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Active Visuo-Haptic Object Shape Completion
Lukas Rustler1, Jens Lundell2, Jan Kristof Behrens3, Ville Kyrki2, Matej Hoffmann1

Abstract—Recent advancements in object shape completion
have enabled impressive object reconstructions using only visual
input. However, due to self-occlusion, the reconstructions have
high uncertainty in the occluded object parts, which negatively
impacts the performance of downstream robotic tasks such as
grasping. In this work, we propose an active visuo-haptic shape
completion method called Act-VH that actively computes where
to touch the objects based on the reconstruction uncertainty. Act-
VH reconstructs objects from point clouds and calculates the
reconstruction uncertainty using IGR, a recent state-of-the-art
implicit surface deep neural network. We experimentally evaluate
the reconstruction accuracy of Act-VH against five baselines
in simulation and in the real world. We also propose a new
simulation environment for this purpose. The results show that
Act-VH outperforms all baselines and that an uncertainty-driven
haptic exploration policy leads to higher reconstruction accuracy
than a random policy and a policy driven by Gaussian Process
Implicit Surfaces. As a final experiment, we evaluate Act-VH and
the best reconstruction baseline on grasping 10 novel objects. The
results show that Act-VH reaches a significantly higher grasp
success rate than the baseline on all objects. Together, this work
opens up the door for using active visuo-haptic shape completion
in more complex cluttered scenes.

Index Terms—Perception for Grasping and Manipulation;
RGB-D Perception; Deep Learning for Visual Perception.

I. INTRODUCTION

SHAPE completion, that is reconstructing the shape of
an object based on incomplete sensory information, is

an active research problem with many potential applications
in medicine and robotics. To date, most methods have re-
constructed objects from only visual data, including RGB
images, depth images, or point clouds. The main drawback of
visual data is that it is incomplete as the objects self-occlude,
i.e., only the front side is visible from a single viewpoint.
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Fig. 1: Schematic operation of Act-VH. See text for details.
This increases the reconstruction uncertainty, which can neg-
atively affect downstream robotic tasks such as grasping. A
straightforward approach to combat the perceptual uncertainty
is to gather additional data of the unseen object parts by
touching the object and then reconstruct the object shape from
combined visuo-haptic data. However, current visuo-haptic
shape completion methods use heuristics to choose where to
explore the objects [1] or require an impractical number of
touches for a good reconstruction [2], [3].

We combat these issues in this work with Act-VH, a
data-efficient closed-loop active visuo-haptic shape completion
method. The operation is schematically illustrated in Fig. 1.
First, a depth image is used to construct an initial point cloud.
Then, a deep implicit surface network (IGR [4]) generates
several possible shape reconstructions by iteratively refining
randomly initialized latent codes until the reconstructed shapes
fit the input point cloud. The discrepancy between the re-
constructed shapes are then used to form a single voxel-grid
reconstruction with uncertainty. The voxel with the highest
uncertainty is selected for haptic exploration, adding a new
point to the object representation. This process is repeated,
further refining the shape reconstruction.

We experimentally validated Act-VH in simulation and
the real world. To validate the method in simulation, we
developed a new visuo-haptic benchmark task. Using this task,
we compared the reconstruction accuracy of Act-VH with
random and uncertainty-driven exploration to five baselines
on 105 reconstructions. The results showed that Act-VH with
uncertainty-driven exploration outperformed the baselines. In
real-world experiments, we validated Act-VH in terms of
reconstruction accuracy and grasp success rates on 10 objects.
Similar to the simulation results, the real-world reconstruction
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results also showed a significantly better accuracy using Act-
VH. Finally, the grasping experiment on the real robot showed
that the grasp success rates after 5 touches increased from
30% to 80% using Act-VH, while for the best reconstruction
baseline it only increased from 20% to 46.7%, once again
showing the benefits of Act-VH.

