10.1007/S10489-021-02941-Y/FIGURES/23

2 David Woller , Miroslav Kulich

(a) UAV trajectory and identified regions (b) UGV trajectory, searched subregions and de-
tected sources

Fig. 1 Radiation intensity map produced by the UAV and illustration of the two-phase search

1 Introduction

Localization of radiation sources is a critical task repeatedly arising in various
accidents of high seriousness. This paper focuses on localizing isolated point sources
in otherwise uncontaminated areas or hot spots in large-scale accidents. Several
types of incidents happened over the last century and are likely to occur again,
no matter the level of technological progress and safety precautions [36]. First,
there are cases of lost, stolen, or orphaned sources, commonly from an industrial
or medical application. Sources were found at junkyards, abandoned factories, or
even urban areas, often by unsuspecting citizens [31]. Another danger is related
to the military use of nuclear energy and weapons. The U.S. alone admits 32 so-
called broken arrow incidents (e.g., accidental nuclear detonation, contamination,
loss in transit, or accidental jettisoning), including six cases of lost and never
recovered nuclear weapons [35]. Finally, a number of accidents happened in the
nuclear power industry, most notably the Chernobyl and Fukushima disasters. The
initial postdisaster cleanup at Chernobyl included liquidation of highly radioactive
debris, representing another relevant application.

Robotic systems are an obvious choice for radiation source localization due to
the extreme risk the radiation presents to humans. As the environment can be
urban or rural and indoor or outdoor, the commonly used systems are typically
semiautonomous or entirely teleoperated. Unmanned Aerial Vehicles (UAVs) or
Unmanned Ground Vehicles (UGVs) are deployed depending on the application,
as each of the platforms has its advantages. UGVs are typically easier to nav-
igate indoors, can operate for a longer time, and are capable of more accurate
localization. On the other hand, UAVs are significantly faster and usable in im-
passable terrain. In some applications, combining both platforms is beneficial, as
their advantages can be combined.

Such an approach to a semiautonomous search for sources of gamma radiation
is presented in [11], [23] and [24]. The ultimate goal is to localize gamma radiation
sources in an outdoor area, such as a place of a nuclear accident. The localization

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 3

is to be carried out as quickly and precisely as possible, with subsequent use
of an UAV and an UGV. The authors of [24] designed and constructed such a
multirobot system, performed physical experiments, and evaluated the accuracy
of the detection.

The considered scenario consists of two phases, which are illustrated in Fig-
ure 1. First, the area is mapped by the UAV carrying a photogrammetry multi-
sensor and a gamma detector. This phase’s objective is to build a 3D map of the
area surface and to pick regions with the potential presence of radiation sources.
The UAV can carry only a lightweight gamma detector and its operation time
is limited. Therefore, it is capable of detecting stronger radiation sources with
insufficient precision (up to several meters). In case of weaker sources, the UAV
might not be able to reliably distinguish the background radiation from source
radiation, as documented in [11]. As there is no previous knowledge about the
source position, the UAV performs an exhaustive search along a zig-zag trajectory
while keeping an altitude of 10 meters above the terrain. The flight altitude was
experimentally determined in [11] and it guarantees identifying all regions that
could contain a source of activity relevant in the context of radiation protection.
The minimal activity level of a potentially dangerous source was set to 10 MBq.
The UAV trajectory and the discovered regions of interest are shown in Figure 1a.

Second, the UGV with a more accurate gamma detector is deployed to inspect
all previously discovered regions of interest. Thus, the scenario is not cooperative,
as the UGV is deployed after the UAV finishes the initial mapping, not simulta-
neously. The UGV is substantially slower than the UAV, but it can operate for a
longer time and locate the radiation sources more accurately. Multiple strategies
such as simple zigzag pattern, Strong Source Search Algorithm [23], or Circular
Algorithm [24] were proposed and tested. However, these algorithms are suitable
only for single-source detection and do not utilize UAV-obtained information. This
information was therefore processed by a human operator, who had to determine
the regions of interest and manually define key segments (e.g., full circles of de-
tection in the Circular Algorithm) of the UGV path. The success of this approach
heavily depends on the operator experience. It does neither guarantee success-
ful localization of all sources, nor does it optimize the UGV trajectory w.r.t. to
any criteria. It is desirable to suppress the role of the operator and plan the UGV
trajectory automatically and optimally w.r.t. some criteria, such as length or time.

This paper extends the preceding work by proposing a novel path planning
algorithm for the UGV, which replaces the operator in the planning process and
guarantees successful source detection. The goal is to plan an optimal UGV tra-
jectory (e.g., with minimal length) or near-optimal one and to guarantee accurate
localization of all radiation sources within the preselected regions of interest. An
example of such a trajectory is shown in Figure 1b, together with the detected
positions of the radiation sources.

The UGV is assumed to be mounted with relatively inexpensive high-resolution
gamma detectors, which measure only the count rate. A single radiation source’s
position can be reliably detected with such a setup by performing a specifically
constrained maneuver in its close neighborhood. If this maneuver is a circular
arc, and multiple detectors are mounted on the robot, a directional profile of the
radiation can be constructed and used for accurate localization. Measuring along
circular arcs is advantageous, as it results in steeper characteristics of the measured
data. Thus, the peaks in the measured radiation intensity are more prominent and

4 David Woller , Miroslav Kulich

can be better distinguished from fluctuations in background radiation. Moreover,
measurements along circular arcs can be easily interpolated, which is useful for
determining the source position from the measured data. This setup was success-
fully deployed in [34], [27], or [23]. Task-specific conditions on the usability of the
circular arc maneuvers are described in Section 2.2.4.

As the UAV-preselected regions of interest can be arbitrarily large and one cir-
cular arc may not be sufficient for covering a whole region, each region is divided
into smaller subregions of fixed size (green squares in Figure 1b). An unlimited
number of valid maneuvers for exploring a subregion exists; therefore, infinitely
many valid circular arcs can be sampled. Besides that, the order of subregion explo-
ration is not fixed and is also subject to optimization. Therefore, after appropriate
discretization of individual subregions, the planning problem can be reformulated
as NP-hard Generalized Travelling Salesman Problem (GTSP). Given n nodes (cir-
cular arcs) divided into m sets (subregions), the goal is to find such a trajectory
that passes through exactly one node from each set and is optimal with respect
to some criterion, e.g., minimum length. The modified variant of the GTSP with
circular arcs as vertices is from now on referred to as the GTSParc.

This paper presents an approach to the discretization of the planning problem,
introduces GLNSarc algorithm solving the discrete GTSParc, evaluates its perfor-
mance in several experiments and proposes two improvements to the GLNSarc

functionality.

The contribution lies in multiple aspects.

– Problem formulation. The planning task is formulated as a discrete opti-
mization problem, specifically a variant of the GTSP and called GTSParc. It
is shown how to tailor the state of the art GLNS metaheuristic to solve it.

– Automation of the UGV path planning. The current solution relies on a
human operator when processing the UAV-obtained information and specifying
critical segments of the UGV trajectory. The algorithm presented in this paper
replaces the operator role in this phase and enables to generate the UGV path
automatically. The algorithm is meant to be run on a base station, after the
initial UAV reconnaissance.

– Informed discretization. An infinite number of valid vertices can be sampled
for each subregion, which increases the computation and memory demands. A
method for detecting sampled vertices that are valid, but not useful in any po-
tential solution is presented. Thus, the discretized problem size can be reduced
considerably, which speeds up the planning and allows for covering much larger
areas.

– Guarantee of detection in regions of interest. It is shown how to sample
valid vertices that ensure source detection in predefined regions of interest.
Currently, this is reliant on the operator experience.

– Post-processing in the continuous domain. The proposed GLNSarc algo-
rithm is capable of finding a locally optimal solution in the discrete domain.
However, this solution may not be locally optimal in the continuous domain.
Therefore, a local search procedure in the continuous domain is introduced.
This procedure is deployed once in postprocessing, after the GLNSarc finishes.

– Optimality criteria. The algorithm is capable of minimizing a custom opti-
mality criterion, which can be difficult for the human operator. This criterion
is determined by the weights assigned to edges in the GTSParc planning graph.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 5

Besides the standard weighting based on Euclidean distance, a more realistic
weighting is introduced, which also considers the robot’s rotation speed. It
is also demonstrated that GLNSarc can be deployed in an environment with
obstacles or impassable terrain, both indoor and outdoor.

The paper is structured as follows. Section 1 contains this introduction and
state of the art summary in Section 1.1. Section 2 provides the theoretical de-
scription of the problem and describes the exact steps of the solution. Sections 2.1
and 2.2 give the formal definition of the planning problem, as well as the specifics
introduced by the application. Section 2.3 presents the employed GTSP solver
- GLNS. Finally, subsections 2.4 to 2.7 tackle various aspects of the solution -
most notably the necessary GLNS modifications, variants of edge weighting, an
approach to the problem discretization and a local optimization technique in con-
tinuous space called DenseOpt. Section 3 then examines the behavior of the algo-
rithm and evaluates the contribution of individual components of the solution. A
concise summary and conclusion is given in Section 4.

1.1 State of the art

Concerning gamma radiation monitoring and search for radiation sources, there are
various scenarios and therefore, various respective approaches. For the long term,
static monitoring in places with a higher risk of radiation leak (e.g., a nuclear power
plant, medical or industrial facilities), permanent sensor networks are typically
installed, while the current research is focused on developing reliable wireless sensor
networks [7] or mobile sensor networks [26].

However, when the radiation source presence is not anticipated in the area or
the area is too large or unsuitable for sensor network installment, a search mission
deploying single or multiple measuring agents is a more adequate solution. Then,
the motion planning becomes a critical factor in ensuring that the whole area is
inspected and that the inspection is carried out in a reasonable time. The search
process is often referred to as source seeking (SS) and determining the source
position from the measured data as source term estimation (STE). Apart from
radiation source localization, similar methods are also used for identifying leaks
of gas or chemicals [25]. The SS motion planning methods can be classified either
as adaptive or proactive [37]. In the case of adaptive methods, the motion plan-
ning is typically controlled by a feedback from the current output of STE, which is
beneficial mainly for controlling the STE accuracy. Commonly used adaptive meth-
ods are gradient-based traversal, surging or casting [2]. These methods typically
contain a simple mechanism for switching from one sensing location to another
(towards another potential source), but this approach does not deal well with the
intrinsic combinatorial problem, which is determining the order of exploration of
individual regions. Therefore, they are suitable for localizing only a single source
or for usage by a swarm of robots initially equally distributed across the area [8].

