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Abstract

Having the ability of generating people images in ar-

bitrary, yet admissible, pose is a crucial prerequisite for

Autonomous Driving applications. Firstly, because the ex-

isting datasets are quite limited in the human pose varia-

tion and appearance. Secondly, because the strict safety

requirements call for the ability of validation on rare sit-

uations. Generating realistically looking people images is

very challenging problem due to various transformations of

individual body parts [2, 6] self occlusions etc. We propose

a novel approach for person image generation. Our ap-

proach allows generating people images in a required pose,

indicated by speci c pose keypoints and deals with occlu-

sions. We build on top of the recent prevailing success of

Generative Adversarial Networks [10]. Our contributions

comprise of the networks architecture, as well as the novel

loss terms speci cally designed to generate visually appeal-

ing pedestrians tting the surrounding environment well.

1. Introduction

Good quality data are the basis of every system based

on statistical machine learning and should be a representa-

tive sample of the world. Usually, we do not get such good

quality data due to limited resources for capturing and an-

notation, or inability to identify all the use cases in advance.

The need for diverse high-quality datasets is essential in

the automotive industry due to the high expectations to han-

dle complex situations under all conditions (weather, day-

time, glare, etc.) due to a high safety requirement and relia-

bility of automated driving assistance systems.

In this paper, we present a method for controlled dataset

augmentation by synthesizing person images and merging

with the background by a specially trained Generative Ad-

versarial Network (GAN), see Figure 1. We aim at images

in the wild. There are no assumptions on the background,

visibility of body parts to be generated, the number of peo-

ple present in images (at training time nor inference) or

lighting conditions. Our generator is able to produce lumi-

nance consistent people images tting the background that

Figure 1: Person image generating framework.

do not break the overall contrast and brightness.

Our contribution is as follows: 1) Novel GAN topology

and loss term, 2) From a background crop and pose key-

points we generate a person image and realistically merge it

into the background, and: a) generate a person at the place

of original one, which is very handy nowadays because of

the recent changes due to GDPR rules or b) generate real-

istic people painting into an arbitrary image with complex

occlusions (even non-compact polygons). This is bene -

cial, e.g., for generating partially occluded pedestrians, that

are typically problematic in a pedestrian detection task.

2. Problem Formulation and Related Work

We build on top of GANs, as proposed by [9] and fol-

lowed by many authors [1, 18, 30, 7, 22, 33, 5, 26, 28, 21].

In our setup, beside a latent vector, we provide as input also

the background image and speci c pose key points.

In [14], they propose to grow both the generator and

discriminator progressively, starting from a very coarse res-

olution up to super-resolution patches. The core idea is that

the networks are trained to capture ner and ner details

via progressively increasing complexity of the network ar-

chitecture. We make use of this method in our approach.

A novel normalization layer called SPADE working with

a given semantic map input is proposed in [25]. This layer

applies spatially varying af ne transformation. We adopt

this principle and use it in the generator, see section 3. The

most relevant works in the eld of person image synthesis

are [6, 2, 20, 19, 8, 24, 3, 15]. We highlight the main ideas



and key differences to our work in the following section.

In [19], they train one generator to get a coarse blurry

image that is re ned by the second generator. In contrast to

our solution, their approach requires a person image as an

input. Our approach uses the proposed mask just to blend

the generated image to the original one.

Soft-gated Warping-GAN [6] proposes a two-step ap-

proach. Similarly to us, they enforce the foreground gener-

ator to generate the person silhouette (mask) as a part prod-

uct of the generator. The disadvantage of their approach is

that it deforms the background image behind the person and

renders the whole image.

In [2], the authors use segmentation of the condition im-

age into several foreground layers. At the input of their fore-

ground generator, there are already masked out target poses

aligned human body parts and target pose keypoints. In our

case, the input consists of a sampled latent vector, target

pose keypoints, and background image only. Our approach

solves a more general problem as it does not impose any

limitations on the number of object parts and their segmen-

tation, and does not explicitly model the spatial transforma-

tions. Hence it can be used for generating partially occluded

people, which can be bene cial in generating challenging

samples.

The U-Net architecture [29] was adopted as a part of the

overall topology by several authors [20, 19, 8] including us.

In [20] for a person image at the input they give the user

control of the type of generated change - (a) foreground, (b)

background and (c) person pose in any combination.

The quality of results of every machine learning system

strongly depends on amounts and quality of training data.

We use 7 380 images (128×128) from MS COCO dataset,

see Section 4. That is considerably less than in [15] they use

(14 411 samples, 256×256) and in [6] (378 352 samples,

256×256) from fashion datasets. We did not use the fash-

ion datasets because: (1) pose keypoints are not available,

(2) none of them have variable and realistic background

which we need for our method for merging and luminance

consistency, (3) fashion datasets have a strong bias towards

women images (e.g., [15] generates women images only)

and towards specic frontal poses with completely unsatis-

factory pose variation.

The authors of [16] train the network to insert an object

instance into an image in a semantically coherent manner.

For this task, they propose an end-to-end trainable network

that consists of two generative modules. One module de-

termines where the inserted object mask should be (i.e., lo-

cation and scale) and the other determines what the object

mask shape should look like. This network can be used in

our pipeline to predict the locations of pedestrians.