The main contributions of this work are: (i) a novel active
visuo-haptic shape completion method; (ii) a visuo-haptic
simulation environment; and (iii) an empirical evaluation of
the proposed method against the state of the art, presenting
improvements in terms of reconstruction accuracy (in simula-
tion and on the real setup) and grasp success rates (real robot).
The simulation environment, which at the same time serves as
a benchmark, and the data from experiments are available at
https://github.com/ctu-vras/visuo-haptic-shape-completion. An accompa-
nying video is here: https://youtu.be/iZF4ph4zMEA.

II. RELATED WORK

An object shape can be reconstructed from visual input,
haptic input, or their combination. Therefore, in this section,
we split the review based on the sensory input used for
reconstruction. Furthermore, the inputs can be collected only
once or gathered actively to improve the reconstruction—the
latter typically known as active perception [5]. Thus, we also
review active reconstruction methods per input modality.

A. Visual-Only Shape Completion

Completing object shapes from visual data is the most
common approach because the data capture global infor-
mation about the object. Early visual shape completion ap-
proaches were geometry- or template-based. Examples of
geometry-based approaches reconstruct objects by mirroring
them through their symmetry axis [6] or using heuristics to
fit primitives to resemble the object [7]. Template-based ap-
proaches search in a database for an object most similar to the
perceived one [8]. The limitation of both methods is that they
do not generalize well beyond specific objects. For instance,
mirroring-based approaches result in poor reconstruction if the
object has more than one axis of symmetry, while template
matching will fail if the match is incorrect or no similar object
exists in the database.

To combat the limitations of geometry- and template-based
methods, Machine Learning (ML)-based shape completion
approaches were proposed [1], [4], [9]–[14]. An early such
approach trained a Gaussian Process Implicit Surface (GPIS)
to reconstruct objects [9]. However, the GPIS reconstructed
overly smooth objects and, due to its poor scaling to many data
points, the input point cloud had to be down-sampled, losing
valuable information. More recent ML approaches use Deep
Learning (DL) techniques to train 3D Convolutional Neural
Networks (CNNs) to complete the shape of objects represented
as voxel grids [1], [10]–[12]. The limitation of voxel-based
approaches is that the computation and memory requirements
grow cubically with the object shape resolution. As such, fine
object details are not preserved, which is essential when, for
instance, sampling grasp proposals.

To overcome the issue with voxel-grid representations, re-
searchers proposed new network architectures that can handle
continuous shapes [4], [13], [14]. The architectures based
on implicit surfaces are more computation- and memory-
efficient than voxel-based representations and produce higher
quality reconstructions. Because of these benefits, we chose to
reconstruct objects with the implicit surface method IGR [4].

Despite the impressive results of visual-only shape com-
pletion, the noise in the visual data and the objects’ self-
occlusions result in high reconstruction uncertainty, especially
on the nonvisible parts of the object. If there is a possibility
to move the camera, these limitations can be alleviated by
actively choosing alternative viewpoints (also called next-best-
view) [15]. However, if the camera is not movable, another
option is to use haptic data gathered by a robot.

B. Haptic-Only Shape Completion

If the robot has means to accurately detect and localize
contacts with the object, tactile exploration can be more
precise than visual data. Furthermore, any reachable part of
the object—like its back side—can be explored. Most recent
haptic-only shape completion approaches mainly reconstruct
objects using classical ML models such as implicit shape
potentials [16], Gaussian Processes (GPs) [17], GPIS’s [18]
or Gaussian Process Implicit Shape Potentials (GPISPs) [19].
Additionally, some haptic exploration approaches actively ex-
plore the object to reduce the uncertainty in the reconstruction
[17]–[19]. The limitation with haptic data is its local nature—
one touch only explores a small object region. Consequently,
accurate object reconstruction from tactile data requires tens
[19] to hundreds [17] of touches which is impractical for real
robotic systems.

C. Visuo-Haptic Shape Completion

To address the limitations of visual- or haptic-only shape
completion, some works have proposed visuo-haptic shape
completion [2], [3], [20]–[24]. Most of these works reconstruct
objects using ML techniques such as GPIS’s [20], [21], GPs
[3], CNNs [2], [22], or Graph Neural Networks (GNNs)
[23], [24]. A limitation of the non-DL-based visuo-haptic
approaches [3], [20], [21] is that good reconstructions often
require haptic data all around the object. On the other hand,
the main limitation of DL-based CNN approaches [2], [22] is
the low object resolution, while for GNNs [23], [24] it is the
non-smooth shape reconstruction and that the reconstructions
are only evaluated in simulation.

