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Towards a continuous solution of the d-visibility
watchman route problem in a polygon with holes

Jan Mikula1,2 and Miroslav Kulich2

Abstract—A new heuristic solution framework is proposed to
address the challenging watchman route problem (WRP) in a
polygonal domain, which can be viewed as an offline version of
the robot exploration task. The solution is the shortest route from
which the robot can visually inspect a known 2D environment.
Our framework considers a circular robot with radius r equipped
with an omnidirectional sensor with limited visibility range
d. Instead of a standard decoupled solution, the framework
generates a set of specifically constrained regions covering the
domain and then solves the traveling salesman problem with
continuous neighborhoods (TSPN) to obtain the solution route.
The TSPN is solved by another proposed heuristic algorithm
that finds a discretized solution first and then improves it back
in the continuous domain. The whole framework is evaluated
experimentally, compared to two approaches from the literature,
and shown to provide the highest-quality solutions. The current
version of the framework is one step from a fully continuous
approach to the WRP that we will address in the future.

Index Terms—Task and Motion Planning; Motion and Path
Planning; Computational Geometry; Watchman Route Problem;
Traveling Salesman Problem with Neighborhoods.

I. INTRODUCTION

A classic problem in computational geometry and robotics
is the watchman route problem (WRP). Assume a mobile

agent (e.g., watchman or autonomous robot) with the ability
to see a certain portion of the environment around itself.
The WRP is the problem of finding the shortest closed
collision-free route to be traversed by the agent such that
it sees the whole environment in which it operates. Unlike
the exploration task, which unravels online, the WRP is set
offline, i.e., the map of the environment is known in advance.

Problem statement: We focus on a WRP variant suited
for efficient visual inspection of a known environment per-
formed by an autonomous mobile robot. We assume that
the environment has a 2D representation, such as a floor-plan,
which can be turned into a polygona domain, i.e., a simple
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classic WRP
l=44.4

d-WRP
d=7.0, l=74.9

rd-WRP
r=0.85, d=7.0, l=88.4

Fig. 1: Examples of the WRP: (20m× 20m) environment W
is shown in white, obstacles are black, unreachable parts of
W are blue, and the solution route is red. The value of l is
the solution’s length, and d, r, and l are in meters.

polygon with holes, denoted as W . The robot is assumed to
be holonomic, circular with radius r, and equipped with an
omnidirectional sensor with limited visibility range d, placed
in its center. The goal is to plan the shortest polyline route
the robot could follow to see the whole environment. We say
route τ is collision-free inW if it lies entirely insideW and its
minimal distance from any segment ofW is no smaller than r.
We say that route τ visually covers W , or just covers W , if
all points of W are d-visible from at least one point along τ .
Two points are d-visible to each other if the line segment
between them lies entirely in W and its length is no bigger
than d. The problem is to find the shortest closed route τ
that is collision-free in W and visually covers W . We denote
the definition above as the rd-WRP, or d-WRP if r=0, or
classic WRP if r=0 and d=∞ (see Fig. 1 for examples).
The classic WRP and d-WRP are known to be NP-hard for
polygons with holes [1]–[3].

A standard solution approach to this kind of problem is
decoupling [4], which splits the original problem into two
subproblems that are solved independently: 1) the art gallery
problem (AGP): find a minimal set of discrete sensing lo-
cations (guards) that completely cover the environment, and
2) the traveling salesman problem (TSP): determine the order
of guards’ visits such that the length of the final route is
minimal. However, despite both parts being solved optimally,
the optimal solution to the WRP is not guaranteed because
decoupling independently minimizes the cost of sensing and
the cost of motion, while the WRP wants to minimize a
combination of both costs [5]. As a result, decoupling does not
always provide solutions of sufficient quality. Another existing
approach is using a soft-computing technique called self-
organizing map (SOM) [6], [7]. The SOM creates an initial
route covering only a part of the environment. This partial
solution is then iteratively modified so that its parts are
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attracted towards uncovered areas until every area is covered.
However, these solutions are of poor quality too (some can be
improved by more than 20%, as we show later).

