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SurfMan: Generating Smooth End-effector
Trajectories on 3D Object Surfaces for
Human-Demonstrated Pattern Sequence

Radoslav Škoviera1,∗, Jan Kristof Behrens1,∗ and Karla Štěpánová1

Abstract—Specifying robot tasks for low-volume manufactur-
ing scenarios is an open problem. The state-of-the-art robotic
systems enable the application of smooth 2D paths to a 3D surface
but assume that the product engineer provides these paths. We
extend this approach with a novel tool-path specification method,
which produces smooth paths from noisy demonstrations. The
user demonstrates only short patterns and selects a base path
relative to an object in front of the robot, along which these
patterns should be applied. The representation based on poly-
nomials allows controlling the grade of the smoothness of the
resulting tool path. We generate parametrized robot trajectories
to meet the use-case-specific constraints and adhere to the robot’s
kinodynamic limits. We propose a set of measures to evaluate the
quality of the generated curves and corresponding trajectories
with respect to executability by a robot. The evaluation in
simulation and real-robot experiments showed that the robot
could reach up to 15.9% higher constant speed on tool paths
generated by our system compared to unprocessed paths.

Index Terms—Learning from demonstration, Surface manip-
ulation, Curve synthesis, Path following, Contour detection

I. INTRODUCTION

AN important use-case for industrial robots is the surface
manipulation (i.e., tasks where robots modify the prop-

erties or shape of surfaces) of workpieces such as engraving,
spray painting, milling, grinding, application of sealant or glue,
etc. In many of these tasks, the end-effector is guided along a
3D trajectory that consists of regular patterns while keeping a
constant distance from the manipulated 3D surface subject to
constraints on the speed and orientation of the end-effector.
In mass production, the automation of these use-cases is
standard. However, the effort required using conventional robot
programming tools makes the automation often prohibitively
expensive for small batch sizes.

There are several key conceptual and technical challenges
that have to be solved in order to enable the creation of surface
manipulation tool paths. These are to a) capture and process
motion patterns demonstrated by the user; b) obtain a baseline
path (e.g., from a CAD model, object outline detection, or
interactively defined by a user) and align it to the workpiece
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in front of the robot c) synthesize a curve based on the baseline
and a demonstrated pattern that is suitable for the execution by
a robot and d) generate motion plans to follow the synthesized
curves and parametrize the trajectories to meet end-effector
speed requirements.

Our approach to the curve synthesis and path generation
is inspired by computer graphics, where the ability to apply
a given pattern along the selected contour is known as non-
photorealistic rendering ([1]). Although very inspiring, these
methods are not directly applicable to generating 6D tool
paths for robots. They typically produce (i) raster graphics
that are not easily transformed into smooth 3D paths, and (ii)
do not consider tool orientations. Very few works deal with
the question of how to generate executable 6D paths on the
surface of the real objects from 2D curves. Typically, these
consider only planar tasks [2] or fully defined smooth 2D
curves [3] as well as require knowledge of the object position
and 3D model. We combine Descartes planner’s global opti-
mization approach to achieve high-quality robot trajectories
exploiting task-specific tolerances on the end-effector pose
and constraining the Cartesian end-effector velocity global
optimization approach [4] with custom constraints in the time-
parametrization tool TOPPRA [5].

The main contributions of this paper are:
1) A specification method for complex curves, their appli-

cation to the 3D surface and execution using real robots
while satisfying use-case dependent constraints on end-
effector pose and velocity.

2) A set of measures to evaluate the quality of the generated
curves and corresponding trajectories with respect to its
executablity by a robot.

3) An evaluation of the introduced methods and measures
within an integrated system (see Fig. 1) that includes
user specification of the patterns via a custom tool, semi-
automatic definition of the baseline from RGB-D camera
images, and adjustment of the resulting curve via GUI.

Additional materials, including code, videos, and trial data,
are available on the project webpage http://imitrob.ciirc.cvut.cz/
surftask.html.

