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Abstract—The most recent architectures for Visual Question
Answering (VQA), such as TbD or DDRprog, have already
outperformed human-level accuracy on benchmark datasets (e.g.
CLEVR). We administered advanced analysis of their perfor-
mance based on novel metrics called consistency (sum of all
object feature instances in the scene (e.g. shapes) equals total
number of the objects in the scene) and revealed only 56%
consistency for the most accurate architecture (TbD). In respect
to this finding, we propose a new method of the VQA training,
which reaches 98% consistency. Furthermore, testing of the
VQA model in real world brings out a problem with precise
mimicking of the camera position from the original dataset.
We therefore created a virtual environment along with its real-
world counterpart with variable camera positions to test the
accuracy and consistency from different viewports. Based on
these errors, we were able to estimate optimal position of the
camera. The proposed method thus allows to find the optimal
camera viewport in the real environment without knowing the
geometry and the exact position of the camera in the synthetic
training environment.

Index Terms—neural module networks, visual question answer-
ing, compositionality, CLEVR dataset

I. INTRODUCTION

One of the key goals in artificial intelligence and robotics
is to design architectures which are interactive and able to
communicate with humans in natural way. To achieve this,
it is necessary to find a way to map between the real-world
sensory inputs and their natural language description. One way
to achieve grounded language knowledge is to design architec-
tures inspired by early language acquisition in small children.
In our previous papers, we proposed several architectures for
unsupervised mapping (grounding) between words and visual
features [1][2][3][4][5]. These models were based on cross-
situational learning of mapping between sentences of variable
length and visual features.

One of the current tasks focusing on visual reasoning and
its interconnection with natural language is Visual Question
Answering (VQA) [6]. The goal is to provide the correct
answer based on an image and a question in natural language.
The best results in terms of accuracy and generalization ability
have been obtained by biologically inspired, compositional
models for VQA. These models decompose the query into
logical primitives which are then individually processed by
specialized networks - inspired by brain physiology in cogni-
tive tasks. Our preliminary evaluation of the N2NMN model
[7] described in [8] showed that despite its high accuracy
on the original CLEVR dataset, the model lacks the ability
to consistently count objects in the scene. In this paper, we
have selected other state-of-the-art (SOTA) models from [9],
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[10] and [11] and compared their ability to consistently find
all features presented in one scene. We have chosen the
CLEVR benchmark dataset [12] for our evaluation, which
consists of synthetic images with object primitives and ques-
tions regarding the object features and spatial relations. Due
to the complex modular structure of the questions, the task
requires multistep reasoning about the image and minimizes
the possibility to ”guess” the answer.

Because the SOTA systems reach 56% accuracy in logical
consistency on the CLEVR dataset, here we propose a novel,
systematic method to train the architecture using specific
questions which target all object properties from each category.
In the next stage, we test whether the improved architecture is
also able to consistently understand scenes from the real world
(collected using both simulator and a robotic manipulator
which is not perfectly aligned with the fixed camera position
in the CLEVR dataset). These methods allow us to capture the
scene from various perspectives. When we use these scenes in
the test stage, we can compare the accuracy and consistency
error to find the best matching viewport. Therefore, it is
not necessary to know the exact geometry, neither the exact
position of the camera in the virtual environment. As both
the accuracy and consistency of the VQA architectures have
shown to be sensitive to the viewport change, we can use them
as the estimator of original camera location.

II. RELATED WORK

The compositional approach towards VQA was first intro-
duced in [13] as a system of neural module networks (NMN).
Each module unit is a neural network trained to extract a
specific feature, such as counting given objects in a scene
or filtering of a color. The question is first processed using
a semantic parser and then translated into a sequence of
neural modules, which are applied over the image to output
the final correct answer. The main drawback of the pilot
models was that the rules for module chaining had to be
manually specified and thus decreased robustness of the model.
In [14], the improved architecture learns to chain the neural
modules on the fly and updates their weights to obtain better
performance for novel structures. Furthermore, the authors in
[15] avoided the hand-tuned semantic parsers by defining the
function vocabulary and general module structure, and then
training the model using reinforcement learning. In a more
advanced model, the N2NMN [7], the construction of neural
module sequence is learned in an unsupervised fashion or a
semi-supervised fashion with unsupervised fine-tuning. The
overall accuracy of this model on the CLEVR dataset is around
89%, i.e. very close to human-like performance (92.6%) [12].

The FiLM algorithm [10] induced a large increase in accu-
racy for the CLEVR dataset (97.7%) using feature-wise affine
conditioning. The FiLM layers enable the network to modulate
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its visual layers with the question input through implicit multi-
step reasoning.