Proactive strategies are on the other hand designed to ensure full coverage
of the area at the cost of higher time requirements and possibly lower accuracy.
Several rather simple motion planning strategies, such as the zig-zag pattern [39]
or contour mapping [13], were proposed for the outdoor environment. The main
advantage of aerial spectrometry is the possibility of quickly exploring a relatively

6 David Woller , Miroslav Kulich

large area, while the main disadvantage is the low accuracy of source position es-
timation. For more accurate or indoor mapping, a ground-based agent such as a
UGV can be employed. Compared to a UAV, the UGV typically moves at signif-
icantly lower speeds and has to deal with obstacles and impassable terrain. With
no obstacles present or considered, some motion planning strategies used in aerial
spectrometry were adapted to UGVs (e.g., the zig-zag pattern). However, these
are not suitable in many real world applications and more complex motion plan-
ning strategies are needed. For example, [33] proposed an approach for an enclosed
polygonal environment. This method first performs a convex polygon partitioning
by splitting the environment into smaller regions explorable from a single position.
Then, it determines the dwell time needed for staying in each of these positions
using the Currie limit of detection [5] and plans a trajectory over all positions, en-
suring exploration of the whole area. Similar approach was followed by [1], which
formulated the multigoal mission as the Travelling Salesman Problem over a set of
predefined measurement locations. The main difference to the GTSParc is that the
planning is performed over a set of predefined locations of static measurements,
where the robot needs to stop. In the GTSParc, the robot takes useful measure-
ments while constantly moving, so the GLNSarc plans over a set of maneuvers,
rather than positions. In other words, the existing approaches directly solve the
TSP or the GTSP over a fixed set of points while connecting these points with
trajectory segments corresponding to a particular vehicle model, as in, e.g., the
Dubins GTSP [19] are not directly applicable in GTSParc.

Another family of approaches, information sampling (IS) techniques [3, 17]
extensively sample the robot configuration space to find a path/trajectory mini-
mizing a given objective function. The number of samples and thus the computa-
tional complexity, however, grows exponentially with the number of dimensions.
The configuration space of maneuvers in GTSParc has six dimensions, in contrast
to two or three dimensions in typical applications of IS. Therefore, even small
GTSParc instances will be hard to solve with current IS techniques. Moreover, the
search in IS is restricted to a limited time horizon, while in the GTSParc we plan
a path that visits all regions.

When using both a UAV and a UGV in an outdoor environment, the advan-
tages of both platforms can be combined. The UAV can be used for the fast yet
inaccurate estimate of radiation source locations and the UGV for subsequent ac-
curate localization. Therefore, there is no need for time-consuming exploration of
the whole environment by the UGV. An example of such an application is pre-
sented in [4], where the area is first inspected by a UAV, which collects RGB
images and radiation data of the area. Based on the collected data, a cost map for
ground-based motion is created, and the UGV is then deployed to inspect regions
of interest using repeatedly the A* algorithm (thus being suitable for detecting a
single radiation source).

As the GTSParc is an extension to the GTSP, and a GTSP solver was employed
and modified in order to solve the GTSParc, this subsection mainly discusses state
of the art in GTSP solvers. The GTSP is a combinatorial optimization problem
extensively studied in operations research with many practical applications, such
as location routing problems, material flow system design, post-box collection,
stochastic vehicle routing or arc routing [21].

There are multiple methods of finding the optimal GTSP solution in exponen-
tial time. The GTSP can be modeled as an integer linear program (ILP) and solved

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 7

with an ILP solver. One of the first formulations was introduced in [22]. Formula-
tions studied by [10] then inspired the problem-specific exact branch-and-cut al-
gorithm [9]. Another six different integer programming formulations are compared
in [30], with an emphasis on ’compact’ formulations (i.e., formulations, where the
number of constraints and variables is a polynomial function of the number of
nodes in the GTSP). A commonly used approach is to transform the GTSP into
the TSP using the Noon-Bean transformation [28]. Then, an exact TSP solver
such as the Concorde [18] can be deployed.

Due to GTSP NP-hardness, new approaches on how to find acceptable so-
lutions to large problem instances in polynomial time are still being proposed.
The problem can be transformed into the TSP and solved with a heuristic-based
TSP solver, e.g., the LKH [14], but numerous heuristic approaches were adapted
specifically for the GTSP. Among these, the following three algorithms can be
considered as the most successful. The first one is the GLKH solver [16], which
is based on the Lin-Kernighan k-opt heuristic used in the LKH. The GLKH is
reported to be tested on large-scale instances with up to 17180 sets and 85900
vertices, and it is focused on finding high-quality solutions. The second one is a
memetic GK heuristic proposed in [12], which combines genetic algorithms with a
local search procedure. The GK yields high-quality solutions with excellent run-
time on medium-size GTSP instances, but it does not scale well for problems
with more than 200 sets [6]. Finally, Smith and Imeson presented an algorithm
combining adaptive large neighborhood search, simulated annealing, and two lo-
cal search procedures. The algorithm is called Generalized Large Neighborhood
Search (GLNS), and it is documented to often outperform both GLKH and GK
on several GTSP libraries [32]. It dominates the other two solvers, especially on
highly constrained nonmetric instances, whereas the GLKH performs best on the
largest clustered Euclidean instances and the GK on medium size metric instances.
The proposed approach to GTSParc is built on GLNS due to its most consistent
performance over a broad portfolio of GTSP instances compared to the other two
solvers.

2 Methods

2.1 Planning task formulation

This subsection provides a formal definition of the GTSP and elaborates on the
complications arising from differences between the practical task of searching for
radiation sources and the following standard GTSP definition.

Problem 1 (The Generalized Travelling Salesman Problem) Assume a
complete weighted graph G = (V,E,w) and a partition of V into m sets PV =
{V1, ..., Vm}, where

– V is a set of n vertices
– Vi ∩ Vj = ∅ for all i 6= j

–
m⋃
i=1

Vi = V

– E is a set of edges such that all vertices are connected, apart from vertices
from the same set

8 David Woller , Miroslav Kulich

– w is a mapping assigning a weight to each edge w : E −→ R

Fig. 2 Solved GTSP instance 10C1k.0 from MOM-lib [15]

Lets also define a tour T over graph G as a closed sequence of vertices and edges
T = (v0, e0, .., vm−1, em−1), where each edge connects two consecutive vertices -
ei = (vi, vi+1) and em−1 = (vm−1, v0). A set of vertices present in the tour T is
denoted as VT , a set of edges as ET .

Then, the objective is to find a tour in G that contains exactly one vertex from
each set and has a minimum length, i.e., it minimizes the tour length w(T) defined
as

w(T) =
∑
e∈ET

w(e).

An example of a solved GTSP instance is shown in Figure 2, where vertices of the
same color belong to the same set.

2.2 Application specifics

There are aspects of the planning task solved that prevent us from directly using
the previously given GTSP formulation and already implemented solvers. Due
to the following, the formulation has to be slightly changed, and the solver is
appropriately modified.

2.2.1 Vertex definition

Contrary to GTSP, where a vertex is typically a point in 2D, a single vertex in the
GTSParc represents a circular arc - a special trajectory segment such that passing
by it allows a precise radiation source detection in a corresponding subregion. A
minimal vertex representation consists of the parameters given in Table 1, which
are also depicted in Figure 3a.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 9

(a) Parameters definition (b) Vertex connecting

Fig. 3 Vertices (arcs) in the GTSParc

2.2.2 Vertex weighting

As each vertex represents a segment of a robot trajectory, its length influences
the total trajectory cost. In the standard GTSP definition given in Section 2.1
only edges, not vertices, have weights assigned. Therefore, this difference must be
taken into consideration while implementing various metrics in the algorithm. In
GLNSarc, the weight w of each vertex is defined as the length of the arc: w = ωr.

2.2.3 Vertex connecting

There is no restriction on the direction in which a vertex is to be passed, therefore
connecting two vertices is ambiguous. The original algorithm considers only the
possibility that edge weights depend on the vertex order - an edge from a to b might
have a different weight than an edge from b to a (asymmetric GTSP). However,
in the GTSParc, even with a fixed order, there are still four ways to connect two
consecutive vertices, as shown in Figure 3b.

2.2.4 Vertex validity constraint

While detecting sources of radiation along circular arcs, only some arcs are po-
tentially useful. Here, the vertices are generated to fit the experimental setup pre-

Symbol Parameter description
x, y planar coordinates of circular arc center (m,m)
r arc radius (m)
α angle between coordinate frame x-axis and arc axis (rad)
ω angular size of the arc (rad)

Table 1 Vertex parameters in the GTSParc

10 David Woller , Miroslav Kulich

sented in [24], which uses a UGV fitted with a GPS unit, two mutually shielded
gamma detectors, and counting electronics. The detection system is capable of
measuring the rate of gamma radiation in counts per second (CPS) and recording
the position of the measurement. It is partially directional due to the use of two
detectors - when moving along a curve, it can be determined on which side of the
curve the radiation source is located.

The STE procedure used for determining source locations based on the mea-
surements taken is called the Circular Algorithm; it is described in [23] in detail
and works as follows. The theoretical shape of the radiation intensity Im measured
in CPS along a circle near a radiation source can be described (according to the
inverse square law and the law of cosines) as

Im(φ) =
Is

a2 + r2 − 2dr cosφ
, (1)

where Is states the source intensity in CPS in a distance of 1 meter from the
source, a is the distance from the source to the circle’s center, r is the radius
of the circle, φ is the difference between the angular coordinates of the UGV
and the source with respect to the circle center and d is the distance from the
source to the closest circle point. The function given in Equation 1 can be used
to interpolate measurements taken along a circular segment, although according
to [23], quadratic interpolation is sufficient for determining the location of the
intensity peak and thus the direction towards the radiation source. As it is also
known, whether the source lies inside or outside of the circular segment (or better,
the corresponding full circle) and which subregion is covered by this particular
segment (see Section 2.6.1), an initial estimate of the source position and intensity
can be made. This estimate is then iteratively improved by applying the Gauss-
Newton method, which is reported to achieve an average accuracy of 17.8 cm RMS
(root mean square) in real-world experiments carried out by the authors of [23].