II. RELATED WORK

Our work is closely related to the vision-based generation
of robotic trajectories, where vision methods are used to detect
the surface of the object and the corresponding path for the
robot and to robot motion planning and control, as special

http://imitrob.ciirc.cvut.cz/surftask.html
http://imitrob.ciirc.cvut.cz/surftask.html
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Fig. 1: Overview of the proposed methods as utilized in the application pipeline. The setup-dependent parts, a) and b), have a
blue border, and the parts connected to the methods proposed in this paper have a red border. The key parts are: a) obtaining
and aligning a baseline path (contour acquisition in our case), b) processing of demonstrated patterns (here via demonstration
tool utilizing an HTC Vive tracker), c) an algorithm to apply user-defined motion patterns along the baseline, d) a method
for applying 2D paths on object surface to generate tool-paths, and e) a robot motion planner that takes a tool path and
process-specific constraints.

robotic planners and controllers have to be utilized to enable
execution of smooth trajectories with custom constraints.
Vision-based generation of robotic trajectories In the real
world, the 3D model of the object and its surface must be
considered. The 3D model can be either modeled based on
the visual detection or loaded directly from CAD or another
mesh library.

In [6], the system for drawing pictures using a differential
drive robot is described. They approximate edges detected by
Canny edge detection with cubic B-spline. Their system has
a smaller state-space and is confined to the ground surface,
whereas our 7-axis manipulator works on objects outside the
table plane. In [7], a method for generating spray trajectory
for automatic shoe sole spraying is proposed. B-spline in-
terpolation and curve fitting are performed on the discrete
contour points (acquired by edge detection from 2D image) to
implement automatic generation of 3D spray trajectory. The
curve generation is related to our method of detecting base
contours. However, in none of these works, no synthesis of
the final curve as a combination with the predefined patterns
is allowed, and no user interaction is considered. There are also
commercial baking robots [2] which enable user specification
of the cake decoration. Compared to our approach, only flat
2D patterns are allowed, and a complete specification of the
to-be-executed curve is necessary. Closely related work to our
approach is [8], where they use a pen with a camera and a
dotted paper to define paths for a welding robot. Compared
to our system, the fixed position of the object is expected,
and the paths are fixed to one data source, which is 2D only
and proprietary. We offer an algorithm that can work with any
inputs (not only paths fixed to the CAD model), as long as
they contain a series of poses. In our work, we take inspiration
from non-photorealistic rendering methods for curve synthesis.
In order to apply the patterns along a curve, we use a similar
approach to [1]. The curves are treated as decomposable

into multiple levels of details, and feature extraction and
reconstruction are performed using local transformations. We
avoid the need for much data (that is needed, e.g., in statistical
approaches to curve synthesis in the works of [9] and [10]) as
our system works with a single demonstration. Furthermore,
our approach only requires the user to demonstrate part of the
desired trajectory.

Robot motion planning and control Our sample surface
manipulation task requires following toleranced 6D paths, i.e.,
where tolerances for the end-effector position or orientation
might be given. We need to calculate a joint-space motion
that meets these requirements and avoids self-collisions, joint-
space discontinuities, and singularities. Nominally, the MoveIt
Cartesian planner [11] could produce such trajectories, but
its greedy algorithm fails or returns plans of low quality.
In [12] a collision-free configuration-space path that closely
follows the desired path in task space is produced using tools
from computational geometry. [13] demonstrates spline path
following for redundant robots. They have a 4-DoF robot
and follow a 3D spline path. It is, however, not trivial to
adapt these approaches to our 7-DoF robot, and the tolerances
could not be facilitated. In contrast, the Descartes planner [14]
allows to incorporate tolerances on the nominal path, which
allows for optimization of the robot motion. For example, in
[4], the Descartes planner was used for motion planning in
welding use-cases. Descartes employs a brute-force approach,
and its computation and memory requirements make it scale
poorly. In this letter, we utilize the Descartes planner to
derive distance-optimized joint-space paths. Compared to the
other approaches, we post-process these paths to satisfy robot
motion constraints and Cartesian velocity limits using custom
constraints using TOPPRA [5], which is an algorithm based
on reachability analysis enabling the creation of time-optimal
plans.
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Fig. 2: Pattern definition using an HTC Vive motion tracker
mounted on a pen-like device (left). The reprojection of
recorded data to the camera image (middle). Trajectory with
tool orientation (right).

Fig. 3: Demonstrated
pattern example. Left:
unprocessed pattern;
right: pattern after
filtering and smoothing.

III. MATERIALS AND METHODS

In this section, we describe the proposed methods to record
and process custom patterns and apply them along the given
baseline curve.