In the DDRprog model proposed in [11], the NMN module
structure is combined with the Neural Programmer-Interpreter
framework (NPI, [16]). The NPI approach interleaves program
prediction and execution, so that the output of one module
is used to predict the next module. The second contribu-
tion of DDRprog is a forking mechanism, which enables
the model to maintain stack-based logical tree structures.
Compared to FiLM, DDRprog is using explicit modelling of
the underlying question structure. Such approach broadens
the range of logical operations which can be executed and
increases generalization capability. One of the most advanced
models so far is Transparency by Design (TbD) networks [9].
Here the authors adapted the program generator described in
[15], but redesigned each module according to its specific
function, similarly as in [7] and [13]. Because only attention
masks are passed between the modules, the resulting model
is highly intuitive and interpretable. Although we have tested
also other models, we have selected the TbD framework for
implementation and evaluation due to its overall impressive
performance and transparency.

As many of the recent VQA approaches reach human level
accuracy on the CLEVR dataset (see Table 1. for comparison),
one could consider this research area as solved. However, a
deeper analysis presented in this paper came to a different
conclusion. We made a post-hoc evaluation of the TbD [9]
models and found out that the understanding of the scene is
still very different from human thinking. We adopted a novel
methodology for the evaluation of CLEVR dataset that raises
a question whether the above mentioned systems are capable
to consistently represent and understand relationships among
objects in the scene.

The second goal of our paper is dedicated to the analysis of
neural module networks accuracy when trained on a synthetic
dataset and tested on real world counterparts. We therefore
implemented the neural module network architecture into the
robot Kuka IIWA LBR 7, the industrial robotic manipulator,
presented it with real objects similar to CLEVR primitives
and analyzed the result. Currently, there are only few robot
implementations of the VQA task, and we are not aware of
any model based directly on a compositional architecture and
tested on compositional dataset similar to CLEVR. One mildly
similar work is an attention-based VQA model called Dynamic
Memory Networks from [17], which was implemented into
a robotic head platform. The model was trained on the MS
COCO dataset and after implementation, the accuracy of
image content recognition was at first around 38 % and reached
82 % after retraining on custom images.

We are also not aware of any paper that will adopt consis-
tency metrics neither for synthetics nor for real world datasets.

III. THE ARCHITECTURE

Our architecture is an implementation of the TbD model
proposed by [9]. The model is used as the VQA core, while
the visual input is imported as a static image from the robot’s
camera for the real world scenario and as a rendered image

Method Overall Count C.
Num.

Exists Q.
Attr.

C. Attr.

N2NMN 88.8 68.5 84.9 85.7 90.0 88.8
Human 92.6 86.7 86.4 96.6 95.0 96.0
RN 95.5 90.1 93.6 97.8 97.1 97.9
PG+EE 96.9 92.7 98.7 97.1 98.1 98.9
FiLM 97.6 94.5 93.8 99.2 99.2 99.0
DDRprog 98.3 96.5 98.4 98.8 99.1 99.0
MAC 98.9 97.2 99.4 99.5 99.3 99.5
TbD 99.1 97.6 99.4 99.2 99.5 99.6

TABLE I
PERFORMANCE OF SELECTED ALGORITHMS ON THE CLEVR DATASET .
THE COLUMNS STANDS FOR SPECIFIC SKILL (COUNTING , COMPARISON )

AND THE ROWS REFER TO PARTICULAR IMPLEMENTATION .

Fig. 1. Collection of the real-world data for model evaluation. Images were
taken using Basler Dart 5 MPx camera mounted on the Kuka robot end-
effector (right) and each of 163 scenes consisted of up to 10 CLEVR-like
object primitives, captured on grey background (left). The object configura-
tions were copied from randomly selected synthetic images.

for the virtual scenario. For detailed mathematical equations
of the TbD model see the original paper [7].

Each visual input image is resized to 224 × 224and a 28 ×
28convolutional feature map is extracted using a Resnet-101
network [18], pretrained on ImageNet [19]. The output is taken
from a 512-channel layer. The final visual featurexvis for each
image is thus a 28 × 28 × 512tensor [9]. This tensor is then
provided as input for neural modules (reasoning) described
later.

The reasoning subsystem is consisting of two core ele-
ments: a group of 7 co-attentive neural modules designed to
solve specialized subtasks, and a layout policy assigning each
question a specific layout consisting of a chain of the neural
modules. Each of the modules (find, relocate, and, or, describe
or compare) can receive on input an attention map and both
visual and textual feature vectors obtained from the image and
question. In addition, modules and and or receive two image
attention maps to provide their union (and) or intersection
(or). On the output, there are either attentions (which are used
as inputs for a different module) or embeddings for possible
answers such as a name of a shape, color, a number or a binary
answer yes/no. In our robot implementation, the answer with
the highest score is extracted and presented by the robot with
a one-word answer.