It must be distinguished whether the peak in radiation intensity measured
along a circular segment corresponds to a radiation source or fluctuations in the
radiation background. Given a source s = [xs, ys] with an intensity Is, a robot
position p = [xp, yp] and a level of background radiation IB , the intensity Im
measured by the robot is equal to

Im =
Is

(xs − xp)2 + (ys − yp)2
+ IB

according to the inverse square law. Then, the ratio between the minimal and
maximal intensity Im measured along a circular segment must be higher than a
constant K called prominence [24] to identify a radiation source. For a circular
segment, this constraint can be rewritten as

Is
2r(r+d)(1−cos (l

2r
−|θ|))+d2 + IB

Is
d2 + IB

< K. (2)

Individual parameters are described in Table 2 and their numerical values used
for vertex generation are given in Table 3 (if constant). The values of Is and Im
are in practice estimated from the initial UAV measurements. In Figure 1, Is
corresponds to the highest CPS values at the yellow hot spots and IB to the
lowest readings in the dark blue areas. The measured intensity Im is taken along
the yellow line, marking the robot trajectory in Figure 1b.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 11

Symbol Parameter description
r radius of circular arc (m)
d distance from the source to the closest segment

point (m)
l arc length (m)
θ angle between arc axis and line from arc center to

source (rad)
Is intensity of the radiation source in CPS (-)
IB background radiation in CPS (-)
K experimentally set constant (-)

Table 2 Vertex validity constraint - parameters

2.3 Generalized Large Neighborhood Search (GLNS) description

GLNS is a GTSP solver introduced by S. L. Smith and F. Imeson [32]. This
subsection gives only a brief overview of its functioning. A full description of the
algorithm, including a thorough performance comparison with other approaches,
can be found in [32].

GLNS implements an adaptive large neighborhood search, which is a meta-
heuristic planning approach based on the iterative application of constructive and
destructive procedures to a current solution. These procedures are being selected
randomly, using the roulette wheel selection mechanism. The selection weights
of individual procedures are dynamically adjusted throughout the search process,
according to their success in previous iterations. Each time a procedure improves
the currently best solution, its selection weight after the next restart is increased
and vice versa.

GLNS pseudocode is given in Algorithm 1. First, an initial random tour is
generated (line 2). Then, the following process runs iteratively. A pair of removal
and insertion heuristics is selected according to their selection weights (line 6).
These heuristics are then applied to remove Nr vertices from the current tour
T and insert different Nr vertices, thus creating a modified tour Tnew (lines 7
to 10). The modified tour Tnew is subject to the local optimization techniques
MoveOpt and ReOpt (line 11) and is consequently accepted or declined, while
using a simulated annealing criterion (line 15). This process repeats until one of
the stop criteria is met (line 19). After that, the planner updates the selection
weights of the heuristics (line 20) and either starts the whole process again with
a new cold restart or returns the best tour found overall.

The acceptance criterion (line 15) uses a simulated annealing procedure, which
allows for accepting nonimproving tours Tnew with a small probability depending
on the temperature τ . The temperature τ is initialized at the beginning of each
cold restart (line 4) and then gradually decreases in so-called initial descent. Then,
after a certain number of nonimproving iterations, the temperature is increased
again. This is called a warm restart, which also ends after a fixed number of
nonimproving iterations. The temperature updates are performed at the end of
each iteration (line 21). Each cold restart then consists of an initial descent and
several warm restarts.

12 David Woller , Miroslav Kulich

2.4 Proposed GLNS modifications towards GLNSarc

As described in Section 2.2, graph vertex in the GTSP definition corresponds to
a circular arc in the GTSParc. This arc represents a part of a trajectory and has
certain properties, that have to be taken into account while employing GLNS to
solve the GTSParc. The main issues arise from the fact, that the arc has a nonzero
length and that connecting two vertices is ambiguous. Necessary modifications to
the algorithm solving these issues are described in detail in this subsection. To
prevent confusion, the word vertex is used when talking about circular arcs (i.e.,
the graph vertices in GTSParc) from now on.

2.4.1 Vertex duplication

In Section 2.2, a vertex is described by this tuple of parameters -
〈
x, y, r, α, ω

〉
.

This representation is sufficient for problem formulation but impractical for imple-
mentation, as it requires distinguishing between various ways of vertex connecting.
Instead of doing that, an additional parameter sign ∈ {±1} is added. This pa-
rameter determines in which direction the vertex is to be passed through (-1 for
clockwise passage, +1 for anticlockwise). Naturally, this doubles the total number
of vertices in GLNSarc algorithm, as each vertex is inserted with both possible sign
values. On the other hand, the problem with edge connecting is solved, because
the original GLNS allows for solving asymmetric GTSP, which is the case now.

Algorithm 1: GLNS

Data: A GTSP instance (G,PV)
Result: GTSP tour T

1 for i← 1 to cold restarts do
2 T ←initial tour(G,PV)
3 Tbest,i ← T
4 Initialize the acceptance temperature τ
5 repeat
6 Select a removal heuristic R and an insertion heuristic I
7 Select number of vertices to remove Nr
8 Tnew ← T
9 Remove Nr vertices from Tnew using R

10 Insert Nr vertices to Tnew using I, one from each set not visited by Tnew
11 Locally re-optimize Tnew (MoveOpt, ReOpt)
12 if w(Tnew) < w(Tbest,i) then
13 Tbest,i ←− Tnew
14 end
15 if accept(Tnew, T, τ) then
16 T ← Tnew
17 Record improvement made by R and I

18 end

19 until stop criterion met
20 Update selection weights of heuristics
21 Update the acceptance temperature τ

22 end
23 return tour Tbest,i that attains min

i
w(Tbest,i)

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 13

2.4.2 Tour weight

Let T = (v0, e0, v1, e1, ..., vm−1, em−1) be a tour and w(T) its weight. In GLNSarc,
this weight is calculated as

w(T) =

m−1∑
i=0

w(ei) +

m−1∑∑∑
j=0

w(vj), (3)

where vi, ej are the vertices and edges from T and w(v), w(e) are their respective
weights. The bold expression in Equation 3 and in all the following equations is
newly added in GLNSarc, and it reflects the fact that vertices have nonzero weight.

2.4.3 Cheapest insertion and unified insertions

GLNS contains several insertion heuristics that add vertices from currently unused
sets to an incomplete tour T according to some simple rules. In all of these heuris-
tics, the insertion cost of a vertex vnew ∈ Vi, Vi ∈ PV \PT is minimized. Here,
PT contains those sets, that are already visited by T . In the cheapest insertion,
this cost is minimized to select both Vi and vnew, whereas, in the remaining three
unified insertions, Vi is already selected by a different mechanism and only vnew
is sought. In all cases, the insertion cost cins has to be modified to take the weight
of vnew into account:

cins = w(vj , vnew) + w(vnew, vj+1)− w(ej) +w(vnew).

Here, vj and vj+1 are two consecutive vertices in T before insertion and w(vj , vnew),
w(vnew, vj+1) and w(ej) weights of corresponding edges.

2.4.4 Worst removal

Similarly to insertion heuristics, GLNS contains several removal heuristics, remov-
ing vertices from a tour T while using some simple rules. Worst removal removes
such vertex vj ∈ VT from tour T , that maximizes the removal cost crem. GLNSarc

modification is again rather straightforward:

crem = w(ej−1) + w(ej)− w(vj−1, vj+1) + w(vj).

2.4.5 ReOpt

Re-Opt, which is a local optimization subroutine, attempts to optimize the choice
of vertices while keeping the set order fixed. This is achieved by performing a
graph search through all sets, in which only edges between two consecutive sets
are considered. When expanding from vertex x ∈ Vi to vertex y ∈ Vi+1, current
score in y is calculated as

score(y) = score(x) + w(x, y) +w(y).

Moreover, the first vertex a ∈ V1 is initialized with score(a) = w(a), instead of
zero.

14 David Woller , Miroslav Kulich

2.4.6 MoveOpt

MoveOpt subroutine attempts to optimize the set order by randomly removing a
vertex vi from a tour T and reinserting another vertex vj from the same set to
any position in the tour so that the insertion cost is minimized. This cost cins is
modified the same way as in the cheapest and unified insertions, i.e.

cins = w(vj , vnew) + w(vnew, vj+1)− w(ej) +w(vnew).

2.4.7 Remarks

Some parts of GLNS were not formally modified, although the original idea behind
them might have changed in GLNSarc due to task reformulation.
Set-vertex distance from a set V to a vertex u is still defined as

dist(V, u) = min
vi∈V

(min(w(u, vi), w(vi, u))).

In GLNSarc, these distances are precomputed after vertex duplication. Therefore,
the value obtained corresponds to the shortest path to or from u to V , no matter
the sign of u, v (= their orientation) or the edge (u, v) direction.

A different situation arises in the distance removal heuristic. The motivation
is to remove vertices from a current tour T , which are “close to each other”. At
each iteration, a vertex vseed is selected randomly from the set of already removed
vertices Vrem. The next vertex vj to be removed from T is obtained as

vj = arg min
vj∈T

(min(w(vseed, vj), w(vj , vseed))).

Here, GLNSarc considers only edges between vertices vseed, vj and not their op-
positely oriented variants available in the GTSParc instance, as these variants are
not present in T .

2.5 Edge weighting variants

Two variants of edge weighting in the GTSParc graph were designed in the GLNSarc.
The first one (line) calculates the edge weight as the Euclidean distance between
the connected vertices endpoint and entry point. This metric is commonly used in
GTSP and similar problems, but it may be of limited value in GTSParc, as it does
not reflect the rotation time needed at the vertex endpoints. Two edges with a
similar weight may thus result in considerably different trajectory execution times.
The second variant (lineWA) is designed to reflect this, as it also considers the
rotation time needed at each endpoint.

Let v be a vertex in GTSParc, with parameters as in Table 1. The vertex is
oriented according to sign. Therefore, it has an entry point vin and a leaving point
vout. The robot orientation in these points is then given by the tangent vector vin,
respectively vout, as shown in Figure 4. Definitions of individual edge weighting
variants follow.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 15

2.5.1 line

Let us consider vertices vi, vj connected by an edge eij (from vi to vj). The edge
weight is then calculated as

w(eij) = ‖vouti − vinj ‖

Fig. 4 Edge parameters

2.5.2 lineWA - line with weighted angles

Similarly to the line type, this variant connects vertex endpoints with a straight
line. Let us again consider vertices vi, vj and an edge eij . Then, let δi be the smaller
angle between vector vouti and eij (and δj between vinj and eij respectively), as
shown in Figure 4. The edge weight is then defined as

w(eij) = ‖vouti − vinj ‖+ k(δi + δj), (4)

where k is an application specific constant, reflecting the robot in-place turning
speed.