A. Custom patterns specification and processing

We consider two types of patterns–(i) pure mathematical
parametric curves or (ii) patterns from a real demonstration
consisting of a set of poses along a trajectory. In the second
case, the demonstrated poses can be recorded in 2D (fixed z-
coordinate and orientation), 3D (fixed orientation), or full 6D
information (see Fig. 2). In this way, information about lifting
or tool orientation can be utilized. In the following, we discuss
the data formats and the post-processing steps.
Post-processing In the case of demonstration, the recorded
data is expected to be noisy with varying sampling rates,
which can lead to irregularities and artifacts (see Fig. 3 left).
Thus, the demonstrated patterns are unsuitable for further
processing (e.g., B-spline construction fails). Therefore, the
pattern is filtered from repetitive points, smoothed with a
Gaussian kernel, and resampled (see Fig. 3 right). The filtering
uses a straightforward approach. The distance between every
two consecutive points is computed, and the second point
is removed if it is below a certain threshold. This is done
iteratively until no close points exist.

Most robot controllers require that the jerk is limited, and
thus the acceleration is continuous. A curve with C3 continuity
can be traced with the end-effector moving at a constant speed
(given that no joint limits are violated and the robot avoids
singularities). There are many ways to represent smooth curves
[15]. In our case, approximation of the demonstrated, filtered,
and smoothed patterns were implemented using polynomial
curves, specifically B-splines. The amount of smoothening
and number of points to resample are selected based on the
preset threshold on the distance between the original and the
smoothened curve. The user can adjust these values in GUI.

B. Pattern application along a baseline in 2D

The pattern application merges a pattern with the baseline
and generates a smooth curve. In the following, we describe
our approach that avoids the need for interpolation and en-
ables the smooth connection of individual patterns. Given a

baseline B-spline Bc and a pattern B-spline Bp, the number
of repetitions of the pattern I , the number of points which will
be used for connecting consecutive patterns ngap, the rotation
of the pattern α, and its trimming from start (end) trs (tre)
(see Fig. 7), we can generate the result 2D curve (see Fig. 5a)
as described in the following.

To be able to shift and rotate the pattern points according to
the baseline without the need for interpolation, we sample both
baseline and the pattern in a way that there is a one-to-one
mapping between baseline points Bc,s and the repeated pattern
points Bp,s, i.e.: length (Bc,s) = I ∗ [length (Bp,s) + 2ngap].
Rotation and trimming is applied to the pattern B-spline.
The trimming removes the first trs and the last tre points
from the sampled pattern B-spline Bp,s (with length P ):
Bt

p,s = {Bi
p,s|trs ≤ i ≤ P − tre}. To enable a smooth

transition between patterns and scaling, we introduce a con-
nection parameter ngap that specifies the number of points
which will be used to connect adjacent pattern repetitions
(truncating ngap points in the beginning and at the end of each
pattern repetition). The connection between i-th and (i+1)-th
pattern is the B-spline Bi

gap. Each pattern has L = N
I −2ngap

points, where N is the number of points on the baseline. The
rotation and translation RiTi to shift each pattern repetition
i ∈ {1, . . . , I} around the contour is found as follows:

1. Using first two and last two points of the trimmed and
rotated pattern, we create an approximate B-spline: Ba =
bspline({Br

p,s(i)|i ∈ [0, 1, P − 1, P ]}).
2. For each pattern repetition i ∈ {1, . . . , I} we find

the corresponding points on the contour Bc,s and esti-
mate a rigid transformation of the sampled approximate
B-spline Ba,s to these points (see Fig. 4b): RiTi =
rigid trans(Bi

a,s, Bc,s[iL, . . . , (i+ 1)L− 1]).
3. We apply the found transforms RiTi to sampled points of

the trimmed and rotated pattern Br
p,s for each i ∈ {1, ..., I}, j

is indexing individual points of the pattern. The transformed
patterns are superimposed on the underlying contour Bc as
follows (Bc,r being the resulting curve) (see Fig. 4c).:

Bc,r

[
i · N

I
+ j

]
= Ri ·Br

p,s[j] + Ti, (1)

for i ∈ [0, .., I − 1], j ∈ 1, ...,
N

I
.

The tool orientation at each datapoint of the sampled pattern
Br

p,s is rotated along the z axis by the rotation angle corre-
sponding to the rotation matrix Ri. This is possible thanks
to the assumption that the patterns are demonstrated on a flat
surface.