This paper proposes a novel heuristic solution framework
for the d-WRP that, in contrast to standard decoupling, covers
the environment by a set of carefully constructed overlapping
continuous regions (polygons) instead of just points. These
regions are an analogy to the points in the decoupling approach
because a route that visits them all covers the whole environ-
ment. The problem with decoupling is that during the route
optimization, the set of possible output solutions is already
highly restricted; thus, it is unlikely to contain a solution close
to optimum. In addition, there is no obvious way to determine
a promising set of visit locations. Nothing of this is true for
our framework. The space of possible solutions after assuring
full visual coverage is much less restricted than in the case
of decoupling. The reason is that solution is determined not
only by the order of the regions but also by how each of these
regions is visited. Since we are in a continuous domain, there
is an infinite number of ways to visit each region in general.
Empirically we have found out that the most promising regions
are the largest (⇒ more ways to visit each region) and most
overlapping (⇒ more ways to visit several regions at once) as
possible. Also, the number of these regions should not be very
large because the subsequent route optimization would be too
computationally expensive. All of these criteria are considered
by the region generating procedure we designed.

The subsequent problem of finding a minimum route that
visits each polygonal region from a given set is known as
the traveling salesman problem with continuous neighbor-
hoods (TSPN) [8]. Since the literature does not yet provide
any solver for the TSPN variant, where obstacles must be
considered, and the neighborhoods can intersect, we had to
design one such solver. Thus, a novel heuristic TSPN solver
is our second major contribution. First, it solves a discretized
version of the problem where the regions’ borders are sampled
by points, which is known as the exactly-one-in-a-set general-
ized traveling salesman problem (GTSP) [9]. Then, the GTSP
solution is further improved back in the continuous domain
by a modified rubberband algorithm [10]. Although the TSPN
solution involves a phase where the problem is discretized, the
framework as a whole makes the next step towards solving the
d-WRP continuously.

The proposed framework is thoroughly experimentally eval-
uated on 24 instances of the d-WRP, compared to two refer-
ence algorithms from the literature, and shown to provide the
highest-quality solutions. In addition, the framework can ex-
plicitly consider a non-point robot, which makes the problem
more complex because, in general, the area that the robot sees
is no longer the same as the area that is reachable by the robot.
The capability to deal with such situations is demonstrated on
several selected instances of the rd-WRP.

The rest of this paper is organized as follows. Previous
related works are reviewed in Sec. II. The novel solution
approach is proposed in Sec. III, and experimentally evaluated
in Sec. IV. The last Sec. V is devoted to concluding remarks.

II. RELATED LITERATURE REVIEW

The classic WRP was firstly studied by Chin and Ntafos [1].
The authors attempt to prove that the problem in a general
polygonal domain is NP-hard by reducing the Euclidean TSP
to it. However, their proof does not stand as was later shown by
Dumitrescu and Tóth [3] who provide the correct proof based
on rectilinear TSP instead. Variants of the classic WRP, which
restrict polygonal domain W somehow, have been studied
extensively in the literature over the last three decades. In
simple polygons, the problem is polynomially solvable; several
exact [11], [12] and approximation [13], [14] algorithms have
been proposed for that particular case and also for an even
more special case where the simple polygon is rectilinear [1],
[15]. More recently, a variant where the domain is the union
of either lines or segments has been considered [16], [17].
So far the only polynomial-time approximation algorithm for
the classic WRP in a polygon with holes was introduced by
Mitchel [18]; it has an approximation factor of O(log2 n).

Packer [4] introduced a heuristic algorithm for computing
watchman routes in a polygon with holes. Besides the single-
agent case, he considered the case of k watchmen, i.e.,
the multiple WRP (MWRP), where either the total length trav-
eled (MinSum), or the longest route (MinMax) is minimized.
Packer’s decoupling algorithm starts with solving the AGP
where static guards with unlimited visibility range are placed
into the polygonal domain for full visual coverage. Then,
a minimum spanning tree created from the pairwise shortest
paths between the guards is split to construct the initial k
routes that are further improved by vertex substitutions to
obtain the final solution.