2.6 Problem discretization

As was explained in Section 1, a single set of vertices in the GTSParc corresponds
to a subregion with the potential presence of a radiation source. A vertex in the
GTSParc then corresponds to a maneuver along a specific circular arc. Equation 2
restricts the parameters of the circular arc, so that accurate localization of the
radiation source is guaranteed. This constraint needs the source position to be
known; therefore, it cannot be directly applied when sampling valid arcs covering
the whole subregion - precise source position is not known yet. Thus, the following
straightforward approach was adapted.

16 David Woller , Miroslav Kulich

Algorithm 2: Sampling of valid vertices

Data: Subregion R, ranges of x, y, r, α and ω
Result: Set of valid vertices Vval

1 Vval ← ∅
2 Uniformly sample p sources s within R
3 for x ∈ range(x) do
4 for y ∈ range(y) do
5 for r ∈ range(r) do
6 for α ∈ range(α) do
7 for ω ∈ range(ω) do
8 Generate vertex v ← v(x, y, r, α, ω)
9 valid← true

10 for i← 1 to p do
11 if ¬ constraint(si, v) then
12 valid← false
13 break

14 end

15 end
16 if valid then
17 Vval ← Vval ∪ {vsign=1}
18 Vval ← Vval ∪ {vsign=−1}
19 end

20 end

21 end

22 end

23 end

24 end
25 return Vval

2.6.1 Sampling sets - covering subregions with vertices

The procedure of sampling valid vertices in GTSParc is described in Algorithm 2.
The algorithm takes the following inputs: finite sets of possible vertex pa-

rameter values x, y, r, α, and ω (described in Table 1) and a subregion R. First,
the subregion R is uniformly densely covered with p potential source positions s
(line 2). Second, a circular arc is generated for each combination of given parame-
ter values (line 8). If the newly generated vertex satisfies equation 2 for all p source
positions, the arc is assumed to be valid for the whole subregion (line 9 to 13).
The newly generated valid vertex v is then added to the set of valid vertices Vval
in both orientations given by sign (lines 16 to 18).

2.6.2 Reducing set size

The sampling procedure described in Section 2.6.1 generates a set of valid vertices
Vval, whose size grows rapidly, proportionally to the range of input parameters
x, y, r, α and ω. However, some vertices sampled may not be actually useful. A
procedure for utilization-based Vval reduction is proposed in this section.

The contribution of some vertex vi from a set Vval to the total tour weight
w(T) depends only on its neighbors vi−1 and vi+1 in a tour T . If some vertex
vi ∈ Vval does not minimize the partial cost

cpar = w(vi−1, vi) + w(vi) + w(vi, vi+1) (5)

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 17

for any possible configuration of its neighbors vi−1 and vi+1, it is redundant and
can be removed from Vval.

(a) Edge type line (b) Edge type lineWA

Fig. 5 Grids used for reducing Vval size

To perform the vertex utilization analysis, a square grid of points is gener-
ated around the set Vval. An example of such a grid applicable for edge type
line is shown in Figure 5a. Points in this grid correspond to the endpoints of ver-
tices vi−1, vi+1 and they are sufficient for determining the relevant edge weights
w(vi−1, vi), w(vi, vi+1). A sufficient set of potentially usable vertices Vsuf is then
extracted from Vval by testing all possible combinations of these endpoints and
keeping only those vertices from Vval minimizing Equation 5 for any of these com-
binations. This process is described in Algorithm 3.

The accuracy of this method depends on the set of grid parameters P . For the
edge type line, where edge weight is calculated as the Cartesian distance between
vertices endpoints, these parameters are grid size size and grid resolution posRes.
A point in the grid then corresponds to a point in 2D. In the case of the lineWA
type, which also considers the amount of rotation needed in each endpoint, a point
in the grid consists of a point in 2D and a vector, as shown in Figure 5b. Thus,
there must be an additional parameter angleRes, which determines the angular
resolution used when sampling multiple vectors in different directions from each
point.

Suitable values of these parameters depend on the set Vval and on the edge
type used. A simple method for extracting a sufficient set Vsuf while refining
the parameters P until the size of Vsuf converges is proposed and described in
Algorithm 4. First, Vsuf is extracted using the reduction procedure described in
Algorithm 3 with initial parameters P (line 1). Each parameter from P is then
repeatedly refined according to the refinement step from Table 4 (line 5) and the
Vsuf is extracted again (line 6). Refining of the current parameter stops when
there is no increase in the size of Vsuf (line 8).

18 David Woller , Miroslav Kulich

Algorithm 3: Utilization-based set reduction

Data: Original set Vval, grid parameters P
Result: Reduced set Vsuf

1 Vsuf = ∅
2 Generate grid G = G(P) around Vval
3 for p1, p2 ∈ G×G do
4 cbest ←∞
5 vbest ← null
6 for v ∈ Vval do
7 cpar ← w(p1, v) + w(v) + w(v, p2)
8 if cpar < cbest then
9 cbest ← cpar

10 vbest ← v

11 end
12 Vsuf ← Vsuf ∪ vbest
13 end

14 end
15 return Vsuf

Algorithm 4: Set reduction with parameters refining

Data: Initial parameters P , original set Vval
Result: Tuned parameters P , reduced set Vsuf

1 Vsuf ← reduce(Vval, P)
2 for i← 1 to |P | do
3 repeat
4 size = |Vsuf |
5 Refine value of P [i]
6 Vsuf ← reduce(Vval, P)
7 newSize = |Vsuf |
8 until size = newSize

9 end
10 return P, Vsuf

As the parameters are tuned sequentially, it may happen that refining the
latter parameter enables further refining and subsequent increase in Vsuf size for
some of the preceding parameters. To cover this possibility, Algorithm 4 can be
run repeatedly with the previously found parameters used as an initial solution in
the next run, until there is no change in Vsuf size over one whole run.

The approach presented does not guarantee that the generated set Vsuf fully
substitutes the original set Vval - especially when the refinement steps or the initial
values of P are poorly chosen. However, the experiments presented in Section 3.4
show that there is no significant decrease in the quality of the solution obtained
when using Vsuf instead of Vval in GTSParc instances, whereas the runtime is
reduced dramatically and much larger areas can be covered.

2.7 DenseOpt optimization

As explained in Section 1, the planning task is originally continuous, as each set
can be covered by infinitely many vertices, given that they respect the constraint in
Equation 2. Sampling a finite number of vertices is enforced by using GLNS, which

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 19

is designed for discrete problems. The inevitable consequence is that the solution
obtained by GLNSarc will probably never be optimal in the original continuous
domain. This drawback is accepted, as GLNSarc is a metaheuristic-based planner,
which does not give any guarantees about solution optimality as well. However, the
quality of the final solution is negatively influenced by the sampling density. Apart
from that, once the GLNSarc reaches a good quality solution, further convergence
tends to be slower and slower. In this phase, it may be more beneficial to perform
a simple solution refining in the continuous domain, rather than spending more
time solving the optimization problem in the discrete problem. This is the exact
purpose of the proposed DenseOpt procedure.

DenseOpt is a newly proposed intensification optimization technique which
performs local search in the continuous domain, after the solution in the discrete
domain is returned by GLNSarc. It is named to match the other two local optimiza-
tion techniques defined in GLNS - MoveOpt, and ReOpt. Given a tour T obtained
by GLNSarc, DenseOpt searches the close neighborhood of each vertex in T and
randomly samples new admissible vertices, not present in the discrete GTSParc

formulation G = (V,E,w). If the newly sampled vertex improves the weight of T ,
it replaces the originally present vertex from the same set. The process is described
in Algorithm 5.

Algorithm 5: DenseOpt

Data: Tour T = (v0, e0, v1, e1, ..., vm−1, em−1)
Result: Locally improved tour T

1 indices← [0, 1, ...,m− 1]
2 repeat
3 stop← True
4 Uniformly randomly shuffle indices
5 for j ← 0 to m− 1 do
6 index← indices[j]
7 v ← vindex ∈ T
8 for k ← 1 to Ns do
9 Sample valid vertex vnew close to v

10 if vnew improves w(T) then
11 stop← False
12 Replace vindex in T by vnew
13 Update edges eindex−1, eindex in T

14 end

15 end

16 end

17 until stop = True
18 return T

The whole tour T is repeatedly optimized until there is no improvement in
its weight. In each iteration, a random order of resampling is created by shuf-
fling the array indices (line 4). Then, each vertex in the tour T is resampled Ns
times (lines 8-9) as vnew. Sampling of vnew is limited to a predefined range of
parameters r, α, and ω. The original density of sampling in the GTSParc instance
solved determines this range. Vertex vnew is sampled anywhere between its closest
neighbors. If vnew improves tour cost w(T), it is added to T and vindex is removed
(lines 10-12). Moreover, the edges eindex−1 and eindex are newly generated, so

20 David Woller , Miroslav Kulich

that the newly added vnew is connected to the rest of the tour T (line 13). As
the vertex vindex in T is being replaced continuously, its original position is stored
in copy v, so that new vertices vnew are sampled in the same subregion (line 8).
Parameter Ns was experimentally tuned (see Section 3.5) and set to Ns = 300.

3 Results

This chapter documents and interprets the experiments carried out. It is focused
on thoroughly demonstrating GLNSarc capabilities, performance, and assessing
the contribution of the additional solution components. It does not provide a com-
parison with other methods, which is due to several reasons. First, the problem
formulation is new and was not fully addressed before. Second, the application
previously relied on a human operator input, which is not a feasible approach for
thorough experimental comparison. Third, the relevant methods for similar prob-
lems are not directly applicable in the considered application without nontrivial
adaptation.

The proposed algorithm considers three criteria:

1. source localization in a preselected region is to be guaranteed,
2. all preselected regions are to be inspected,
3. the total trajectory length over all regions is to be optimized.

Adaptive methods (such as [2], [23] or [24]) fully respect only the first criterion and
can be iteratively applied to satisfy the second, given that the already discovered
sources are removed before continuing the search. Proactive methods (e.g., the
zig-zag pattern [39]) are designed to satisfy only the first criterion and are suitable
for localizing multiple sources without extraction. However, no adaptation of a
proactive method that would consider also the second and third criteria is known
to us, apart from the proposed one. In the preceding work [23], the UGV trajectory
was created manually and meeting all three criteria depended on a human operator
experience. For obvious reasons, this approach is not suitable for experimental
comparison.