4. B-spline Bgap
i for each connection between i-th and

(i+ 1)-th pattern is estimated by exchanging last ngap points
of the i-th and first ngap points from the (i+1)-th pattern by
the sampled 7D B-spline which was computed using 2 points
before and after the gap (see Fig. 4e). The spline interpolation
of positions and orientations enables a smooth transition
between end points of individual patterns. An example of the
final curve is shown in Fig. 4f.
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(a) (b) (c) (d) (e) (f)

Fig. 4: Application of the pattern to the baseline including a
gap. (a) baseline Bc. (b) Approximate B-spline Bi

a transformed
around the baseline for each repetition i. (c) Pattern Br

p,s

superimposed on the underlying baseline Bc via transform
RiTi. (d) Final curve when no gap is used (ngap = 0). (e)
Applying B-spline Bgap

i to connect individual patterns. (f)
Final curve when gap (ngap = 4) is used.

C. Projection of the curve to 3D space

Transferring the 2D curve into 3D space (see Fig. 5) is not a
straightforward process. The solution must also align the curve
with a 3D surface, i.e., the workpiece. Our approach allows for
two formats of inputs. Either a 3D model (e.g., a CAD model)
of the object is provided in the form of a triangle mesh or a
3D point cloud (PCL), e.g., from a depth camera can be used
in case of a model-less workpiece alignment (as it was in our
test case, see Sec. IV). Since PCLs from depth cameras can
be irregular and have holes (due to surface material properties
and the sensing technique), as a first step, we use Poisson
surface reconstruction [16] to obtain triangle mesh from the
PCL. In the case of both data formats, the triangle mesh is
then uniformly sampled. We call this sampled surface sampled
point cloud (sPCL).

A binary pixel mask from the 2D curve is used to mark the
sPCL points that will be a part of the 3D curve. The sPCL is
projected to the mask image space, resulting in a 2D sPCL,
with each point having a corresponding point in the 3D sPCL.
The mask and the sPCL coordinate systems have to be aligned
beforehand. In the case of sPCL computed from a measured
PCL from an RGB-D camera, the alignment is simple since
the camera image coordinate system coincides with the PCL
and the sPCL coordinates system. The masking of the sPCL
then works as follows. For each 2D curve pixel ρ, all points ψi

from the 2D sPCL (and thus also the 3D sPCL) are selected,
for which the following holds:

||ρ− ψi| |2 ≤ τ,

where τ is a distance threshold. Each selected point ψi is
assigned a weight based on the inverse of its distance from ρ.
The final 3D curve point P, corresponding to ρ is computed as
the weighted average of the selected points ψi. The resulting
3D curve is smoothed by convolution with a Gaussian kernel.

Optionally, the user can set the z-axis (orthogonal to the ta-
ble surface) position or offset for the 3D curve points. Finally,
the surface normal for each 3D curve point is estimated from
the surrounding sPCL points.

If custom tool orientation (from demonstration) should be
applied, the normals are used to align it to the surface (Fig. 6d).
The assumption is that the demonstration is done on a flat
surface (e.g., a table), with the z-axis orthogonal to that
surface. Thus, the surface normals for all points are aligned
with the z-axis. During execution on a non-flat surface, the
deviation of the normals from the world z-axis (orthogonal to

(a) 2D curve (b) raw 3D (c) smooth 3D (d) up-sampled

Fig. 5: Transferring the curve from 2D to 3D and smoothing:
(a) 2D curve resulting from application of a pattern to a
baseline, (b) 3D curve fitted to the 3D sPCL. (c) smoothed
3D curve, (d) 3D curve computed from an up-sampled sPCL.

the ”main” plane, e.g., a worktable – typically aligned with
the xy plane of the robot base coordinate system) is used to
compute the adjustment for the tool orientation required to
align it with the surface. Specifically, the following equation
is used to compute a rotation vector from the world z-axis (z)
and each normal n:

rvec =
z × n

∥z × n∥
arccos

(
z · n

∥z∥ ∥n∥

)
(2)

A rotation defined by the rotation vector rvec is computed and
applied pointwise to the tool orientation.

D. Robot Control

Optimally executing an underconstrained 6D path with a
redundant manipulator is not a standard motion planning task.
Furthermore, adhering to constraints on speed and orienta-
tion of the end-effector is making this optimization problem
tighter. Here we describe our approach that introduces novel
custom constraints used to time-parametrize joint-space paths
produced by the Descartes planner.