3. Pedestrian Generating GAN

The overall scheme of our framework is depicted in Fig-

ure 1. All 4 networks in our person generation pipeline are

trained in an adversarial manner. For the results of person

synthesis in the wild, see Figure 3.

Person Style Encoder, yellow in Figure 1, takes person

images with masked-out background on the input. It is im-

plemented as a CNN that produces the mean and the vari-

ance of the output distribution N (0,1) that is enforced by

the Kullback-Leibler (KL) divergence in the loss function.

It is depicted in detail in supplementary materials.

The Mask Estimation Network, red in Figure 1, is used

for predicting which pixels should be taken from the gener-

ated images and inserted to the original one. The input to

this network consists of keypoint locations that are encoded

in 17 channels (one channel per key point), see Figure 2.

This network has a U-Net architecture [29], and the idea of

progressive growing [14] is applied to the decoder. The out-

put of this network is a one-channel mask M [0, 1]H×W ,

where (H,W ) are the height and the width of the result-

ing image, respectively. Having the values in the range of

[0, 1] brings the possibility to control the borders of the syn-

thesized person better, and results in more realistic-looking

images than in the case of a simple crop by the original

mask. Once the mask M is computed, it is used for merg-

ing the generated image IG and the input image IIN into

the resulting IRES . The resulting image is composed as

IRES = M IG + (I M) IIN (1)

Figure 2: Keypoints are passed through the U-Net to gen-

erate the mask used for blending. Original mask shown for

comparison only.

The estimated mask does not precisely match the origi-

nal one since it does not have any information about cloth-

ing, carried objects, or occlusions. The mask generator is

trained simultaneously with the complete framework. The

original mask is not used in training at all, and there is no

term in the loss function enforcing its reconstruction.

SPADE Generator Topology The SPADE Generator

combines the SPADE residual block proposed in [25] with

the idea of progressive growing. It is depicted in detail in

the appendix. As an input it takes a latent vector z R
d

sampled from N (0, I) that is either randomly drawn from

the distribution or obtained with the use of the image en-

coder. This allows us to have better control over the gener-

ated person appearance since the generation can be guided

by this encoder. This input is reshaped, passed through



Figure 3: Generated people in the wild by our method.

fully-connected layer and further to the convolutional lay-

ers. Then it applies n SPADE residual blocks, each fol-

lowed by a bilinear upsampling. This allows us to per-

form progressive growing with the resulting image size of

s = 4·2n. After these n upsampling blocks, the N resulting

feature maps are passed to a 3 × 3 convolutional layer fol-

lowed by a hyperbolic tangent activation that maps it from

N to 3 channels that correspond to RGB color channels.

The topology of the SPADE residual block is similar to

the one proposed in [25]. However, we differ in the input,

which consists of keypoint locations and the background.

Patch Discriminator Topology We leverage the idea of

the patch discriminator that was proposed in [12]. It re-

stricts the discriminator attention to the structure in local

image patches only and aims to classify each M × M im-

age patch. This discriminator is run across the image con-

catenated with keypoint locations and the responses are av-

eraged on the output.

Training Algorithm and Proposed Loss Term The

topology of the whole framework capturing the training pro-

cedure is shown in Figure 1. SPADE generator, patch dis-

criminator, and mask estimation networks are trained pro-

gressively from the resolution of 8 × 8 pixels to the nal

128× 128 pixels (5 upsampling blocks). We use the blend-

ing of the new blocks as in [14].

For adversarial training, we use the Improved Wasser-

stein loss (WGAN-GP) [11] for its stability. In order to

enforce the N (0,1) distribution generated from person im-

ages in the Person Style Encoder, we use the KL divergence.

We propose a novel loss term, which we call L1 Edge

Loss, that is based on the Local Binary Pattern (LBP) fea-

tures [23], and that forces the generator to generate samples

with a stronger edge structure.

This loss is computed over the masked-out grayscale im-

age of a person. We compute the so-called soft LBP features

vector, encoding the information about present edges. In

the L1 Edge loss, we compute the L1 distance between this

vector and the vector obtained from the generated image.

To justify the use of this new loss instead of a standard L1

loss we compute the FID scores: 96.15 L1 loss and 94.59
for L1 edge loss.

The soft LBP feature vector is a non-thresholded ver-

sion of standard LBPs and is obtained as follows. For every

pixel, we obtain a feature vector f [ 1, 1]8, correspond-

ing to the image gradient in that pixel. This can be ef -

ciently implemented by a convolution with the lter of size

1 × 8 × 3 × 3 as in [13] that is applied to a grayscale im-

age. The advantage of the L1 Edge Loss is that it only keeps

the local information about the image gradient and it pays

no attention to the color information, unlike the standard

identity-preserving losses.

We further use two feature matching losses: the rst one

compares the features of real and generated samples ob-

tained from the discriminator and the second one from a

pre-trained VGG19 network [31].