All instances solved in fast and default mode were solved 50 times so that the
results could be processed statistically. This number was reduced to 5 in case of
the slow mode due to its excessive time requirements. All experiments were carried
out on a single core of Lenovo P330 desktop PC with an Intel Core i7-8700, 3.2
GHz CPU, and 32 GiB of RAM. The GLNSarc was implemented in C++.

3.1 Generating problem instances

It was described in Section 2.6.1, how to sample a set of valid vertices Vval, covering
a subregion R. In all generated problem instances, the subregion R was set to a
square with the dimensions of 3 × 3 meters. The size of the subregion is limited
by the application-dependent parameters Is, IB , and K. Actual values used for
generating Vval are given in Table 3, as well as values of constants used in the
constraint function. In real-world experiments, the values of Is and IB are
estimated from the UAV collected data.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 21

Parameter Values
x(m) -5 to 5 sampled by 1
y(m) -5 to 5 sampled by 1
r(m) 1 to 5 sampled by 1
α(rad) π/6 to 2π sampled by π/6
ω(rad) π/6 to π sampled by π/6
Is(−) 6000
IB(−) 150
K(−) 0.7

Table 3 Parameter values used for Vval generation

The obtained set Vval is shown in Figure 6a, where the subregion R is marked
by the green line, and the generated vertices are displayed in blue. Vertices are
partially transparent, so the darker shade of some segments indicates that multiple
vertices are overlapping. In total, the set contains 3824 vertices.

(a) Full set Vval (b) Reduced set Vsuf

Fig. 6 Generated sets of valid vertices

The set Vval was subsequently reduced by performing the set reduction de-
scribed in Section 2.6.2. An example of a reduced set Vsuf is shown in Figure 6b.
This particular set is generated for edge type line by reducing the set Vval from
Figure 6a. It contains only 120 vertices (compared to 3824 vertices in Vval). Initial
values and refining steps for the parameters P are given in Table 4. Parameters
common for line and lineWA edge types have identical values. Final values of grid
parameters P are size = 16 meters and posRes = 0.125 meters.

If a region of interest discovered by the UAV in the initial phase is larger than
3 × 3 meters, or if there are multiple regions, they need to be split into smaller
subregions of an appropriate size. E.g., a region of size 18 × 18 meters can be
covered by 36 subregions of size 3 × 3 meters, as shown in Figure 7, so that the
successful radiation source detection is guaranteed in any point of the area. Each

22 David Woller , Miroslav Kulich

Parameter Initial value Refinement step
size(m) 10 size = size+ 1
posRes(m) 1 posRes = posRes/2
angleRes(rad) π/6 angleRes = angleRes/2

Table 4 Parameter values used for Vsuf generation

subregion corresponds to a set of vertices in the GTSParc, and vertices from the
same set are displayed in the same color.

Fig. 7 Problem instance tiles suf/6x6 4320

3.2 Datasets description

Three datasets were created to evaluate the GLNSarc performance, behaviour
and tune the denseOpt parameter: tiles full, tiles suf and patterns. The
datasets are available at [38].

Dataset tiles full consists of 14 problems of increasing size, which were
created by placing the full set of 3824 valid vertices Vval described in Section 2.6.2
in a tiled pattern, similarly to the problem displayed in Figure 7. The largest
problem in this dataset covers an area of 12× 15 meters, which corresponds to 20
sets (each covering 3× 3 meters) and 76480 vertices.

Dataset tiles suf was created in the same manner, but it is based on the
reduced set Vsuf containing only 120 vertices, which was generated for edge type
line. The dataset contains a total number of 53 problems, while the largest problem
covers an area of 30× 30 meters, corresponding to 100 sets and 12000 vertices.

Finally, dataset patterns is also based on the Vsuf set, and it contains prob-
lems of medium size ranging between 24 and 32 sets. These problems are created

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 23

with the intention to capture the behavior of the algorithm on structurally varied
problems. It contains fifteen problems, where the sets are clustered by 3, 4, or 6,
six problems with sets arranged in a letter-shaped pattern, and ten problems with
sets distributed randomly. Two examples are shown in Figure 8.

(a) clust6 range=40 v3 (b) bold a

Fig. 8 patterns dataset - examples of instances

3.3 GLNSarc modes of operation

GLNS comes with three sets of parameters corresponding to the following planner
modes - fast, medium (default), and slow. These modes differ most notably in the
number of cold and warm restarts, parameters determining the total number of it-
erations, and the frequency of applying the local optimization techniques MoveOpt
and ReOpt. A full list of all values can be found in [32]. Individual settings were
not further modified or tuned, but they were compared in terms of quality of so-
lution and runtime on the tiles suf dataset. The problems in this dataset have
a very similar structure, but they gradually increase in size; thus they are suitable
for scalability and applicability assessment of individual modes.

Figure 9 shows the planning time needed by individual modes in relation to the
problem size, respectively, the number of vertices n. Consistently with the runtime
analysis provided in [32], all dependencies plotted are polynomial.

Instances of up to 2700 vertices were always solved within 1 second in the fast
mode; thus the GLNSarc can be used as an online planner for smaller problems.
Mean planning time for the largest problem of 12000 vertices is 59.9 seconds,
while in the worst case, the planning took 78.3 seconds. Fast mode time demands
are therefore moderate even for larger instances. The best and worst-case planning
times are circa 30% from the mean value, while the standard deviation is up to 10%
of the mean. Planning times in the default mode (Figure 9b) are about one order

24 David Woller , Miroslav Kulich

0 2000 4000 6000 8000 10000 12000

n

0

10

20

30

40

50

60

70

80

ti
m

e
 (

s
)

Planning time in fast mode

mean ± stdev

min, max

(a) Fast mode

0 2000 4000 6000 8000 10000 12000

n

0

50

100

150

200

250

ti
m

e
 (

s
)

Planning time in default mode

mean ± stdev

min, max

(b) Default mode

0 2000 4000 6000 8000 10000 12000

n

0

1

2

3

4

5

6

7

8

ti
m

e
 (

s
)

10
4 Planning time in slow mode

mean ± stdev

min, max

(c) Slow mode

Fig. 9 Planning time across planner modes

higher than in the fast mode and show slightly lower deviations (with extrema
within 15% from the mean and standard deviation up to 6% of the mean). As
for the slow mode (Figure 9c), planning times are about three orders higher than
in the fast mode, thus solving problems with more than 4000 vertices in terms of
hours. Individual problems were solved at most 5 times due to the excessive time
demands of the slow mode; therefore, the remaining statistical properties are not
conclusive and comparable to the other modes.

As for the final tour weight obtained - GLNSarc performance in the fast mode
on the tiles suf is visualized in Figure 10. The resulting weights show very low
diversity - the worst tour weight is always within 2.5% from the best weight found
and within 1.2% from the mean. In the case of the default and slow mode, the
diversity is even lower and not visually apparent when plotted in the same manner.

Figure 11 compares the relative difference of the mean best weight found across
all three modes. Weights obtained in the slow mode are generally the best; thus
they are being taken as a baseline. The difference is then calculated as 100w−wslow

wslow
,

where wslow is the mean final weight for the particular problem in the slow mode
and w is the same value for the currently compared mode. Slow mode results

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 25

0 2000 4000 6000 8000 10000 12000

n

0

50

100

150

200

250

300

350

400

450

w
e

ig
h

t
(-

)

Tour weight in fast mode

mean ± stdev

min, max

Fig. 10 Final tour weight in fast mode

0 2000 4000 6000 8000 10000 12000

n

-0.5

0

0.5

1

1.5

2

2.5

w
e
ig

h
t
d
if
fe

re
n
c
e
 f
ro

m
 s

lo
w

 m
o
d
e
 (

%
)

Relative tour weight difference across modes

fast mode

quadratic interpolation

default mode

quadratic interpolation

Fig. 11 Final tour weight comparison across planner modes

are not displayed in the plot, as they would be compared to themselves, and the
corresponding markers would naturally all lie on the line marking zero relative
difference. The graph shows that the default mode is at most by 1.5% worse than
the slow mode and the fast mode at most by 2.5%. The interpolated mean weight
difference initially increases with problem size but appears to stabilize or even
slightly decrease for the largest problem instances.

In conclusion, both the fast and default GLNSarc mode performance are suf-
ficient for the intended application, as the planning requires several minutes at

26 David Woller , Miroslav Kulich

worst. The planning is to be carried out on a base station between the UAV and
the UGV operation, so the plan is not needed instantly and minutes are acceptable
for the operating staff. On the other hand, using the slow mode can be considered
infeasible, as the planning times exceed hours. In terms of solution quality, the
default mode produces solutions worse by up to 1.5% than the slow mode, but
this gap can be easily closed by the proposed DenseOpt postprocessing technique,
as documented in Section 3.5.

3.4 Planning with full vs. reduced sets

This subsection documents and evaluates the impact of reducing the set size (de-
scribed in Section 2.6.2) on the planning time and the quality of the solution. For
this purpose, the datasets tiles suf and tiles full are used. All problems
from the tiles full are present in the tiles suf, meaning that the same area
is being covered. However, the sampling density in the tiles suf problems is
much lower, as each subregion of 3× 3 meters is covered by the reduced Vsuf set
(120 vertices), rather than by the full and naively sampled Vval set (3824 vertices).

Figure 12 shows the planning time needed for solving all problems in both
datasets in the fast mode. The planning time is plotted against the number of sets
m, as the number of vertices n differs greatly for the same problems. First, even
though the planning times for the largest problems in the tiles full dataset are
not unacceptable (mean planning time is at most 167 seconds), the corresponding
graph ends at m = 20, as the dataset does not contain larger problems. This is due
to the fact that the limiting factor of the GLNSarc are the memory requirements
of storing all edge weights, not the planning time (at least in the fast mode). The
current implementation could handle instances with circa 8− 9× 104 vertices on
the hardware used. Second, the planning time needed for solving the tiles full

0 20 40 60 80 100

m

0

20

40

60

80

100

120

140

160

180

200

ti
m

e
 (

s
)

Planning time - full X reduced set

tiles_full: mean ± stdev

tiles_full: min, max

tiles_suf: mean ± stdev

tiles_suf: min, max

Fig. 12 Planning time comparison - full vs. reduced set

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 27

2 4 6 8 10 12 14 16 18 20

m

-0.15

-0.1

-0.05

0

0.05

0.1

w
e
ig

h
t
d
if
fe

re
n
c
e
 f
ro

m
 f
u
ll

s
e
t
p
ro

b
le

m
 (

%
)

Relative tour weight difference - full X reduced set

Fig. 13 Final tour weight comparison - full vs. reduced set

problems is significantly higher than for the tiles suf. According to [32], GLNS
time complexity in the fast mode in O(mn). The number of vertices n is a linear
function of m in both datasets, so the time complexity is O(m2), and the planning
times should differ by a constant factor c, which can be estimated to c = 300.