The end-effector paths are specified by a sequence of
points and tool orientations (see Fig.6d). The tool orientations
can be surface normals of the target surface or custom tool
orientations specified during the demonstration. We find a
joint-space path by solving the path-wise inverse kinematics
problem offline using the Descartes toleranced planner ([14],
[4]) that showed in our initial evaluation better performance
and reliability compared to the Cartesian planner of the MoveIt
motion planning framework.

We resample the path to 250 points per meter to reduce
the computational load and avoid numerical instabilities using
B-spline interpolation. A toleranced trajectory point is created
for every waypoint in the path (zero tolerance for the position
and a 36° tolerance with 0.1° resolution around the z-axis of
the end-effector). This makes the planner more robust against
noisy input data (in the normals) and also allows optimizing
the trajectory. It is crucial to select the path-discretization
in accordance with the tolerance resolution. Otherwise, the
robot’s dynamic limits might prevent it from reaching even the
neighboring states or require high accelerations. Note that the
tolerances are activity-specific. For example, gluing, drawing,
and milling have different requirements on the end-effector
orientation.

We introduce custom constraints and time-parametrize the
path that was returned by the planner using the TOPPRA
algorithm [5]. In this way we create a trajectory that obeys
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(a) Real setup with
3D surface.

(b) RGB-D point-
cloud.

(c) Curve on the 3D surface.

(d) Input data for the planner
(waypoints with normals).

Fig. 6: The object surface detected by Intel Realsense D435
camera (eye-in-hand) (a) is reconstructed (b), curve is applied
to a custom baseline on it (c) and the waypoints with adjusted
tool orientations are sent to the robot (d).

the robot’s joint velocity and acceleration limits and in parallel
enforces the limit on the speed of the end-effector and mini-
mizes the time for completing the motion. TOPPRA allows to
specify constraints in the form of Eq. 3

F(q)Dyn(q, q̇, q̈) ≤ g(q), (3)

where Dyn is a function of the form given in Eq. 4:

Dyn(q, q̇, q̈) = A(q)q̈+ q̇TB(q)q̇+ f(q). (4)

By substituting B(q) with the product JT (q)J(q) (J(q) being
the end-effector Jacobian at q), q̇TB(q)q equals the squared
velocity of the end-effector. Setting F (q) = I , where I is the
identity matrix, and g(q) = v̄2, we can formulate a general
speed limit for the end-effector. To ensure numerical stability,
we scaled the g(q) and Dyn(q, q̇, q̈) with a factor of 105.

A path-dependent speed limit on the end-effector can be
formulated using the path-indexed version of the joint velocity
constraint implemented in TOPPRA. It requires providing a
path-indexed velocity limit function–see our implementation
of the function vlims func in the code linked on our webpage.
For every trajectory point, the Jacobian and the direction of
motion are used to calculate an individual joint velocity limit.
Note that this option allows a more flexible selection of the
end-effector speed and is thus preferred.

We assume that the objects are largely convex, so the surface
points can be reached without collision when approached from
the outside. We ensure that every path point is reachable by
the robot. The user is notified about non-reachable points and
can adjust the object’s position.

IV. ROBOTIC AND EXPERIMENTAL SETUP

To test the proposed methods, we created two physical
setups. The first is for custom pattern demonstration, and the
second is for executing the generated paths on a real robot.
Pattern demonstration setup The demonstration setup con-
sists of an HTC Vive virtual reality tracking system. An HTC
Vive tracker, providing 6D poses at 60Hz, was mounted on the
end of a pen-like metal rod (see Fig. 2). The rod’s other end
(i.e., the “tip”) was used to draw a pattern. The tip position
of the rod was calibrated by fixing the tip in one place and

(a) detected and custom contours
(b) scaled contours
& applied pattern

(c) patterns rotated by a varying amount (d) no trim (e) 20% trim

Fig. 7: (a) detected contours for all available objects visualised
via GUI, a custom drawn contour (red). (b) A scaled contour
with a pattern applied to it. Patterns can also be shifted, rotated
(c), or trimmed (see (d) vs. (e)).