IV. EXPERIMENTS AND EVALUATION

For detailed evaluation of the TbD architecture, we have
used four different kinds of datasets. The first one is the
original CLEVR dataset, which was used as a benchmark.
Next we created an adapted version of CLEVR, which we
call CLEVR COUNT. This is an adapted version of CLEVR in
which we implement our custom set of 12 questions designed
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to measure logical consistency among answers. Secondly, we
used a CLEVR-like dataset generated using OpenAI Gym and
Unity render, in which the scene is depicted from 9 different
viewports. Lastly, we also collected real-world images of a
CLEVR-like scenes using a robotic manipulator with attached
camera.

A. CLEVR dataset
CLEVR is a benchmark synthetic dataset proposed by [12].

It consists of Blender-rendered images of object primitives
possessing properties with restricted variability (8 colors, 2
sizes, 2 materials and 3 shapes). Each image is provided with a
ground truth description, complex questions targeted at object
relations or attributes and correct answers in natural language.
There are also functional program representations mapping the
chain of logical operations which need to be executed in order
to answer the question (i.e. filter color, filter shape, relate etc.).
The TbD model was originally trained on standard version of
CLEVR dataset which contains 70,000 images with 3 – 10
objects and 699,989 questions. On the other hand, the standard
test set adopted for N2NMN and other compositional VQA
architectures [12] evaluation consists of 15,000 images and
14,998 questions. It means there is one question per image.
Moreover, the questions are divided into 14 program categories
(count, size, color etc.), so there are approx. 1000 questions per
category. We are unable to test the reliability of the architecture
in this scenario. This method of evaluation does not allow to
check whether the architecture understands all the aspects of
the scene as there is only one question per image and the
consistency of answers is not addressed.

B. COUNT dataset
Therefore, we propose a novel methodology that coins

metrics for logical consistency of answers. It states that total
amount has to be sum of its parts or mathematically 2 = 1+1.
The most suitable operation for this evaluation is the counting
operation in the dataset. The counting operation should be
applied for all attributes in the dataset as you can ask ”How
many objects of specific attribute are there?”. This evaluation
allows us to evaluate the system accuracy for specific attributes
complementary to previous evaluation, but also to evaluate the
consistency for a specific category (size, color etc.). We also
present the overall accuracy that stands for full understanding
of the scene and requires to correctly answer all 16 questions.

For the training and testing, we generated 70 000 and 10 000
images respectively, containing 3-10 objects per scene similar
to original CLEVR dataset. We created 12 questions to each
image, where first question is focused on the total amount of
objects in the scene, and the 11 other questions were focused
on the number of objects for each attribute (i.e. 3 questions for
shapes and 8 for colors). We did not present size and material
in the dataset as it is difficult to create such objects in the
testing set with real objects (see bellow).

We then train and test the TbD model with 12 questions
per 70 000 or 10 000 of the images respectively, standing for
840 000 training and 120 000 testing questions. The consis-
tency of answers is calculated for specific feature (e.g. if there

are 5 objects altogether, the sum of all predicted cubes, spheres
and cylinders should be similar to ground truth and has to be
equal to 5). The consistency for all objects stands for correct
answers to all of the 12 questions per image.

C. GYM dataset
At the next step, we tested the robustness of TbD with

respect to the changes of the camera viewport. We developed a
virtual environment in OpenAI Gym [20] with Unity graphics
rendering, that mimics the generation of original CLEVR
dataset with both images and questions. This environment
has the option to look at the scene from different perspec-
tives. We prepared 10 000 unique scenes similar to CLEVR
and rendered them from 9 specific viewports standing for
90 000 training images and 1 080 000 training questions (12
questions per image). The variable-viewport test set consisted
of 2 000 unique scenes, 18 000 images and 216 000 ques-
tions. The evaluation and consistency calculation is similar
as in the previous dataset. Moreover, we can test the robust-
ness of VQA combining fixed viewport training and testing
(1VTr/1VTe), fixed viewport training and variable (9) viewport
testing (1VTr/9VTe), variable viewport training and testing
(9VTr/(VTe) and variable viewport training and fixed viewport
testing (9VTr/1VTe).

Fig. 2. Comparison between the datasets used in our study. The original
CLEVR dataset (left) with fixed viewport, a sample from our nine viewport
dataset generated using MuJoCo OpenAI environment and Unity render
(center) and an example of real-world scenes collected by IIWA Kuka LBR
7 robotic manipulator (right).