Another known problem for all visuo-haptic shape comple-
tion works is deciding where to explore the object haptically.
One solution is to use heuristics, such as always approaching
the object directly opposite the camera [22]; another is to
explore randomly [23]. Neither of these are particularly effi-
cient as there exist more information-rich places to explore the
object. To this end, some approaches learn where to explore
the object [24] or use uncertainty of the reconstructions to
guide exploration [2], [3], [20], [21].

The work presented here also does uncertainty-driven visuo-
haptic shape completion using DL. Compared to similar works

https://github.com/ctu-vras/visuo-haptic-shape-completion
https://youtu.be/iZF4ph4zMEA


RUSTLER et al.: ACTIVE VISUO-HAPTIC OBJECT SHAPE COMPLETION 3

that use CNNs [2], [22], we use implicit surface networks to
reconstruct highly detailed and smooth objects. Compared to
works using GNNs [23], [24], we evaluate our approach not
only in simulation but also on real world reconstruction tasks.
Furthermore, we propose a novel DL-based uncertainty-driven
exploration strategy and evaluate if our method benefits robotic
grasping.

III. METHOD

We propose the method in Fig. 1 to do active visuo-haptic
shape completion. We assume that the visual measurements
are only captured once while the haptic measurements are
collected incrementally by exploring the object. It is assumed
that the object does not move after haptic exploration. Based
on these assumptions, the objective is to select a sequence
of touches that would lead to the greatest improvements in
reconstruction accuracy.

A. Uncertainty-Driven Haptic Exploration

Completing the shape of an object O perfectly from real
world measurements Y is impossible due to the inherent noise
and incompleteness of such measurements. The object O can
be modeled in several ways. In this work, we specifically
use multiple of these representations as shown in Fig. 1—
from input point cloud, to Signed Distance Function (SDF) as
used by the IGR, to mesh, and finally voxel grid, where the
uncertainty is computed.

We propose to model the object O probabilistically as

P(O|Y ), (1)

where O represents the occupancy of the object and Y
represents sensor measurements. The occupancy is represented
as a voxel grid O = (Ok) where k is the index of a voxel such
that P(Ok) is the probability that voxel k is part of the object.
In this work, Y consists of visual v and haptic h data.

Formally, the objective is to, at each time step t, choose a
location for haptic exploration that minimizes the uncertainty
about the occupancy quantified as its variance

argmin
ht∈H

Var(Ot|v, h1:t−1, ht), (2)

where h1:t−1 is the data from previously executed haptic ex-
plorations and H is the set of all possible haptic explorations.
Note that the variance at time 0 is based on visual data only
Var(O0|v).

Minimizing Eq. 2 requires a probabilistic model of the
object’s 3D shape, which is complex to form due to the high-
dimensional nature of the data. Instead, we choose to approxi-
mate the model with a set of shape samples o1:S drawn from an
underlying generative shape distribution P(Ot|v, h1:t−1). The
actual sampling process os ∼ P(Ot|v, h1:t−1) is described in
the next section.

Assuming a set of shape samples are given in the form of
voxel grids, we define the haptic exploration ht that minimizes
Eq. 2 to be the voxel k with the largest variance. This is
formally expressed as

argmax
k∈K

Var(Ok), (3)

where k is a single voxel in a voxel grid K, and Var(Ok) is the
variance of the shape samples os for that voxel. Unfortunately,
there often exist several voxels with the same variance and
choosing one to explore is non-trivial. However, we found that
most uncertain voxels form small clusters. We chose to explore
the cluster with the most flat surface, which is advantageous
for making a robust contact with the object.