performing a spherical motion with the end where the HTC
Vive tracker was mounted. The generated points are on a
sphere with the center at the tip. The center was then estimated
from the points using ordinary least squares optimization. For
visualization purposes, a camera was calibrated toward the
HTC Vive coordinate system. We record the position and
orientation of the tool, allowing the demonstration of basically
arbitrary pattern on a flat surface.
Robotic setup The real robot setup is shown in Fig. 6a. It
consists of a KUKA iiwa LBR 7 robot with a Realsense D435
camera attached to the last link and a pen as end-effector (pas-
sively compliant in tool axis). The robot is controlled via ROS.
We use the Descartes [14] and the MoveIt! Framework [11]
for motion planning.
Experimental application pipeline For user interaction with
the testing system, we developed a graphical user interface
(GUI) that supports the baseline definition and alignment and
pattern application functionality. The user can select a detected
object contour or draw a custom one (see Fig. 7a and Fig. 7b),
select pattern to apply to this contour and adjust various curve
and execution parameters (see Fig. 7c-7e) before starting the
execution by the robot. The applied pattern can be inspected
in 2D and 3D. The contour detection is done from a robot-
mounted camera.

V. EVALUATION MEASURES

In this section, we present measures to evaluate the quality
of the generated curves and corresponding trajectories con-
cerning their executability by a robot and the quality of the
executed path. First, we want to demonstrate the quality of the
produced curves on a purely geometric level (Ms). Second,
an end-effector centric set of measures (Mv and Md) to show
the quality of the task execution is presented. The third group
of measures (Mvm,Ma, and Mp) concentrates on the cost
associated with the robotic motion.

Measures Mv and Md are dependent on the generated curve
and the robot’s whole motion planning and control pipeline.
For the measures Mv , Mvm, and Ma, we exclude the start
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(first acceleration) and end (last deceleration) of the trajectory
execution from the computation to avoid systematic error.
Smoothness of the curve (Ms): We consider a similar smooth-
ness measure of the generated curve as was used in [17], [18],
namely the integral over the square of arc-length derivative of
curvature along the path. Ms is an equivalent measure for
discretized curves (constant sampling density), which gives a
more detailed account of the curvature distribution.

The angle φi between the vectors spanned by each three
consecutive points (xi, xi+1, xi+2) is a measure for the curva-
ture of the path (see Fig. 8).

φi = arccos

(
< ū, n̄ >

|ū|.|n̄|

)
< Ti (5)

Fig. 8: Computation of the angle between three consecutive
curve points.

We divide the range of 180◦ into five bins using the
following threshold values: T0 = 0◦, T1 = 10◦, T2 = 30◦,
T3 = 45◦, T4 = 90◦, and T5 = 180◦. We use the probability
density function (PDF) approximated over these 5 bins is a
measure for the smoothness:
Sk = 1

n

∑n
i=1[|φi| ∈ [Tk−1, Tk]]. The smoothness measure

(Ms) is then characterized by the 5-tuple of these values:

Ms = {S1, S2, S3, S4, S5}. (6)

End-effector velocity deviation (Mv): Let vi be the end-
effector speed at time ti. We approximate the integral over
the squared deviation from the set speed v0 by a finite sum
(see Eq. 7), where T = tn − t0, ∆ti =

ti+1−ti−1

2

Mv =
1

T

∫ T

o

(v − v0)
2dt =

1

T

n∑
i=1

(vi − v0)
2∆ti. (7)

The maximum stable velocity (Mvm) is the maximum ve-
locity v0, for which the Mv (Eq. 7) is under a given threshold
T :

MT
vm = vTmax = argmax

v0

Mv ≤ T. (8)

Acceleration (Ma): As a measure for the wear and tear as
well as the energy consumption, we report weighted mean of
the absolute acceleration values for each joint.

Ma =
1

T

n∑
i=1

∆ti||wai||2, (9)

where aki is the acceleration of the k-th joint at the i-th
point in the trajectory and wk is a positive weight to scale
the impact of the k-th joint. When choosing wk = (akmax)

−1,
Ma becomes a measure for the saturation of the acceleration
limits.