In the classic WRP, a route from which boundary ∂W
of environment W is visible is also the route from which
every point in W is visible. Under limited visibility, this no
longer holds. Because of this fact, Ntafos [2] distinguished
two problems: 1) the d-watchman route problem, if one
wants to see only boundary ∂W of the environment, and
2) the d-sweeper route problem, if one wants to see both ∂W
and the interior of W . Danner and Kavraki [19] heuristically
solved the first of the two problems while assuming an addi-
tional visibility constraint on the maximum angle of incidence.
Their decoupling algorithm firstly determines static guards that
see the whole boundary and satisfy the visibility constraints,
which is done in a randomized fashion by a modified dual
sampling algorithm proposed in [20]. Then, the resulting route
is obtained by solving the TSP on a pairwise shortest-paths
graph whose vertices are the guards.

Faigl [6] deals with the d-sweeper route problem. Despite
Ntafos’s terminology, the author established for the problem
an abbreviation d-WRP1, that we adopted. Faigl itroduces
a heuristic framework for the d-WRP that relies on the
SOM [21]: a two-layered artificial neural network that pro-
vides a non-linear transformation of a high-dimensional input
space into a lower dimensional discrete output space. Faigl’s
framework represents the route as a ring of connected weighted
neurons that evolve in W while obstacles are avoided. An
adaptation procedure based on SOM attracts the neurons

1According to Ntafos, the abbraviation should instead be d-SRP.
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toward uncovered parts of W by considering the current
coverage of W by the ring. The framework also tackles the
problem’s multi-agent MinMax-criterion version. The SOM-
based approach is further improved in [7] with new adaptation
rules and novel initialization of the neurons weights that lead
to faster convergence of the network.

This paper extends the definition of d-WRP by considering
a circular robot of radius r, which yields the rd-WRP. Our
extended definition is related to the coverage path plan-
ning (CPP), which is the task of determining a route that passes
over all points of the environment while avoiding obstacles
(see survey [22]). The CPP usually assumes that the robot’s
body is the same as the area that is being covered (sensed)
by the robot, which corresponds to assuming r= d in our
definition. Although our framework can solve instances of
the CPP to some degree (without guarantees of any kind),
we do not aim to compete with algorithms specialized to
the problem. Instead, we assume that the robot is smaller than
the area it covers visually, i.e., r < d. In these cases, using the
coverage planning algorithms would be problematic because
they do not consider the notion of d-visibility.

Finally, recent work [23] solves a discrete version of
the WRP on a grid with heuristic search. However, this work is
not directly relevant to our problem because the environment
is modeled by a discrete binary grid map, the robot is one-
cell-sized, and a discrete line-of-sight function models its field
of view. By contrast, we assume a polygonal, continuous
environment, and a circular robot with radius r whose field
of view is defined by d-visibility.

III. HEURISTIC FRAMEWORK FOR THE rd-WRP

In this section, we describe the proposed framework in
detail. For readers’ convenience, we explain many concepts
using a simple example of an r=0.6m robot operating inside
8m× 8m environment W , shown in Fig. 2a (W is white,
obstacles are black, the robot is navy blue). The proposed
heuristic framework can be summarized as follows:

1) assuming a point robot, generate a polygonal coverage
of W , i.e., set of polygons R = {R |R is convex and
fits in a circle of diameter d } such that⋃

R∈R
R =W, (1)

2) to consider a non-point robot, compute Wfree by offset-
ting W by amount −r, otherwise set Wfree =W , finally

3) get solution τ by solving the TSPN [8] with

N = {R ∩Wfree |R ∈R} \ {∅} (2)

as the neighborhoods (note: N = R for a point robot).