B. Sampling of Shapes

One of the crucial parts in Section III-A is the sampling
of shapes from the probability distribution P(Ot|v, h1:t−1).
Previous work on probabilistic shape completion [12] achieved
this by training a 3D CNN to reconstruct voxelized objects and
using the variational inference technique Monte Carlo dropout
[25] for sampling. However, for this process to work on visuo-
haptic data, it requires training the CNN on both haptic and
visual data, with haptic data collected from random positions
all around the object. Unfortunately, no such dataset exists, and
curating one is expensive because of the haptic data collection
process [26].

Instead, we propose to train a reconstruction network that
can accurately reconstruct shapes based on visuo-haptic data
without explicitly training on such data. For this, we chose
to use the IGR architecture [4] that learns the SDF of the
underlying surface. IGR is a Multi-Layer Perceptron (MLP)
f(x;θ, ·): R3 → R, where x is a 3D point and the parameters
θ are trained such that f is approximately the SDF to a
plausible surfaceM defined by the point cloud X = {xc}c∈C
and optionally the point normals N = {nc}c∈C , where C is
the set of points in the point cloud. The · is an additional
parameter which is introduced below. The loss function to
train IGR is

`rec(θ, ·) = `X (θ, ·) + λEx [‖∇xf(x;θ, ·)‖ − 1]
2
, (4)

where λ > 0, and

`X (θ, ·) =
1

|C|
∑
c∈C

(|f(xc;θ, ·)|+ τ ‖∇xf(xc;θ, ·)− nc‖) .

(5)

The first term in Eq. 4, which is detailed in Eq. 5, pushes f
to vanish on X . If normal data exist (our case), then τ := 1
and ∇xf is pushed to the supplied normals N . The second
term in Eq. 4, called the Eikonal term, regularizes the network
to produce smooth reconstructions by forcing the gradients of
∇xf to be of unit 2-norm.

By default, a separate IGR is trained for every single shape.
However, this prohibits sampling from the underlying shape
distribution P(Ot|v, h1:t−1). Therefore, we chose to train a
multi-shape IGR, which is realized by first selecting a separate
latent vector zj for each training example j ∈ J and then train
the network to approximate the SDF associated with each zj .
The multi-shape IGR takes the following form f(x;θ, zj).

To complete the shape of an object from a partial point
cloud with the multi-shape IGR comes down to finding a latent
code ẑi, where i ∈ I are test samples, that best reconstructs
the SDF of the point cloud. To find such a latent code, we
treat the observed point cloud as the ground truth and use
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gradient optimization to fine-tune an initially random code
ẑi,0. Formally, this fine-tuning is expressed as

ẑi,t = ẑi,t−1 − α∇ẑi,t−1
`(θ, ẑi,t−1), (6)

where α is the step-size and ∇ẑi,t−1
is the gradient of the

following loss function:

`(θ, ẑi,t−1) = `rec(θ, ẑi,t−1) + γ ‖zi,t−1‖ . (7)

We chose γ = 0.01, and `rec(θ, ẑi,t−1) is the loss in Eq. 4.
For drawing shape samples from a multi-shape IGR, two

alternatives exist. The first, and most obvious, is to sample
multiple latent codes ẑ1:S , where S is the number of latent
codes sampled, and optimize each of them individually for a
fixed number of gradient descent steps. The second option,
which we chose to use in our experiments, is to sample and
optimize only one latent code ẑ1 and select S intermediate
optimized codes as the shape samples. For instance, if we
optimized the latent code for 800 steps, we could select the
latent code after 650, 700, 750 and 800 steps as our samples.
This resembles Metropolis sampling in that samples are gen-
erated from a supposedly converged Markov chain, however,
in our case we do not use the Metropolis rejection rule in
the optimization process for simplicity but the stochasticity is
introduced through sampling mini-batches in the optimization.
This option is significantly faster than the first one and was
empirically found to provide similar results.