Figure 13 shows the difference in the final tour weight for those problems in
both datasets that are identical in terms of the number of sets and their distri-
bution in space. Its value is calculated as 100

wsuf−wfull

wfull
, where wfull is the mean

final weight for a problem from tiles full and wsuf is the mean final weight
for the corresponding problem from tiles suf. There is no apparent trend, but
it can be said that the mean final tour weight of a problem from tiles suf is at
most by 0.1% worse than its counterpart from tiles full and that this happens
only for three problems. In the case of the remaining instances, the score obtained
with Vsuf is equal to or better than the score obtained with Vval. When compared
to the relative differences across different planner modes shown in Figure 11, the
effects of using Vsuf instead of Vval have a negligible impact on the quality of
solution and the set size reduction described in 2.6.2 can be considered highly
beneficial. Given that problems with n = 75000 are solvable, the GLNSarc can
be applied to problems with 625 Vsuf sets, thus cover an area of 75 × 75 meters
(5625 m2). Without the reduction, the GLNSarc could store at most 20 Vval sets
covering an area of modest 180 m2. Naturally, the size of the area depends on the
parameters Is and IB , which are estimated during the initial UAV reconnaissance.
Their values in Table 3 used for Vval generation are taken from [23], where the
experiments were carried out in an area of cca 436 m2.

In conclusion, the proposed set reduction technique is necessary for solving
instances of reasonable size. It has only a negligible effect on the solution quality,
compared to planning with unreduced data.

28 David Woller , Miroslav Kulich

(a) before DenseOpt (b) after DenseOpt

Fig. 14 Solved problem tiles suf/4x4 1920

3.5 DenseOpt

This subsection documents the performance of the DenseOpt optimization de-
scribed in Section 2.7. DenseOpt is performed once the GLNSarc finishes planning
on the discretely defined problem and attempts to improve the tour weight by sam-
pling new previously unconsidered vertices in a close neighborhood of the vertices
present in the tour.

Figure 14 shows the solved problem 4x4 1920 before and after performing
DenseOpt. In this particular case, DenseOpt improves the tour weight by about
18%. Interestingly, it also almost entirely eliminates the mutual crossing of neigh-
boring circular segments, even though the results were obtained with edge type
line.

DenseOpt is run until there is no improvement in the tour weight and has only
one parameter Ns. This parameter determines how many times is every vertex
resampled in each DenseOpt iteration. Figure 15 shows the progress of tuning
this parameter on the dataset patterns in the fast mode, where the relative
mean tour weight improvement is plotted against the value of Ns. The improve-
ment is calculated as w(T)−wdense(T)

w(T) ; here, w(T) is the original mean tour weight

and wdense(T) is the mean weight after performing DenseOpt. The plot shows
the seemingly logarithmic growth of the relative improvement w.r.t. Ns. However,
the logarithmic interpolation plotted along the data reveals that the improvement
tends to slow down and lies below the interpolating function for Ns ≥ 250. This
is not surprising, as the relative improvement is bounded to be less than 100%,
while the limit of a logarithm on an arbitrary base is infinity. Figure 16 shows
the time requirements of the DenseOpt w.r.t. Ns. The dependency turns out to
be linear, thus the higher value of Ns (number of resampling attempts per ver-
tex) does not accelerate the convergence of the DenseOpt optimization towards a
local optimum. Instead, it presumably enables to reach the local optimum in the

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 29

continuous domain with higher precision, thus resulting in a slightly better final
score.

0 50 100 150 200 250 300 350 400

N
s
 parameter

4

4.5

5

5.5

6

6.5

7

7.5

M
e

a
n

 t
o

u
r

w
e

ig
h

t
im

p
ro

v
e

m
e
n

t
(%

)

Tuning DenseOpt - score improvement

mean improvement

logarithmic interpolation

Fig. 15 Tuning DenseOpt - score

Based on these observations, the parameter value is set to Ns = 300 in the
following experiments, which corresponds to a mean improvement of circa 7% and
an average duration of 1 second on the patterns dataset.

DenseOpt performance after parameter tuning is evaluated on the dataset
tiles suf. Figure 17 shows the final tour weight before and after DenseOpt
across the whole dataset. It can be observed that the plotted statistical properties
(minimum, maximum, and standard deviation) are not affected by the DenseOpt
in terms of distance from the mean. Figure 18 then shows the relative improvement.
The improvement is at least 10%, and it approaches 20% with increasing problem
size. When averaged across the whole dataset, the mean improvement slightly ex-
ceeds 18%. In contrast, the mean improvement on the patterns dataset shown
in Figure 15 in only about 7%. Therefore, the effect of DenseOpt is heavily de-
pendent on the problem structure. Individual sets in the tiles suf problems are
placed close together, whereas the sets in the patterns dataset are often sparsely
distributed across a larger area in small clusters and thus smaller improvements
can be achieved through local resampling of vertices.

Finally, Figure 19 shows the time requirements of DenseOpt compared to the
GLNSarc planning time w.r.t. m. DenseOpt times are interpolated with a quadratic
function; thus, the time complexity can be estimated as O(m2), given that all sets
are the same size. The same applies to the planning time, which is O(mn), therefore
O(m2) for fixed size sets. For smaller instances, DenseOpt requires more time than
planning. At 32 sets, the time requirements of planning and DenseOpt are both
circa 2.5 seconds, and for larger instances, planning time becomes dominant.

30 David Woller , Miroslav Kulich

0 50 100 150 200 250 300 350 400

N
s
 parameter

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ti
m

e
 (

s
)

Tuning DenseOpt - time requirements

denseOpt time

linear interpolation

Fig. 16 Tuning DenseOpt - time

0 2000 4000 6000 8000 10000 12000

n

0

50

100

150

200

250

300

350

400

450

w
e
ig

h
t
(-

)

Tour weight - before and after denseOpt

orig. weight: mean ± stdev

orig. weight: min, max

after denseOpt: mean ± stdev

after denseOpt: min, max

Fig. 17 Tuned DenseOpt performance - absolute

It was shown in Section 3.3, that solving the tiles suf instances in slow
mode yields at most by 2.5% better score than the fast mode and by 1.5% than the
default mode. In both cases, the improvement attainable by DenseOpt is several
times higher and obtained at a fraction of the additional planning time required
by a slower planner mode. Therefore, using the DenseOpt is highly beneficial, as
it enables to fundamentally reduce the computation time dedicated for solving the

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 31

0 2000 4000 6000 8000 10000 12000

n

10

12

14

16

18

20

22

24

26

28

30

w
e

ig
h

t
d

if
fe

re
n

c
e

 (
%

)

Tour weight - rel. improvement after denseOpt

Fig. 18 Tuned DenseOpt performance - relative

0 20 40 60 80 100

m

-10

0

10

20

30

40

50

60

ti
m

e
 (

s
)

DenseOpt time complexity

mean planning time

quadratic interpolation

mean denseOpt time

quadratic interpolation

Fig. 19 Tuned DenseOpt time requirements

underlying discrete optimization problem and obtain a better quality solution in
the continuous domain.

32 David Woller , Miroslav Kulich

3.6 Set reduction for various edge types

The procedure for sampling valid vertices described in Section 2.6.1 produces a set
of 3824 vertices, denoted as Vval. This set was then reduced to Vsuf (Section 2.6.2),
a sufficient set of valid vertices generated for edge type line. Using Vsuf instead of
Vval was then experimentally shown to be highly beneficial in Section 3.4, while
planning with the edge type line. This subsection presents the results of the set
reduction for the edge type lineWA with various angle-weighting constants k.

While generating Vsuf for edge type line, the reduction procedure terminated
as proposed, i.e., when there was no further increase in the set size after refin-
ing both parameters size and posRes of the reduction grid (Section 2.6.2). In
the case of lineWA, the set reduction procedure turned out to be excessively
time-consuming, as the reduction grid has one more parameter angleRes and is
effectively 3-dimensional. Therefore, the reduction for lineWA variants was ter-
minated after posRes was refined to 0.5 meter and angleRes remained at initial
value π

6 .
The generated sets are shown in Figure 20 and their sizes given in Table 5.

Figure 20 shows the previously used Vsuf generated for edge type line. Figures 20b-
f show the reduced set for lineWA with various values of angle weight k. It can
be observed that the generated set size increases together with k. For k = 0.1, the
generated set contains 184 vertices, whereas for k = 10, it contains 3684 vertices
out of 3824 vertices originally present in Vval. An explanation for this trend is that
the lineWA edge is weighted according to Equation 4. As the angles δi and δj
are assigned greater weight k, the influence of the distance between neighboring
vertex endpoints and vertex length decreases. The edge weights then no longer
correspond to Euclidean distances, and every vertex is potentially usable given
that its endpoints are suitably oriented. Thus, no significant reduction can be
achieved for high values of k.

In conclusion, the proposed set reduction technique enables a significant re-
duction of the vertex sets, which is crucial for solving larger instances. However,
the reduction is most effective for metric edge weighting.

Edge type Angle weight k Vsuf size
line 0 120
lineWA 0.1 184
lineWA 0.5 416
lineWA 1 634
lineWA 5 2366
lineWA 10 3684

Table 5 Vsuf size for various edge types

3.7 Planning with various edge types

Planning with the edge type lineWA was tested on one problem from the dataset
tiles suf and on the whole patterns dataset. These datasets are based on the
Vsuf set generated for the edge type line. In a real application, problems should be

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 33

(a) line (b) lineWA, k = 0.1 (c) lineWA, k = 0.5

(d) lineWA, k = 1 (e) lineWA, k = 5 (f) lineWA, k = 10

Fig. 20 Vsuf for various edge types

based on Vsuf generated for the edge type used later in planning. However, creating
a separate dataset for each edge type would distort the following comparison of
planner performance, as the equivalent problems in different datasets would greatly
vary in the number of vertices.