Length of a motion (Mp): We consider the (weighted) length
of a motion in joint-space as a good measure to compare
several motion plans for the same task (shorter is better). The
used diagonally weighted norm for this measure allows for
accounting for the different costs incurred by the motion of
each joint (earlier joints in kinematic chains usually have to
overcome significantly higher inertial moments). The measure
is defined as:

Mp =

N−1∑
i=0

Lw(xi,xi+1,w), (10)

with L is defined for a, b ∈ Rn and unit vector w ∈ Rn
+ as

L(a,b,w) =

√√√√ N∑
i=1

wi(ai − bi)2. (11)

Deviation from the reference curve (Md): Dynamic Time
Warping (DTW) [19] is used as a measure to evaluate the
positioning precision of the end-effector during the motion
relative to the reference curve. It is necessary to use DTW
since no timing information is available for the reference
curve. We use the fastdtw python implementation [20] with
radius 30 and norm the result with the number of recorded
joint states in the log n = ||log|| in the execution:

Md =
1

n
DTW(log, ref) (12)

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the quality of the generated
trajectories and task execution quality, i.e., how well the robot
(real or simulated) was able to perform a given task. The tasks
require moving the end-effector with a constant (or given)
speed along a path in space. We report the values for the
proposed evaluation measures (as listed in Sec. V). We also
show the effects of individual processing steps, different robot
planners, and real vs. simulated execution.

A. Pattern Processing

We evaluated the effect of pattern quality on the quality of
the generated trajectory and its execution. We compared hand
demonstrated pattern with minimal processing (only filtering –
without it, the patterns were too noisy to convert to B-splines),
hand demonstrated patterns with full processing (filtering,
smoothing, and resampling), artificial patterns generated di-
rectly by sampling from a smooth B-spline, and no pattern.
The experiments were conducted with a curve resulting from
30 pattern repetitions applied along an artificial circle baseline.
The velocity deviation error (Mv) for different given speeds
is shown in Fig. 9.

As expected, the least processed patterns have worse devi-
ations from the desired speed over the whole range of tested
speeds. For the baseline experiment, i.e., when no pattern
is applied, Mv is significantly lower than for all the other
cases, and thus the maximum stable velocity achievable is
significantly higher. Artificial and processed patterns reach
similar Mv for lower speeds, but for speeds above 0.05m

s ,
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Fig. 9: End-effector velocity deviation Mv for varied v0
for real and simulated executions of 10 pattern repetitions
in different processing stages. The baseline is an artificially
generated circle with diameter of 10 cm. The patterns are
increasingly processed knots (only filtered - f, fully processed
- sfr, fully processed with gap - sfr-gap, and artificial). Addi-
tionally, executions of a circle without pattern are shown.

the fully processed hand demonstrated patterns achieve lower
Mv , i.e., are easier to execute.

Non-smooth patterns lead to micro oscillations saturating
the actuators. To follow the path the robot must slow down
until the acceleration limits are not violated anymore. The
comparison of end-effector speeds over time for v0 = 0.07m

s
(10 repetitions of knot applied to a circle) are visualised in
the Fig. 10. The differences in velocity stability for various
levels of processing are for this speed already clearly visible.
The application of a gap connecting consecutive iterations of
patterns via a fitted B-spline allows 14.1% faster executions
at Mv = 0.005m2

s2 (M0.005
vm 15.3 vs. 13.4 cm

s ) and 14.6%
faster executions at Mv = 0.02m2

s2 (M0.02
vm 23.5 vs. 20.3 cm

s )
compared to fully processed path where no gap was applied.
The executions on the real robot yielded to M0.005

vm 13.1 and
16.6 cm

s for the fully processed and the circle without pattern,
respectively.

Applying the gap improves all of the measures (see Table I).
The improvement of MS1+S2

s measure indicates that the
application of the gap avoids the typical sharp turns between
the patterns (both MS4

s = 0 and MS5
s = 0), which affects the

executability by the robot the most. The measure Mp can only
be compared for the same pattern, i.e., the hand demonstrated
patterns. It can be seen that the application of gap significantly
shortens the traveled distance as the connection between
patterns is way smoother. Similar results were observed for
other applied patterns. Fig. 12 gives visual examples of several
hand-drawn patterns applied to two different contours. See our
webpage for more examples.

B. Real vs. simulated experiments and comparison of robotic
motion planners

To validate our approach including the simulation exper-
iments, we implemented the system on a real robot shown
in Fig. 6a. We conducted two types of experiments. The
first experiment was conducted on the L-shaped workpiece
where the knot pattern was applied with end-effector speed
v0 = 0.05 m

s . Fig. 11 shows the path generated from the

Fig. 10: Comparison of the end-effector speed over time for
10 knot repetitions on a circle contour with 5cm radius and
end-effector set speed v0 = 0.07m

s . Compared are: MoveIt!
Cartesian planner with fully processed pattern with gap (sfr
+gap, cart) compared to Descartes planner with only filtered
pattern (f), fully processed pattern without gap (sfr), and fully
processed pattern with gap (sfr + gap).