C. Active Visuo-Haptic Object Shape Completion

We propose Algorithm 1 for active shape completion
by combining the probabilistic shape completion from Sec-
tion III-A with the sampling of shapes in Section III-B (see
also Fig. 1). The algorithm starts by generating a random
latent code ẑ0 (line 5). Then that latent code is optimized with
gradient descent over the current point cloud and intermediate
codes ẑg are saved (lines 8–14). From the intermediate latent
codes, meshes are reconstructed and transformed to voxel grids
for the variance computation (line 15). Next, the voxel to touch
(as described in Section III-A) is computed, explored, and the
information is added to the point cloud (lines 16–18). Note
that if no collision is detected at the target location (the robot
is commanded to move on a straight line towards the target and
10 cm beyond), no point cloud is saved and the robot returns
to the start position and selects a new position for exploration.
After all M haptic explorations are done, the last latent code
is optimized and the final shape is reconstructed (lines 19–
23). Some steps are illustrated in the accompanying video at
https://youtu.be/iZF4ph4zMEA.

D. Implementation details

The IGR network was implemented in PyTorch 1.0.0. The
network structure was the same as in [4] and consisted of 8
fully connected layers with 512 neurons and a skip connection
in the 4th layer. The training was carried out on NVIDIA
GeForce GTX 1080 Ti for 3500 iterations, with a batch size
of 8 and a latent vector size of 256.

To train the network, we curated our own dataset of 87
unique meshes from the YCB [27] and Grasp Database [28]

Algorithm 1 Active Visuo-Haptic Shape Completion

1: Inputs: point cloud P, number of haptic explorations M,
number of gradient-descent steps G, steps before storing
latent shape L

2: Output: Final shape completion O
3: H← ∅ . Empty set of haptic data
4: P0 ← P
5: ẑ0 ← Sample initial latent code
6: for m← 1, . . . , M do
7: Z← ∅ . Empty set of latent codes
8: for g ← 1, . . . , G do
9: ẑg ← Optimize ẑg−1 over Pm−1 using Eq. 6

10: if g mod L == 0 then
11: Z← Z+ ẑg
12: end if
13: end for
14: ẑ0 ← ẑg
15: V← Reconstruct shapes from Z and calculate

their variance
16: hm ← Calculate next touch using Eq. 3 and V
17: H← Execute hm and append the touch point
18: Pm ← P+H
19: end for
20: for g ← 1, . . . , G do
21: ẑg ← Optimize ẑg−1 over PI using Eq. 6
22: end for
23: O ← Reconstruct shape using ẑg

datasets. Each mesh was centered at the origin and scaled such
that the longest dimension was between -1 and 1. To generate
the ground truth point cloud of a mesh, we sampled 100000
points evenly over the complete object and, for each point, also
estimated its normal. We rotated each mesh into 16 different
views, resulting in 1392 training samples in total. Using the
same procedure, we also generated a test set of 35 completely
novel objects from both datasets.

IV. EXPERIMENTS

The experiments address the following two questions:
1) What is the shape reconstruction accuracy of Act-VH?
2) What is the impact of Act-VH on grasp success rate?

To reliably answer these questions, we conducted two exper-
iments. The first experiment (Section IV-B) evaluated shape
reconstruction in simulation and in the real world, while the
second experiment (Section IV-C) evaluated grasp success
rates on real hardware.

A. Experimental setup

In both the simulation and real-world experiments, we used
a Kinova Gen3 robot equipped with a custom made finger
to perform haptic exploration and a Robotiq 2F-85 gripper
for grasping. In the real-world experiments, we used an Intel
RealSense D430 depth camera to capture the point cloud –
see Fig. 2.

For haptic exploration, we moved the robot along a pre-
defined approach direction until the torques of the robot joints

https://youtu.be/iZF4ph4zMEA
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(a)

(c) The real-world setup with the Kinova Gen3 robotic arm, the
RGB-D camera (always in front of the robot), and the objects used
for reconstruction and for grasping.

(a) Simulation. (b) Real world.

Fig. 2: Simulated (a) and real (b,c) environment.

crossed a pre-defined threshold. The global position of the
finger was then transformed into the same reference system
as the visual point cloud. The objects were attached to the
table using a double-sided tape. If nothing specific is noted,
we maximally executed five touches in all experiments to keep
the total execution time low. The time taken to run the pipeline
with five touches is about 5 minutes on average.