Figure 21 shows the problem tiles suf/4x4 1920 solved with four different
angle weights k in edge type lineWA after performing DenseOpt. In the case of
the smallest value k = 0.5, the final tour does not differ much from the solution
for edge type line, which is shown in Figure 14. With the increasing value of the
constant k, the tour is being straightened at the cost of increasing its Cartesian
length, as the algorithm minimizes costly turning maneuvers. For k = 10, the
black straight line segments (edges) smoothly connect to the red circular segments
(vertices), and the trajectory resembles a Dubins path, even though this property
is generally not guaranteed.

Another interesting trend is revealed in Figure 22, which shows the mean num-
ber of iterations needed per problem averaged over the whole patterns dataset
for different values of k. All problems in the patterns dataset have similar size,
ranging between 24 and 32 sets of 120 vertices. The mean number of iterations
starts at circa 5000 for k = 0.1 and increases slightly above 5500, where it set-
tles for k > 5. The GLNSarc terminates after a fixed number of nonimproving
iterations in each warm restart, and the results presented indicate that for higher

34 David Woller , Miroslav Kulich

(a) lineWA, k = 0.5 (b) lineWA, k = 1

(c) lineWA, k = 5 (d) lineWA, k = 10

Fig. 21 Solved 4x4 1920 with various edge types

values of k, more iterations are needed to achieve that point. In other words, the
local optimum is more difficult to reach.

An explanation for this is that the sets in the dataset patterns are spatially
clustered, and the edge weights are close to Euclidean distances for small values of
k. Both of these properties gradually cease to apply, and for k > 5, the edge weights
are determined primarily by the mutual orientation of vertex endpoints. Thus,
the GTSParc instances become nonmetric, i.e., they do not satisfy the triangle
inequality. Thus, the problems are more difficult to solve, and the planning time
increases proportionally to the number of iterations.

In summary, planning with various edge types can be used to produce smooth
trajectories, although without guarantee. Using nonmetric edge weighting increases
the computational requirements, but not significantly.

3.8 Planning with obstacles

The experimental work [24] motivating the development of GLNSarc assumed that
the terrain is obstacle-free, as its primary focus was on determining the accuracy of
the STE. This assumption is generally too strong for practical deployment. How-
ever, GLNSarc can be directly used for planning in an environment with obstacles,
given that a map of the environment is available. There are two extra steps needed
before the actual planning, both concerning the preparation of input data.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 35

0 2 4 6 8 10 12 14 16

Angle weight k

5000

5100

5200

5300

5400

5500

5600

it
e

ra
ti
o

n
s
 (

-)

Planning with lineWA - no. of iterations

Fig. 22 Planning time for various edge types

(a) outdoor map (b) indoor map

Fig. 23 Planning with obstacles

First, vertices colliding with obstacles in the map must be removed from the
instance. Second, the edges connecting the vertices must be planned to avoid the
obstacles. For both steps, the VisiLibity1[29] C++ library was used. This library
allows for collision checking and shortest path planning in a provided polygonal
map. A single edge then corresponds either to a straight line or to a sequence of
multiple straight lines avoiding obstacles, whereas its weight is determined as the
length of the line or the sequence of lines. In the following examples, the angle
weighting constant k is set to zero; thus, sharp turning is not penalized here.

36 David Woller , Miroslav Kulich

Figure 23a shows a planned path on an outdoor map potholes from the
dataset [20]. Similarly to the previous figures, the black segments correspond to
edges, red segments to vertices (circular arcs, where the measurements are taken),
and green squares to subregions covered by a single vertex. The grey polygons then
correspond to an impassable terrain. It is assumed here that these polygons do not
affect the radiation propagation. Therefore, the sources can be located anywhere
on the map, including the polygons.

Figure 23b shows a planned path in an indoor environment. Here, the walls are
considered impassable for radiation. Thus, only such vertices that do not collide
with a wall and are located in the same room as the covered green subregion are
used for planning.

These examples are meant to illustrate that the GLNSarc is not limited to
planning in an obstacle-free outdoor environment. Application in more realistic
environments is straightforward and the only additional step is the extraction of
invalid vertices from the problem instance.

4 Conclusions

A new planning problem with a background in the search of sources of gamma
radiation by a UGV in an outdoor environment was formulated as a GTSP variant
and named GTSParc. GTSParc is a combinatorial optimization task in the space
of maneuvers guaranteeing source detection in preselected regions. To solve this
problem in the discrete domain, a state of the art GTSP solver called GLNS was
modified and adapted for the application - the new solver is referred to as GLNSarc.

The paper describes all necessary modifications of the GLNS and evaluates the
GLNSarc performance in multiple experiments on three generic datasets. These
datasets are made publicly available at [38]. Method performance is documented
to be sufficient for deployment in the motivating application, both in terms of
time requirements and scalability. To achieve this, two additional components are
proposed. The first one is a preprocessing technique, which significantly reduces
the GLNSarc input data size based on vertex utilization analysis. The technique
is shown to have a negligible effect on the solution quality and enables solving
instances an order of magnitude larger, thus exploring a larger area. The second
one is a postprocessing technique called DenseOpt, which refines the GLNSarc

obtained solution in the continuous domain. The DenseOpt proves to be a more
time-efficient way of further improving the solution quality than using a slower
GLNSarc mode or denser vertex sampling. Moreover, two variants of edge weight-
ing are considered and compared - Euclidean (line) and Euclidean with weighted
angles (lineWA). It is also demonstrated that GLNSarc can be used for planning
in the polygonal domain with obstacles. These setups document the applicability
of GLNSarc while considering different vehicle models or environments.

The development of GLNSarc was motivated by the experimental work de-
scribed in [24]. The authors of [24] designed a multirobotic system consisting of
a UAV and a UGV, deployed it in real-world experiments, and evaluated the ac-
curacy of the detection. The UAV was used for fast identification of regions of
interest, and the UGV subsequently performed accurate localization in the pres-
elected regions. However, planning the UGV trajectory in this scenario relied on
a human operator, which does neither guarantee the source detection nor does it

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 37

produce optimized trajectories. The GLNSarc is designed to automate the plan-
ning of the UGV trajectory, while guaranteeing the detection in all preselected
regions and producing a near-optimal trajectory. The GLNSarc is unique in this
combination of criteria.

Concerning future work - the GLNSarc can be directly applied to planning
with splines, Dubins curves, or in environments with obstacles that are not polyg-
onal, given that the trajectory segment weights are precomputed. The main issue
arising here is the time demand of the weight precomputing. Comparing these vari-
ants thoroughly would provide a valuable insight into the applicability of discrete
optimization techniques in similar robot routing problems.

Acknowledgements

This work has been supported by the European Regional Development Fund un-
der the project Robotics for Industry 4.0 (registration no. CZ.02.1.01/0.0/0.0/15
003/0000470). The work of David Woller has been also supported by the Grant
Agency of the Czech Technical University in Prague, grant SGS18/206/OHK3/3T
/37.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in
this paper.

References

[1] Muhammad Asif Arain et al. “Global coverage measurement planning strate-
gies for mobile robots equipped with a remote gas sensor”. In: Sensors
(Switzerland) 15.3 (2015), pp. 6845–6871. issn: 14248220. doi: 10.3390/
s150306845.

[2] Joseph R. Bourne, Eric R. Pardyjak, and Kam K. Leang. “Coordinated
Bayesian-Based Bioinspired Plume Source Term Estimation and Source Seek-
ing for Mobile Robots”. In: IEEE Transactions on Robotics 35.4 (Aug. 2019),
pp. 967–986. issn: 19410468. doi: 10.1109/TRO.2019.2912520.

[3] Weizhe Chen and Lantao Liu. “Pareto Monte Carlo Tree Search for Multi-
Objective Informative Planning”. In: Robotics: Science and Systems XV.
2019. doi: 10.15607/rss.2019.xv.072.

[4] Gordon Christie et al. “Radiation search operations using scene understand-
ing with autonomous UAV and UGV”. In: Journal of Field Robotics 34.8
(Dec. 2017), pp. 1450–1468. issn: 15564959. doi: 10.1002/rob.21723.

[5] Lars Erik De Geer. “Currie detection limits in gamma-ray spectroscopy”.
In: Applied Radiation and Isotopes 61.2-3 (Aug. 2004), pp. 151–160. issn:
09698043. doi: 10.1016/j.apradiso.2004.03.037.

[6] Michael Drexl and Johannes Gutenberg. On the generalized directed rural
postman problem. Tech. rep. Gutenberg School of Management and Eco-
nomics, 2012.

https://doi.org/10.3390/s150306845
https://doi.org/10.3390/s150306845
https://doi.org/10.1109/TRO.2019.2912520
https://doi.org/10.15607/rss.2019.xv.072
https://doi.org/10.1002/rob.21723
https://doi.org/10.1016/j.apradiso.2004.03.037

38 David Woller , Miroslav Kulich

[7] Jemimah Ebenezer and Satya Murty. “Deployment of wireless sensor net-
work for radiation monitoring”. In: 2015 International Conference on Com-
puting and Network Communications (CoCoNet 2015). Institute of Electrical
and Electronics Engineers Inc., Feb. 2016, pp. 27–32. isbn: 9781467373098.
doi: 10.1109/CoCoNet.2015.7411163.

[8] Gabriele Ferri et al. “Explorative particle swarm optimization method for
gas/odor source localization in an indoor environment with no strong air-
flow”. In: 2007 IEEE International Conference on Robotics and Biomimetics,
ROBIO. IEEE Computer Society, 2007, pp. 841–846. isbn: 9781424417582.
doi: 10.1109/ROBIO.2007.4522272.

[9] Matteo Fischetti, Juan José Salazar González, and Paolo Toth. “A branch-
and-cut algorithm for the symmetric generalized traveling salesman prob-
lem”. In: Operations Research 45.3 (1997), pp. 378–394. issn: 0030364X.
doi: 10.1287/opre.45.3.378.

[10] Matteo Fischetti, Juan José Salazar González, and Paolo Toth. “The sym-
metric generalized traveling salesman polytope”. In: Networks 26.2 (1995),
pp. 113–123. issn: 10970037. doi: 10.1002/net.3230260206.

[11] Petr Gabrlik and Tomas Lazna. “Simulation of Gamma Radiation Mapping
Using an Unmanned Aerial System”. In: IFAC-PapersOnLine 51.6 (2018),
pp. 256–262. issn: 24058963. doi: 10.1016/j.ifacol.2018.07.163.