D. ROBOT dataset
As the development of a counterpart of these synthetic

datasets in real environment is time-demanding (with the
amount of scenes and manual annotation), we develop only
a small test set, again with variable viewports, consisting of
165 scenes, 1 485 images and 17 820 questions. Each image
contained 3-10 CLEVR-like objects (varying in 3 shapes and
and 8 colors) in configurations reconstructed from randomly
selected synthetic CLEVR images. We then again tested the
model on the same set of 12 questions, but used the real-
world scenes for visual input. The evaluation and consistency
calculation is the same as for the synthetic dataset.

For collection of the real-world testing dataset, we used a
7 DoF industrial robotic manipulator Kuka IIWA LBR 7. As
a camera sensor, we used a 5 MPx with 25 FPS Basler Dart
camera mounted on the end-effector. For robot control and
image acquisition, we used open-source middle-ware Robotic
operating system (ROS). Each scene in the testing dataset was
collected from 9 different viewports. Three of the viewports
were oriented at the scene from the angle of 30 (closest to the
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original CLEVR dataset), another three from 40 and the last
three from 50 angle. In each angle, there were three viewports
placed 20cm from each other, all of them looking at the centre
of the scene. For illustration, see Fig. 3.

Fig. 3. Viewport distribution in robotic CLEVR dataset. Robot captures the
images from 9 different viewports (V) while pointing to the exact point in
environment, that represents the center of the scene with CLEVR objects

E. Evaluation and consistency calculation
Both TbD architectures trained on original CLEVR and

COUNT dataset ans tested on COUNT, GYM and ROBOT
testset. All testset included 12 questions per image, that
are suitable for counting capabilities of architecture and we
should also calculate consistency of the answers. There are
12 questions asking for the number of objects of a given
parameter (1 question for overall object number, 3 questions
for shapes and 8 for color). We then calculated the accuracy of
answers for each type of question and the consistency between
answers for each image. Consistency is calculated as shown
in equation 1.

ψ =
P nv

v=1

V np
i=1 Poi Pci Psi

N
100 (1)

Consistency (ψ) equation. Given a number of viewports ( v)
and number of properties (p) such as object counts (Po), object
color (Pc) and object shape ( Ps) it is possible to compute
accuracy of inference. Over these variables we compute a
logical summation. By division of number of all scenes for
all viewports ( N ) we get a ratio of accuracy. We report a
percentage of accuracy.

For the variable viewport testsets (GYM and ROBOT) we
also estimate the best viewport ( Ψ) based on accuracy a con-
sistency. This estimation search for the highest consistency and
accuracy values among viewports. It is defined as described
in equation 2.

Ψ = max
ncorrect − nincorrect

ncorrect
+ ψ (2)

Where we combine overall consistency ( ψ) with overall
accuracy expressed as ratio of correct and incorrect sums of
properties (Po, Pc or Ps) in different viewports ( v). Then we
find a maximum value, which defines optimal viewport, e.g.
viewport with best accuracy, respective consistency.

The viewport analysis prior the best viewport selection re-
quires accuracy and consistency calculation for each viewport

separately for variable viewport testsets (GYM and ROBOT)
compared to fixed viewport testset (COUNT) The best view-
port is then reported in the Tab. II as an index after the GYM
and ROBOT testset.

V. RESULTS

A. CLEVR dataset training
The detail analysis of TbD trained on original CLEVR

dataset revealed that the architecture in not able to correctly
recognize total number of objects in the scene. Although
overall counting capability reported in Mascharka et al. [9] is
97.6 %, there is only 64.5 % accuracy to count all objects. The
architecture is able to count both shapes (94.9 %) and colors
(99.6 %). The high error in counting objects is then reflected
in consistency metric that is only 56 % for all objects and
vary between 57 % and 63 % for color and shape consistency.
This architecture has surprisingly higher accuracy on GYM
variable viewport testset, where the counting accuracy on
objects increases to 69 % and 96 % on shapes. There is also
increase in shapes consistency to 63 % . The other results
stand for decrease in accuracy and consistency and overall
consistency is only 36 % at the best viewport and and only
14 % for the worst viewport (7) in GYM testset.

The results for ROBOT testset is even worse as there is only
17 % overall consistency for the best (3) viewport and 0 %
for the worst (8) viewport. The accuracy reaches only 51 %
for all objects. We can see very poor capability to transfer the
trained architecture to a novel environment.