In the reconstruction experiments, we benchmarked Act-VH
against five other baseline methods: Ball Pivoting Algorithm
(BPA) [29], Poisson reconstruction (Poisson) [30], Convex
Hull reconstruction (Hull), Alpha shapes (Alpha) [31], and
GPIS [32]. BPA [29] reconstructs a shape by rolling a sphere
with a pre-defined radius over all points, and if three points are
inside the sphere, they are connected with a triangle. Poisson
reconstruction [30] solves an optimization problem that creates
a smooth surface over the points but can only reconstruct the
visible part of the surface. The Hull method reconstructs the
input point cloud with a convex hull over the points. Alpha is
a generalized Hull method that smooths the object surface and
can also remove volume from the inside of concave objects.
GPIS [32] trains a GP to reconstruct the implicit surface of
the object. For GPIS, we used similar hyper-parameters as
reported in [22].

To benchmark other methods, we still used Act-VH to
calculate the reconstruction uncertainty and where to touch the
object but used a baseline method instead of IGR for the final
reconstruction. In the reconstruction experiments, we evaluated
all methods using the Chamfer distance and Jaccard similarity,
while in the grasping experiment, we used the grasp success
rate. For calculating the Jaccard similarity, each mesh was
voxelized into a voxel grid of size 403.

B. Object Reconstruction
In this experiment, we evaluated the reconstruction accuracy

in simulation and in the real world. To evaluate in simulation,

we developed our own visuo-haptic robotic simulation envi-
ronment in the MuJoCo physics simulator [33]. The environ-
ment, shown in Fig. 2a, consist of a robot, an object mesh, and
a virtual camera for capturing the point cloud of the object.
In both simulation and the real word, the robot planned and
moved to the location we wanted to haptically explore and
stopped once contact was detected as shown in Fig. 2b.

In simulation, we evaluated the reconstruction accuracy on
35 test objects, while in the real world, we used the 10 objects
shown in Fig. 2c that were selected because they differed in
size and shape. Each reconstruction was repeated three times
for each object and method combination, resulting in 105
unique reconstructions per method in simulation and 30 in the
real world. In the simulation experiment, we further compared
Act-VH to: (i) a random policy that touched the first reachable
voxel from the set of uniformly sampled voxels on the surface
of the reconstruction, and (ii) a GPIS-driven policy, where the
voxel with the largest standard deviation was selected [17].

Note that GPIS approximates the surface covered by the
input points but does not assume a closed volume. Therefore,
we needed to select a reasonable first touch point heuristically.

Fig. 3 shows the reconstruction results separately for sim-
ulation (Fig. 3a) and real world (Fig. 3b). Overall, the recon-
struction accuracy for all methods improved with the number
of touches, meaning that Jaccard similarity increased and
Chamfer distance decreased. Furthermore, both simulation
and real world results follow the same trend indicating the
robustness of our method.

Based on the results in Fig. 3, we can clearly see that
Act-VH outperforms all other baselines across the board. For
example, Fig. 3a shows that Act-VH outperforms the random
one already after one touch, and after five touches Act-VH
reaches around 10-20% higher Jaccard similarity than the
random one and over 5 mm lower Chamfer distance.

The results in Fig. 3a also show that Act-VH exploration
outperforms GPIS exploration. The reason GPIS performs
poorly is because it requires touches to be evenly distributed
around the whole object.1 Other reconstruction works pre-
sented similar results [17], [22], where in the haptic-only work
[17], more than 100 touches were required to reconstruct the
front side only, while in the visuo-haptic work [22], more than
20 touches were collected and the results were still poor.

When comparing reconstruction methods, the second best
method was Hull, with a Chamfer distance around 15 mm. One
reason Hull achieved such a low Chamfer distance is that it
creates more sharp reconstructions, which strongly influences
the Chamfer distance. However, for Hull to produce good
reconstructions the point cloud must contain points covering
the whole object, which is in practice best achieved with Act-
VH exploration.