Pattern MS1+S2
s Mv[10−5] Ma Mp Md[10−3]

none 1.00 40.0 0.427 2.14 N/A
knot A 0.97 153.6 0.795 4.26 2.91

knot (filt) 0.94 177.3 0.783 6.23 1.74
knot (fully) 0.95 150.1 0.793 6.38 1.91

knot(fully+gap) 0.97 62.3 0.763 5.85 1.67

TABLE I: Evaluation of measures for a circle contour with
the following patterns (run on simulated robot): no pattern
(none), with artificial knot (knot A), with fully processed
demonstrated knot (knot fully), with only filtered knot (knot
filt), and with fully processed knot with gap (fully+gap). The
desired execution speed was v0 = 0.1m

s .

visual input (cf. also Fig. 5d) of the scene and the selection
of a pattern in grey. For safety, we filter this path to avoid
collisions with the table (i.e. enforcing a lower bound on
the z-value). The resulting safe reference path is show in
blue. The actual end-effector path is depicted in red. The
precision of keeping the velocity constant was M real

v =

0.0012m2

s2 and even slightly better than the simulated value
of M sim

v = 0.0015m2

s2 (see Fig. 9). The average acceleration
of the joints was Ma = 0.31m

s2 , the travelled distance in
joint space Mp = 5.56 rad, and values achieved by Cartesian
planner were Mv = 1.91 · 10−5 m2

s2 , Md = 1.8 · 10−3 m,

Fig. 11: TCP curve
request based on
the camera images
(grey), safety
filtered (blue),
and the actually
measured TCP path
(red).
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Fig. 12: Visual samples of the patterns Zigzag, Handknot,
S-wave, and Z-wave on square (bottom) contours. Neither
rotation nor trimming is applied.

Ma = 0.34 m
s2 , and Mp = 5.87 rad. The velocity stability is

with Mreal
v = 6.01197 · 10−5 m2

s2 better than the simulated
Msim

v = 9.11 · 10−4 m2

s2 . The inferior performance of the
Cartesian planner compared to the Descartes planner w.r.t. the
velocity stability for v0 = 0.07m

s is also nicely visible in the
Fig. 10. Detailed comparison on various curves and patterns
of Cartesian and Descartes planner is on our webpage.

Additionally, we run the velocity stability experiment on a
real robot (see Fig. 9). Same as in the simulation, the knot
pattern was 10 times applied on the circle with a diameter of
10 cm. For velocities up to 0.05m

s , the stability is very good
(low error of Mv ≈ 0.001m2

s2 ) for all experiments (see also
Fig. 9). Above that, the real executions are slightly worse than
the corresponding simulated ones.

VII. CONCLUSION AND DISCUSSION

In this letter, we proposed methods for the specification
and processing of surface manipulation tasks. The processing
pipeline takes user-defined patterns, a baseline path, and an
object surface as an input and generates a tool path by ap-
plying the pattern along the selected baseline. The stable end-
effector speed required by many industrial tasks is enforced
by custom constraints in the time parametrization process. We
also present a set of measures which we used to evaluate the
quality of the generated curves and corresponding tool-paths
w.r.t. their executability by a robot.

The proposed methods were tested in several simulation
experiments and on a real robotic setup. The experiments have
shown that our system can produce a smooth trajectory that is
executable by a robot for a variety of patterns and baselines
(see Fig. 12). The experiments also confirm the hypothesis
that higher processing of the pattern results for this type of
data in a smoother trajectory which allows execution of the
path at a higher stable speed. Although for the speeds up to
0.05m

s , the task can be executed with very stable velocity
independently on the level of processing, for higher speeds,
we observed significant differences (see Fig. 9). Mv increases
for higher speeds and less smooth tool paths as individual
joint acceleration limits will become saturated. For example,
applying the gap to connect fully processed patterns resulted
in approx. 15% faster executions at both Mv = 0.005m2

s2

and Mv = 0.02m2

s2 compared to the case when no gap
is applied. The proposed methods can help automate tasks
in small lot-size production scenarios. The pattern definition
methods facilitate the task definition. The curve processing and
trajectory parametrization make the execution more efficient.
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