See the examples of R, Wfree, and N in Fig. 2b-2d. Note
that Wfree represents both free workspace and free configu-
ration space of the robot (recall that the robot is assumed
holonomic and circular). The procedure for generating poly-
gons R is proposed in Subsec. III-A. The heuristic algorithm
for solving the TSPN is proposed in Subsec. III-B.

(a) robot in W (b) R (c) Wfree (d) N

(e) Pvis(l1) (f) C◦(l1, d1) (g) V(l1) (h) Pvis(l2)

(i) C◦(l2, d2) (j) V1/2(l2) (k) MACS (l) MCCS

(m) Wcov (n) ∂Ni (o) ∂Wfree (p) σi

1

2

3

4

5

6

78 9

(q) GTSP (r) TPP (s) d=2m (t) d=1m

Fig. 2: Examples of the most crucial structures and concepts.

A. Generating the polygonal coverage

The goal of the polygonal coverage is to create such set of
polygons R that visiting them all (by a point robot) would
imply that the whole W has been seen. This requirement
implies Eq. (1) and one more condition: (c1) for all R∈R
every pair of points p1, p2 ∈R must be d-visible to each other.
Apparently, all convex polygons that are fully insideW and fit
inside a circle of diameter d satisfy condition (c1). Therefore,
e.g., a triangular mesh generated by conforming constrained
Delaunay triangulation (CCDT) [24] could be used. However,
the CCDT mesh would severely underestimate what part of
the environment is seen by the robot when it visits a particular
triangle. Also, if the environment’s border is very complex,
many fragment-like triangles appear in the mesh. Both of these
properties may negatively influence the solution’s quality and
computational complexity of derived subproblems. Instead, we
aim for a procedure that covers the environment with polygons
satisfying condition (c1), and in addition, it tries to minimize
their number, maximize their size, and allows that they can
intersect.

The polygonal coverage algorithm shown in Alg. 1 starts
with empty set R and uncovered region Wcov initialized as
the whole environment W (line 1). Then, inside the main
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loop, it selects the best polygon R? (lines 3-11) to be
added to R (line 12) and clipped away from Wcov (line 13).
The process iterates until the ratio of the uncovered area
is lesser than parameter εcov, which guarantees coverage of
at least 100 · (1 − εcov)%. The selection of R? follows
the dual sampling scheme [20]. The first seed l0 is sampled
randomly from Wcov and the first candidate R0 is constructed
from it. Then, imax other candidates are constructed similarly
by sampling only inside R0

2. Finally, the best candidate R?
is the one maximizing intersection with Wcov. When tie-
breaking, the candidate with a larger area is selected.

Next, we detail how candidate polygons Ri, are constructed
on lines 4 and 8 of Alg. 1. The construction relies upon
the concept of visibility polygons. Visibility polygon Pvis(l)
at point l ∈ W is a set of all points of W that are
visible from l assuming unrestricted visibility range (see the
examples in Fig. 2e, 2h). We further consider a region sensed
from l, denoted as V(l), defined as the union of Pvis(l) and
circle3 C◦(l, d) of radius d centered in l. See the construction
of V in Fig. 2e-2g. The dual sampling algorithm utilizes
region V1/2 defined as

V1/2(l) = C◦(l, d/2) ∩ Pvis(l) (3)

for given sample point l. See the construction of V1/2 in
Fig. 2h-2j. Note, that V1/2 is constructed the same way as V ,
except Pvis is clipped by a circle with half the radius. Re-
gion V1/2 is defined such that it fits inside a circle of diameter d
to partially satisfy condition (c1). However, it may be concave,
so we can not use it as Ri in Alg. 1 directly. Instead, Ri is
created by cutting off parts of V1/2, until the result is a
convex polygon. The question is how to select proper cuts.
One strategy shown in Fig. 2k is to aim for the maximal area
of the result. This is equivalent to finding the maximum area
convex subset (MACS) of V1/2.