Interestingly, with Act-VH exploration, the Jaccard similar-
ity of BPA and Poisson decreased with more touches, while
with a random policy, it stayed flat or increased slightly.
These results point to the fact that BPA and Poisson can
only reconstruct the visible part of the surface, i.e., parts

1Note that we used the exponential kernel. Results with other kernels (e.g.,
thin plate kernel as in [3]) may be different.
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(a) Simulation results. Solid lines represent the accuracy obtained
when executing Act-VH touches, dotted lines random touches, and
dashed lines GPIS-uncertainty-driven touches.
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(b) Real world results.

Fig. 3: The average reconstruction accuracy from simulation
(a) and the real world (b). For Jaccard similarity, larger values
are better; for Chamfer distance, smaller values are better.

that are covered by the point cloud, and random exploration
has a high chance of being close to those points resulting
in more useful information. In contrast, Act-VH exploration
most likely returns a data point far from the visual point cloud,
leading BPA and Poisson to create strange artifacts that, once
voxelized, result in lower Jaccard similarity. Although the Act-
VH policy resulted in lower Jaccard similarity for BPA and
Poisson, it still outperformed the random policy in terms of
Chamfer distance.

Fig. 4 shows example reconstructions after 5 touches. These
examples show that: (i) BPA and Poisson are unable to
complete the whole object accurately, (ii) Alpha and Hull
reconstruct very sharp and unrealistic objects, and (iii) GPIS is
poor at reconstructing the object where no points are available.
In contrast, Act-VH can capture both global and local features,
resulting in smooth and faithful reconstructions. A challenging
object to shape complete was the partly transparent spray
bottle in the bottom row of Fig. 4. Nevertheless, Act-VH
still reconstructed it quite well compared to the ground truth
and other methods. The results of an incremental Act-VH
reconstruction with five touches is visualized in Fig. 5, high-
lighting that if the first reconstruction is good, which happened
to be the case in simulation, additional touches only locally
refine the objects. However, if the initial reconstruction is poor,
which was the case in the real world experiment, additional
touches lead to more global refinements. Note that the initial
estimation could be improved by replacing random sampling
for mini-batches with Farthest Point Sampling (FPS) (as in
[34]) which better preserves the global information about the
object. However, our experiments showed that after haptic

exploration, FPS is not leveraging this information well and
is outperformed by random selection.

Finally, we investigated if the reconstruction accuracies in
Fig. 3 approach some steady-state value with more touches.
We let Act-VH explore three objects three times in simulation
with 50 touches. The results are presented in Fig. 6. Based on
these results, it seems that Act-VH does approach a steady-
state Chamfer distance after about 20 touches, albeit some
fluctuations are still present. The same conclusion cannot be
made for the Jaccard similarity, which actually gets worse after
about 25 touches. The primary reason the Jaccard similarity
starts to decrease was due to errors in the exact location of
contact which originated from imprecise joint torque colli-
sion detection. Although Act-VH can cope with some errors,
ultimately, after enough touches, the performance starts to
decrease.

C. Robotic Grasping
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Fig. 6: Long exploration – 50
touches in simulation. Average
Jaccard similarity and Cham-
fer distance for three objects
over three repetitions.

The final experiment eval-
uates the impact of active
visuo-haptic object shape
completion on grasp suc-
cess rate. We used the same
overall setup as in the real-
world reconstruction experi-
ment, but changed two of the
objects. The ten objects we
used are shown in Fig. 2c.
All of these objects, except
the yellow mustard bottle,
were completely new. We
decided to benchmark Act-
VH against the Hull method because it reached the second-best
reconstruction accuracy on simulated and real objects.

For planning grasps on the reconstructed objects, we used
the simulated annealing planner in GraspIt! that ran for 75000
steps. Out of the planned grasps, the first physically reachable
grasp with the highest ε-quality metric was executed on the
robot. To study the effect of the number of touches on grasp
success rate, we planned and executed a grasp after zero, three,
and five touches. We repeated the reconstruction and grasping
procedure three times for each combination of objects, method,
and the number of touches, resulting in 180 grasps in total.
The robot performed a grasp by first picking the object, then
moving 10 cm upwards, and finally rotating the last joint
±90◦. The grasp was considered successful if the robot did
not drop the object during this movement; otherwise, it was
unsuccessful.