B. COUNT dataset training
The new method of training described in previous chapter

stands for the great improvement both in accuracy and consis-
tency. When tested on fixed viewport set (COUNT) we observe
very high accuracy (100 % for colors, 98 % for shapes and 100
% for shapes) and also consistency improved twice, namely
97 % for all objects, 98 % for shapes and 99 % for colors. The
architecture is able to count almost perfectly all the aspects
of the presented scene. When we tested this architecture on
synthetic dataset with variable viewport (GYM), we reached
again great accuracy (97 % for all objects, 99 % for shapes
and 98 % for colors). The consistency in best viewport (3)
was three times better compared to CLEVR dataset, namely
88 % for objects, 96 % for shapes and 89 % for colors. The
variability between worst and best viewport accuracy (69 -97
%) and consistency (52 - 88 %) allows us to comfortably iden-
tify best viewport. The detail visualization of error in specific
viewports are in Fig.4 As we are able to successfully idetify
best viewport based on consistency and accuracy in synthetic
dataset (GYM) it is desirable to apply this strategy to the real
world dataset with variable viewports (ROBOT). Also at this
stage the novel method outperformed original CLEVR dataset.
There is a very promising accuracy in viewport 3 on objects
(86 %), shapes (90 %) and colors (95 %). The consistency
dropped significantly compared to synthetic dataset, but it is
still better than the consistency of original CLEVR dataset
even on synthetic dataset with fixed viewport). There is 55
% overall consistency, 72 % for shapes and 64 % for colors.
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Train Test Count
objects

Count
shapes

Count color

CLEVR COUNT 64.5 (56.1) 94.9 (57.1) 99.6 (62.9)
CLEVR GYM(3) 69.5 (35.6) 95.8 (63.1) 92.2 (37.6)
CLEVR ROBOT(3) 51.2 (17.2) 84.5 (41.1) 87.3 (19.0)
COUNT COUNT 99.6 (97.4) 98.4 (97.5) 100 (99.4)
COUNT GYM(3) 97.0 (87.8) 99.1 (95.6) 98.4 (88.9)
COUNT ROBOT(3) 85.9 (55.2) 90.0 (71.8) 95.2 (64.4)

TABLE II
COUNTING CAPABILITY OF TBD MODIFICATIONS . COLUMNS STANDS FOR

COUNTING PERFORMANCE ON SPECIFIC FEATURES (SHAPES , COLORS )
AND COLUMN FOR PARTICULAR COMBINATION OF TRAINING AND

TESTING SET

Fig. 4. Consistency overview for each viewport in CLEVR, COUNT and
ROBOT dataset. Best results is highlighted in green background (viewport
3). It this particular viewport has all datasets best performance in consistency.

The variability of the results in specific viewports (see Fig.
4) spanning from 25 - 86 % in accuracy and 12 - 55 % is
comfortable for the best viewport selection.

VI. CONCLUSION

Due to the rapid progress of the recent compositional
models for VQA, it might seem that the task has been solved.
Although the original evaluation of the results from [9], [7]
revealed accuracy similar to or higher than human skills, our

Fig. 5. Accuracy during training for CLEVR and COUNT dataset.

previous analysis [8] as well as the results in this paper, both
based on a different methodology, uncovered weaknesses of
the SOTA methods.

The first problem is that these models cannot provide a
consistent natural language description of the observed scene.
Here we argue that one possible cause might be the way these
models are trained - the original CLEVR dataset contains
questions which do not cover the whole feature space of a
given scene. We have proposed a new training method with
custom set of questions (the COUNT dataset) which demand
counting of objects with a specific feature (e.g. ”How many
red objects are there? How many blue? How many green?”).
During evaluation, we then consider the answers as consistent
if the sum of objects within each category equals to the overall
number of objects.

We show that retraining the TbD model with our method
increases its overall consistency by 35% on the CLEVR
images, by 28% on our GYM multi-viewport synthetic dataset
and by 34% on our multi-viewport real world images (ROBOT
dataset).

Second problem, which stands in the way of practical
implementation of these models, is their dependency on the
fixed camera viewport with which they were trained. To
address this issue, we have created our own synthetic dataset
using a Gym virtual environment, as well as real-world robotic
dataset, both with 9 different viewports for each scene. Our
post hoc evaluation of accuracy for each viewport enabled us
to select the optimal camera angle with highest consistency -
a method which could maximize the model performance on
real world data without precise reconstruction of the training
conditions. The subject of our future research is retraining
the model on the multi-viewport GYM dataset to obtain a
viewport-invariant architecture. Our preliminary results have
indeed shown that such model has higher consistency when
testing on the same dataset. However, further elaboration and
more data is needed before making conclusions.
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