[12] Gregory Gutin and Daniel Karapetyan. “A memetic algorithm for the gen-
eralized traveling salesman problem”. In: Natural Computing 9.1 (2010),
pp. 47–60. issn: 15677818. doi: 10.1007/s11047-009-9111-6. arXiv:
0804.0722.

[13] Jinlu Han et al. “Low-cost multi-UAV technologies for contour mapping
of nuclear radiation field”. In: Journal of Intelligent and Robotic Systems:
Theory and Applications 70.1-4 (Apr. 2013), pp. 401–410. issn: 09210296.
doi: 10.1007/s10846-012-9722-5.

[14] Keld Helsgaun. “An effective implementation of the Lin-Kernighan travel-
ing salesman heuristic”. In: European Journal of Operational Research 126
(2000), pp. 106–130.

[15] Keld Helsgaun. GTSP problem libraries BAF, MOM and GTSP+. http:
//akira.ruc.dk/˜keld/research/GLKH/. accessed 2020-02-03. 2013.

[16] Keld Helsgaun. “Solving the equality generalized traveling salesman prob-
lem using the Lin–Kernighan–Helsgaun Algorithm”. In: Mathematical Pro-
gramming Computation 7.3 (Sept. 2015), pp. 269–287. issn: 18672957. doi:
10.1007/s12532-015-0080-8.

[17] Geoffrey Hollinger and Gaurav Sukhatme. “Sampling-based Motion Plan-
ning for Robotic Information Gathering”. In: Robotics: Science and Systems.
2016. doi: 10.15607/rss.2013.ix.051.

[18] Holger H. Hoos and Thomas Stützle. “On the empirical scaling of run-time
for finding optimal solutions to the travelling salesman problem”. In: Eu-
ropean Journal of Operational Research 238.1 (Oct. 2014), pp. 87–94. issn:
03772217. doi: 10.1016/j.ejor.2014.03.042.

[19] Jason T. Isaacs and João P. Hespanha. “Dubins traveling salesman prob-
lem with neighborhoods: A graph-based approach”. In: Algorithms 6.1 (Feb.
2013), pp. 84–99. issn: 19994893. doi: 10.3390/a6010084. url: http:
//www.mdpi.com/1999-4893/6/1/84.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889
https://doi.org/10.1109/CoCoNet.2015.7411163
https://doi.org/10.1109/ROBIO.2007.4522272
https://doi.org/10.1287/opre.45.3.378
https://doi.org/10.1002/net.3230260206
https://doi.org/10.1016/j.ifacol.2018.07.163
https://doi.org/10.1007/s11047-009-9111-6
https://arxiv.org/abs/0804.0722
https://doi.org/10.1007/s10846-012-9722-5
http://akira.ruc.dk/~keld/research/GLKH/
http://akira.ruc.dk/~keld/research/GLKH/
https://doi.org/10.1007/s12532-015-0080-8
https://doi.org/10.15607/rss.2013.ix.051
https://doi.org/10.1016/j.ejor.2014.03.042
https://doi.org/10.3390/a6010084
http://www.mdpi.com/1999-4893/6/1/84
http://www.mdpi.com/1999-4893/6/1/84

Path Planning Algorithm Ensuring Accurate Localization of Radiation Sources 39

[20] M. Kalisiak and J. Faigl. Motion planning maps - dataset. http://agents.
fel.cvut.cz/˜faigl/planning/. accessed 2020-07-07. 2013.

[21] Gilbert Laporte, Ardavan Asef-Vaziri, and Chelliah Sriskandarajah. “Some
applications of the generalized travelling salesman problem”. In: Journal of
the Operational Research Society 47.12 (1996), pp. 1461–1467. issn: 14769360.
doi: 10.1057/jors.1996.190.

[22] Gilbert Laporte and Yves Nobert. “Generalized traveling salesman problem
through n sets of nodes: an integer programming approach”. In: INFOR:
Information Systems and Operational Research 21.1 (1983), pp. 61–75. issn:
03155986. doi: 10.1080/03155986.1983.11731885.

[23] Tomas Lazna. “Optimizing the localization of gamma radiation point sources
using a UGV”. In: 2018 ELEKTRO Conference Proceedings. Institute of
Electrical and Electronics Engineers Inc., June 2018, pp. 1–6. doi: 10.1109/
ELEKTRO.2018.8398368.

[24] Tomas Lazna et al. “Cooperation between an unmanned aerial vehicle and
an unmanned ground vehicle in highly accurate localization of gamma ra-
diation hotspots”. In: International Journal of Advanced Robotic Systems
15.1 (Jan. 2018), p. 172988141775078. issn: 17298814. doi: 10 . 1177 /
1729881417750787.

[25] Achim Lilienthal, Amy Loutfi, and Tom Duckett. “Airborne Chemical Sens-
ing with Mobile Robots”. In: Sensors 6.11 (Nov. 2006), pp. 1616–1678. issn:
1424-8220. doi: 10.3390/s6111616.

[26] Zheng Liu, Shiva Abbaszadeh, and Clair Julia Sullivan. “Spatial-temporal
modeling of background radiation using mobile sensor networks”. In: PLOS
ONE 13.10 (Oct. 2018). Ed. by Raghuraman Mudumbai. issn: 1932-6203.
doi: 10.1371/journal.pone.0205092.

[27] A. Miller, R. Machrafi, and A. Mohany. “Development of a semi-autonomous
directional and spectroscopic radiation detection mobile platform”. In: Ra-
diation Measurements 72 (Jan. 2015), pp. 53–59. issn: 13504487. doi: 10.
1016/j.radmeas.2014.11.009.

[28] Charles E. Noon and James C. Bean. “An efficient transformation of the
generalized traveling salesman problem”. In: INFOR: Information Systems
and Operational Research 31.1 (1993), pp. 39–44. issn: 0315-5986. doi: 10.
1080/03155986.1993.11732212.

[29] K. J. Obermeyer and Contributors. VisiLibity: A C++ Library for Vis-
ibility Computations in Planar Polygonal Environments. http://www.
VisiLibity.org. accessed 2020-07-07. 2008.

[30] Petrica C. Pop. “New integer programming formulations of the generalized
travelling salesman problem”. In: American Journal of Applied Sciences 4.11
(2007), pp. 932–937. issn: 15543641. doi: 10.3844/ajassp.2007.932.
937.

[31] Jose de Julio Rozental. “Two decades of radiological accidents direct causes,
roots causes and consequences”. In: Brazilian Archives of Biology and Tech-
nology 45.spe (Sept. 2002), pp. 125–133. issn: 1516-8913. doi: 10.1590/
s1516-89132002000500018.

[32] Stephen L. Smith and Frank Imeson. “GLNS: An Effective Large Neighbor-
hood Search Heuristic for the Generalized Traveling Salesman Problem”. In:
Computers & Operations Research 87 (2017), pp. 1–19.

http://agents.fel.cvut.cz/~faigl/planning/
http://agents.fel.cvut.cz/~faigl/planning/
https://doi.org/10.1057/jors.1996.190
https://doi.org/10.1080/03155986.1983.11731885
https://doi.org/10.1109/ELEKTRO.2018.8398368
https://doi.org/10.1109/ELEKTRO.2018.8398368
https://doi.org/10.1177/1729881417750787
https://doi.org/10.1177/1729881417750787
https://doi.org/10.3390/s6111616
https://doi.org/10.1371/journal.pone.0205092
https://doi.org/10.1016/j.radmeas.2014.11.009
https://doi.org/10.1016/j.radmeas.2014.11.009
https://doi.org/10.1080/03155986.1993.11732212
https://doi.org/10.1080/03155986.1993.11732212
http://www.VisiLibity.org
http://www.VisiLibity.org
https://doi.org/10.3844/ajassp.2007.932.937
https://doi.org/10.3844/ajassp.2007.932.937
https://doi.org/10.1590/s1516-89132002000500018
https://doi.org/10.1590/s1516-89132002000500018

40 David Woller , Miroslav Kulich

[33] Preetma Kaur Soin et al. “Application of a novel search method to handheld
gamma radiation detectors”. In: IEEE Sensors Journal (Oct. 2019), pp. 1–1.
issn: 1530-437X. doi: 10.1109/jsen.2019.2945314.

[34] J. Uher et al. “Directional radiation detector”. In: IEEE Nuclear Science
Symposium Conference Record. Vol. 2. 2007, pp. 1162–1166. isbn: 1424409233.
doi: 10.1109/NSSMIC.2007.4437213.

[35] Marcia Wendorf. ”Broken Arrows” - The World’s Lost Nuclear Weapons.
shorturl.at/ryBLO. June 2020.

[36] Spencer Wheatley, Benjamin K. Sovacool, and Didier Sornette. “Reassessing
the safety of nuclear power”. In: Energy Research and Social Science 15 (May
2016), pp. 96–100. issn: 22146296. doi: 10.1016/j.erss.2015.12.026.

[37] Thomas Wiedemann, Dmitriy Shutin, and Achim J. Lilienthal. “Model-
based gas source localization strategy for a cooperative multi-robot sys-
tem—A probabilistic approach and experimental validation incorporating
physical knowledge and model uncertainties”. In: Robotics and Autonomous
Systems 118 (Aug. 2019), pp. 66–79. issn: 09218890. doi: 10.1016/j.
robot.2019.03.014.

[38] David Woller. GTSP with arcs - 3 datasets. http://imr.ciirc.cvut.
cz/Datasets/GTSP-arc. accessed 2020-02-03. 2019.

[39] Abd Hafiz Zakaria et al. “Development of autonomous radiation mapping
robot”. In: Procedia Computer Science. Vol. 105. Elsevier B.V., 2017, pp. 81–
86. doi: 10.1016/j.procs.2017.01.203.

https://orcid.org/0000-0001-8809-3587
https://orcid.org/0000-0002-0997-5889
https://doi.org/10.1109/jsen.2019.2945314
https://doi.org/10.1109/NSSMIC.2007.4437213
shorturl.at/ryBLO
https://doi.org/10.1016/j.erss.2015.12.026
https://doi.org/10.1016/j.robot.2019.03.014
https://doi.org/10.1016/j.robot.2019.03.014
http://imr.ciirc.cvut.cz/Datasets/GTSP-arc
http://imr.ciirc.cvut.cz/Datasets/GTSP-arc
https://doi.org/10.1016/j.procs.2017.01.203

	Introduction
	Methods
	Results
	Conclusions