Coeurjolly and Chasserythe [25] introduce an approximate
algorithm for the MACS problem in star-shaped polygons.
A polygon is star-shaped if it contains point l from which all
other points of the polygon are visible, which is a property sat-
isfied by V1/2(l) from the definition. The algorithm [25] starts
with a given star-shaped concave polygon. Then, according
to several criteria, it determines a set of promising candidate
cuts that would bring the polygon closer to convexity. Finally,
from the candidate cuts, one that results in a maximal-area
subset of the original polygon is selected and executed. This
process repeats until a convex polygon is received. We adopt
this procedure (using the same types of candidate cuts as [25])
to transform V1/2 into a convex polygon. However, in our
case, we prefer cuts that maximize intersection with uncovered
region Wcov, which is maintained by Alg. 1. Maximizing
the area of the result is just a secondary rule (i.e., meant for
tie-breaking) for selecting the best cut. We call the result max-
imally covering convex subset (MCCS) of V1/2(l) w.r.t. Wcov.

2Experiments in [20] have shown that this dual-sampling approach finds
better solutions for the AGP than plain single-sampling.

3Note that in principle, neither C◦ nor V can be represented by polygons
because polygons are composed of straight line segments, but circles or their
parts are not. However, since our approach is heuristic, we can approximate
circles by regular polygons (with many vertices) inscribed to them.

Fig. 2l displays an example of MCCS of V1/2 w.r.t. particular
region Wcov, shown separately in Fig. 2m.

B. The heuristic algorithm for the TSPN

The last step of the proposed WRP framework is to find
the shortest collision-free route visiting every region in set N
(Eq. (2)). This is equivalent to solving the TSPN [8] with
N as the neighborhoods. We propose a heuristic procedure
shown in Alg. 2 to solve the TSPN while considering obsta-
cles. The following notation is used: τ(s, g) is the shortest
collision-free route connecting two points s, g ∈ Wfree, and
Len(τ) is the length of route τ . The procedure consists of
three basic steps: 1) sampling neighborhoods N (lines 1-4),
2) determining order ς of the neighborhoods by solving
the GTSP [9] (lines 5-6), and 3) obtaining final WRP solu-
tion τ by solving the touring polygons problem (TPP) [26] for
the neighborhoods ordered according to ς (line 7). The follow-
ing paragraphs further detail these steps.

First, we explain how the neighborhood sampling is done.
Obviously, when visiting N , the visitor must first cross (or
touch) its border ∂N . Therefore, it is enough to sample
just ∂N . Furthermore, N could share some parts of its
border with Wfree. However, a robot with radius r can not
enter N by crossing ∂Wfree because that would imply that
its previous configuration was outside its free configuration
space. Thus, ∂N ∩ ∂Wfree can be excluded from sampling.
The strategy for sampling the remaining ∂N \ ∂Wfree is to
decompose it into maximal connected components, which can
be represented as polylines, and sample them individually.
If ∂N \ ∂Wfree is composed of only one such polyline that
is closed and whose length is smaller than parameter dsample,
then σN = 〈centroid of N〉. Otherwise, the polylines are sam-
pled equidistantly such that the distance (along the polyline)
between two samples is maximal but no bigger than dsample.
For open polylines, the first and last vertices are always
included. An example of sampling three neighborhoods is
shown in Fig. 2n-2p.

Algorithm 1: Polygonal coverage of W .
Input: W (polygonal enviroment), d (visibility radius)

Output: R (polygons covering W)

Param: imax (# of dual sampling iterations), εcov (goal coverage)

1 Initialize R← ∅, and Wcov ←W .
2 while Area(Wcov)/Area(W) > εcov do
3 Select point l0 ∈ Wcov randomly.
4 R0 ← MCCS of V1/2(l0) w.r.t. Wcov

5 R?, c?, a? ← R0, Area(R0 ∩Wcov), Area(R0)
6 for i← 1, . . . , imax do
7 Select point li ∈ R0 randomly.
8 Ri ← MCCS of V1/2(li) w.r.t. Wcov