Fig. 7a shows the average grasp success rates over varying
number of touches. We can clearly see that Act-VH is superior
to Hull. For instance, after five touches, Act-VH achieved
an 80% average grasp success rate while Hull only achieved
46.7%. As expected, the grasp success rate with Act-VH
improves with the number of touches, from 38% to 80%. In
comparison, the success rate for Hull was unchanged between
3 and 5 touches, indicating that the additional haptic data did
not improve the convex hull reconstruction for grasp planning.
This fact is highlighted in Fig. 4, where the Hull reconstruction
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Fig. 4: Reconstruction examples in simulation (Sim) and real with all methods on three objects: A basic rectangular object
(upper row), the object for which Act-VH achieved the worst grasp success rate (middle row), and an adversarial object (bottom
row). Touches in the point clouds are highlighted with green color. There is no reconstruction in simulation for the adversarial
object because there was no appropriate ground truth mesh.

Fig. 5: An example reconstruction of an object after each touch with Act-VH in simulation (upper row) and the real world
(bottom row).
creates “slopes” from one set of points to another which the
grasp planner seemed to favor but resulted in unsuccessful
grasps. The same reconstruction artifacts were not visible
for Act-VH. Despite these differences, haptic exploration still
increased the grasp success rate by more than 100% between
zero and five touches irrespective of the methods, highlighting
the benefit of better reconstructions.

Finally, Fig. 7b shows the average grasp success rates
of Act-VH and Hull after five touches on the ten objects
individually. The results indicate that Act-VH performs better
than or on par with Hull on all objects. Hull has particular
problems with larger objects, such as objects 1, 2, 4, 5,
and 10, which most probably stem from the “slope” artifacts
mentioned earlier. Act-VH, on the other hand, only performs
poorly on object 7, where the two failed grasps were side-
grasps for which the object slipped out of the gripper because
of its short fingers. One possible reason why more side grasps
were produced was because the reconstructed object was much
thinner than in the real world (shown in the center row of
Fig. 4).

V. CONCLUSIONS AND FUTURE WORK

We presented Act-VH, an active visuo-haptic shape comple-
tion method. The challenge in visuo-haptic shape completion is
to decide the most informative touch location. To this end, Act-
VH uses a probabilistic shape completion network to assess
where the reconstruction is most uncertain. This location is
then used for haptic exploration. The reconstruction accuracy
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Fig. 7: Average grasp success rate of IGR (blue) and Hull
(red).

of Act-VH compared to five baseline methods shows, both
in simulation and real world, that Act-VH produces the best
reconstructions and that its reconstruction accuracy increases
most with the number of haptic explorations. Furthermore,
active visuo-haptic shape completion was also beneficial for
robotic grasping where Act-VH reached significantly higher
grasp success rates than the Hull method.

To assess the uncertainty of current shape reconstruction,
we sampled latent codes during shape optimization and used
the variance of the reconstructed shapes from this phase as
a measure of uncertainty. Note that this method may not
reflect the true uncertainty about the object shape given the
available information. An alternative method—sampling and
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then optimizing multiple latent codes independently—did not
yield better results and was computationally more expensive.
However, this remains an empirical result and better theoretical
grounding would be required.

Although Act-VH achieved promising reconstruction accu-
racy and grasp success rates, there is still room for improve-
ments. One improvement is to modify the loss function of IGR
to also incorporate data points that we know are not on the
surface. For instance, haptic exploration does not only indicate
where the surface exists, but also where it does not exist.
Another improvement is to also model the haptic location
as uncertain. This would allow to select touch locations that
are most robust to shape and robot uncertainties. Practically,
performance would increase with a more sensitive contact
detection method using e.g. a F/T sensor in the robot wrist
or tactile sensors at the fingertip.

In summary, the work presented here shows that we can
achieve accurate shape reconstructions with active visuo-haptic
shape completion. This, in turn, enables the use of visuo-
haptic exploration in perceptually uncertain environments such
as cluttered scenes where objects occlude each other.
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