4. Experiments

COCO dataset For the evaluation of the proposed sys-

tem, a custom dataset was created from the COCO dataset

[17] which contains images of people with pixel-wise anno-

tations and key points – a crucial aspect needed for the pose

generation. Only images of standing people of the mini-

mum height of 100 px were kept and scaled to 128 × 128
px. With larger height, the network can be trained to gener-

ate images of higher resolution, but the number of samples

in the training set will decrease. Each sample in the new

dataset contains: an image with the person masked out; a

binary mask extracted from the annotation; a soft mask with

values in range [0, 1] estimated from the key points; the key

points in the form of a 17-channel tensor (one channel per

keypoint). We collected 7380 samples. Examples from the

dataset can be found in the appendix.

Cityscapes dataset We collected cropped images of size

128 × 128 px containing pedestrians from the training and

validation split of the Cityscapes dataset [4]. We used the

annotations from [34]. The resulting training set contains

19, 237 images of pedestrians. Since the [34] annotations

do not contain annotations for the test set, we split the val-

idation set in half. This results in the validation set with

1, 926 samples and in the test set of size 1, 925. Each set

contains the same amount of the negative samples that don’t

contain pedestrians that were cropped randomly from the

image such that they don’t contain the bounding box of an

annotated pedestrian. This dataset was not used for training.

Generated samples We experimented with extending the

dataset of real pedestrians with the synthesized people im-

ages. First, for each scene in the dataset, we obtained 5 lo-

cations that would likely contain a pedestrian by [16]. Then,

in these positions, we generated a person in a random pose

with our proposed network. To compare the results, we also

used [32]. Our method uses only the information about the

position from initialization by [16]. The pose keypoints are

selected randomly from test annotations. In contrast, [32]



(a) Result by our method.

(b) Result by [32]

Figure 4: Comparison of the resulting scene with inserted

pedestrians generated by our method (4a) and by [32] (4b).

Figure 5: Generated samples with occlusions. No post-

processing was used.

uses the person silhouette as well and was trained on the

Cityscapes dataset while our network was trained on COCO

dataset. For comparison, see Figure 4.

Evaluation of the Generated Samples Quality It is

complicated to evaluate the quality of generated samples as

it is hard to quantify and is application dependent. Since

our primary goal is to improve the performance of detec-

tion algorithms, we did test the performance of the proposed

method on such an algorithm rst. To evaluate the visual

appearance and realism of the generated images, we per-

formed a user study in the form of a survey that can be found

in the supplementary materials. We also experimented with

augmenting the training set with generated samples. In Fig-

ure 5, you may observe generated samples with occlusions.

Person detector score for samples quality evaluation

We used the pretrained YOLOv3 [27] as the human detec-

tor. The mean IoU was 0.765 for real images and 0.657 for

generated images. The detector performed better on the

original images. However, we claim that the difference is

suf ciently small to state that the approach is promising.

Augmenting training set with person generator As our

primary goal is to provide means to augment existing

datasets, we tested the performance of a CNN classi er

trained on a pure dataset vs. a dataset augmented with our

method. The classi er has 6729 parameters (realistic size

for slow DSP processor in a car) and is trained from scratch.

We test the in uence of the augmentation based on

the size of both the baseline dataset (with real images)

and the synthesized dataset (generated images). We use

10, 20, 35, 50, 75 and 100 percent of the samples from the

cityscapes dataset. We compare the training with samples

generated by our system and with samples generated by

[32] as described in 4. Note that our method is trained on

the samples from the different dataset in contrast to [32]

which is trained on the samples from the complete baseline

dataset. Thus, using [32] may better capture the distribution

of the samples in the test dataset.

The test set includes original Cityscapes images only. To

suppress the stochasticity of the results, we run each exper-

iment 5 times. The results show that with the small number

of real samples, the generated samples bring a considerable

further boost in performance – in the case of having just

10% of the baseline dataset, our method improved the aver-

age test set accuracy by 4.9% from 77.0% to 81.9% (vs to

81.1% with [32]). For 20% of the baseline dataset, the test

set accuracy improved by 3.9% from 78.9% to 82.8% with

our method (82.5% with [32]). From these results, one can

see that extending the dataset with arti cial data in the case

of a small number of samples leads to a further boost in the

accuracy. Note that our method, that is trained on a different

than the baseline dataset increases the performance more

than [32] which is trained on the complete baseline dataset.

For complete results, please see the supplementary.

5. Conclusion

We have proposed a novel approach for person image

generation based on GANs that consists of novel network

architecture and novel loss terms speci cally designed to

generate visually appealing person tting in the surrounding

environment and handles occlusions which are not handled

by competitive methods. The generation process involves a

speci cation of a person’s pose via its keypoints. The target

application of the proposed algorithm is in the automotive

industry, where it serves to ll the gap of insuf cient train-

ing and validation examples for a pedestrian detector, via

means of the advanced data augmentation. The experimen-

tal evaluation shows that even though the visual quality of

the generated person instances still has some limitations, it

is competitive with state of the art and provides a dataset

augmentation that improves the human detector accuracy.

Acknowledgement This work was supported by the

European Regional Development Fund under the project

IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000468)

and Robotics for Industry 4.0 (reg. no.

CZ.02.1.01/0.0/0.0/15 003/0000470).



References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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