9 ci, ai ← Area(Ri ∩Wcov), Area(Ri)
10 if ci > c? or (ci = c? and ai > a?) then
11 R?, c?, a? ← Ri, ci, ai

12 R←R ∪ {R?}
13 Wcov ←Wcov \ R?
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By sampling all neighborhoods, one obtains an instance
of the GTSP, where the sample points represent vertices
of a graph and affiliations to neighborhoods determine how
they are grouped. It is reasonable to assume that the graph is
complete if we also assume that Wfree has exactly one max-
imal connected component. Edges of the graph are weighted
according to the lengths of the shortest paths inWfree between
the vertices. A solution of the GTSP is a circuit (i.e., a
closed walk) in the graph that visits exactly one vertex
from each group (except for the first and last, which are
the same) and minimizes the total weight along the edges.
Recall that the classic TSP can be defined by single distance
matrix D=(dij); similarly, the GTSP can be defined by D
and mapping ν between the vertices and groups to which they
belong (referring to lines 4-6 of Alg. 2). For solving the GTSP,
we use GLNS: an effective large neighborhood search heuris-
tic introduced by Smith and Imeson [27]. An example of a
GTSP instance (colored points) and a GTSP solution (black
tour) is shown in Fig. 2q.

The last step of the TSPN algorithm is to refine the solution
route by solving the TPP. The TPP is the problem of finding

Algorithm 2: Heuristic procedure for the TSPN.
Input: N (polygonal neighborhoods), Wfree (free config. space)

Output: τ (solution path)

Param: dsample (maximal sampling distance)

1 Initialize empty seq. of samples σ, and neighborhoods ν.
foreach N ∈N do

2 Sample ∂N \ ∂Wfree using parameter dsample and
save the samples to σN .

3 foreach s ∈ σN do
4 Append s, N to the end of σ, ν, respectively.

5 Compute distance matrix
D = (dij = Len(τ(si, sj)) | ∀si, sj ∈ σ).

6 Get sequence of neighborhoods ς(N ) by solving
the GTSP defined by D and ν.

7 Get WRP solution τ by solving the TPP for ς(N ).

Algorithm 3: Rubberband algorithm for the TPP.
Input: ς(N ) = 〈N1, . . . ,Nn〉 (ordered neighborhoods),

π0 = 〈pi | pi ∈ Ni〉 (point sequence), Wfree

Output: τ (solution path)

Param: kmax (# of improvement attempts)

1 Initialize π? ← π0.
2 for k ← 1, . . . , kmax do
3 Let πk−1 ≡ 〈p0, . . . , pn−1〉.
4 for i← 0, . . . , n− 1 do
5 s, g ← p(i−1 mod n), p(i+1 mod n)

6 pi ← argmin
q∈ ∂Ni+1\ ∂Wfree

(
Len(τ(s, q)) + Len(τ(q, g))

)
7 πk ← 〈p0, . . . , pn−1〉
8 if Len(τ(πk)) < Len(τ(π?)) then
9 π? ← πk

10 τ ← τ(π?)

point pi ∈ Ni in each neighborhood Ni ∈ N such that
closed collision-free route τ visiting all such points in an
order prescribed by ς(N ) = 〈N1, . . . ,Nn〉 is the shortest
possible. We use a modified version of the algorithm intro-
duced in Pan et al. [10]. The authors deal with the TPP
while assuming that the polygons are pairwise disjoint and
no obstacles are present. We apply a modified version of
their rubberband algorithm to our variant of the TPP with
intersecting polygons and the necessity to avoid obstacles. The
algorithm is shown in Alg. 3. The input, i.e., ordered sequence
of neighborhoods ς(N ), is obtained by looking at the group
labels of the GTSP solution received at line 6 of Alg. 2.
Similarly, the initial sequence of points π0 is taken from
the same GTSP solution as the points that were selected from
each group. Notation τ(π) denotes a closed route that connects
all consecutive points in sequence π = 〈p1, . . . , pn〉 and, in
addition, pn and p1, by the shortest collision-free sub-routes.
The algorithm iteratively modifies point sequence π such that
τ(π) is getting shorter. In each iteration k, the algorithm starts
with a sequence from previous iteration k − 1. Then, it goes
over all triplets i=0, . . . , n−1 of consecutive points (denoted
as s, pi, and g) in the sequence and computes a new value for
the middle point (pi). The new value is a point that lies on
one of the polylines defined as ∂Ni+1 \ ∂Wfree and minimizes
the total cost of travel (route’s length) from s to itself and
then to g. An example of a TPP solution is shown in Fig. 2r.
The TPP heuristic, in general, improves4 the WRP solution
obtained initially by solving the GTSP. Finally, see different
solutions computed by the framework while assuming different
d’s in Fig. 2s-2t.

IV. COMPUTATIONAL EVALUATION

To the best of our knowledge, the improved SOM-based
method presented in [7] is the latest published solution to
the d-WRP in a polygon with holes. Therefore, it makes a
valid reference for comparison with our novel approach. Fur-
thermore, in the same work, the authors compare their SOM to
a simple decoupling algorithm. The locations are generated by
the deterministic sensor-placement algorithm [28] and the TSP
on the pairwise shortest-paths graph is solved by the exact
solver Concorde [29]. However, better decoupling approaches
exist [19]. For example, the dual sampling algorithm [20] can
generate the locations, and the LKH heuristic [30] can solve
the TSP5. The latter description yields our second reference
algorithm called DS+LKH.

The propsed heuristic framework for the rd-WRP was
implemented in C++ using the C++17 standard. The frame-
work computes visibility polygons using our implementation
of the triangular expansion algorithm [31], which uses a
Delaunay triangulation mesh generated by Triangle [32].
Clipper [33] is employed for computing polygon operations

4Note that the improvement in Fig. 3 is slight (the TPP solution is just
about 0.2% shorter) because of the environment’s simplicity. However, the
obtained improvements are much more significant (4.2% ± 3.8%) for larger
and more complex environments tested in Sec. IV (Tab. I).

5The dual sampling algorithm [20] generates better guards than the sensor-
placement algorithm [28], and the LKH heuristic [30] improves the speed
over Concorde [29] without significantly reducing the solution quality.
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TABLE I: Experimental results for the d-WRP. Colors denote comparison of the algorithms: 1st (best), 2nd, 3rd, 4th (worst).

Map d [m] lref [m]
SOM [7] DS+LKH [19] Proposed (Trade-off ) Proposed (Best)

PDM PDB t [βs] n PDM PDB t [s] n rσ PDM PDB t [s] n rσ PDM PDB t [s]

jh

∞ 193.3 -45.3 -49.6 0.1 28 -36.1 -42.3 0.2 59 6.5 -51.7 -53.0 2.0 56 14.7 -51.6 -53.0 19.0
10.0 194.6 -47.0 -49.6 0.1 30 -35.0 -40.9 0.2 62 5.6 -51.6 -52.8 1.7 60 12.6 -51.4 -53.3 15.6
5.0 204.3 -43.2 -48.3 0.1 35 -29.5 -35.5 0.2 93 5.0 -50.5 -51.5 1.8 84 10.7 -51.5 -52.2 26.8
4.0 207.9 -33.7 -38.6 0.2 40 -28.1 -33.7 0.2 123 4.3 -46.7 -49.4 2.0 117 10.0 -49.0 -49.6 61.3
3.0 215.5 -17.8 -21.9 0.5 53 -23.2 -29.6 0.2 191 3.4 -33.1 -36.7 2.6 173 8.7 -42.4 -43.2 114.2
2.0 295.5 -7.5 -12.2 2.6 101 -20.7 -23.5 0.4 353 2.3 -24.1 -26.1 4.8 343 6.5 -33.0 -34.5 135.0
1.5 359.0 -1.8 -5.4 7.1 152 -21.7 -23.9 0.8 587 2.0 -19.0 -22.9 10.7 566 5.2 -26.5 -29.2 169.9
1.0 458.0 2.3 -0.7 45.4 334 -14.6 -15.8 2.6 1198 1.6 -7.4 -11.7 44.2 1163 4.0 -19.2 -21.8 358.9

ta

∞ 215.6 -33.3 -34.6 0.0 10 -29.9 -34.4 0.0 32 7.2 -40.5 -41.0 1.2 30 22.3 -40.3 -41.0 4.3
10.0 216.9 -32.0 -33.0 0.0 14 -25.1 -33.5 0.0 52 5.4 -35.2 -36.9 1.2 50 17.5 -34.9 -37.4 9.3
5.0 256.8 -14.9 -18.0 0.1 32 -16.2 -21.4 0.1 110 3.4 -24.1 -25.6 1.5 105 12.4 -27.9 -29.3 49.0
4.0 291.3 -9.8 -13.8 0.2 45 -17.1 -21.5 0.1 156 2.9 -23.8 -26.7 1.7 150 10.8 -28.1 -29.9 110.6
3.0 335.6 -4.8 -9.1 0.5 73 -16.2 -19.9 0.3 247 2.1 -19.9 -25.1 2.5 239 8.9 -26.9 -28.5 124.3
2.0 427.0 0.3 -3.3 3.9 142 -19.7 -22.3 0.7 502 1.7 -15.5 -19.2 6.5 489 6.6 -26.8 -28.7 181.1
1.5 538.5 -1.6 -4.4 19.2 240 -22.8 -24.6 1.5 854 1.5 -14.1 -18.5 19.0 833 5.0 -26.6 -28.2 282.3
1.0 774.3 -0.1 -1.5 138.0 495 -27.8 -28.6 5.1 1823 1.3 -15.5 -19.6 104.2 1776 3.9 -26.0 -30.1 971.3

pb

∞ 554.9 -20.5 -22.5 0.2 13 -31.7 -35.8 0.0 32 7.3 -38.7 -38.7 1.2 31 26.0 -38.7 -38.8 4.2
10.0 615.9 -14.6 -16.7 0.2 37 -8.1 -11.3 0.1 96 4.5 -17.8 -18.8 1.4 94 12.0 -19.6 -20.0 28.7
5.0 687.2 -7.7 -9.3 0.5 83 -4.8 -7.8 0.2 212 3.7 -11.7 -12.5 2.2 207 10.0 -12.8 -13.4 113.3
4.0 721.9 -6.8 -7.9 1.0 106 -6.0 -7.8 0.3 300 3.5 -10.4 -12.1 3.2 284 9.5 -12.6 -13.3 127.2
3.0 781.6 -6.3 -7.0 4.1 153 -7.5 -8.4 0.5 492 2.9 -9.1 -10.3 7.0 456 8.4 -13.7 -14.3 176.9
2.0 919.0 -5.4 -6.5 22.3 283 -13.2 -14.9 2.1 1089 1.8 -3.5 -7.7 29.6 1064 6.3 -16.9 -18.2 475.0
1.5 1158.2 -3.2 -4.1 112.2 469 -21.1 -22.3 5.3 1783 1.7 -9.6 -14.1 89.4 1720 5.0 -24.8 -25.9 940.2
1.0 1606.6 -1.4 -2.0 889.3 1144 -17.3 -18.0 24.6 3835 1.4 -13.8 -16.6 561.5 3736 3.9 -23.6 -25.8 4425.1

PDM = PD(lmean), PDB = PD(lbest), PD(l) := 100 · (l− lref)/lref, t—mean time, n—mean # of generated locations/polygons, rσ—mean # of samples per neighborhood.

d=∞, l=90.8 d=4, l=104.8 d=2, l=193.6 d=∞, l=339.8 d=4, l=626.2 d=2, l=752.1

d=∞, l=127.1 d=10, l=135.8 d=5, l=181.6 d=4, l=204.2 d=3, l=240.0 d=2, l=304.4 d=1.5, l=386.5 d=1, l=541.6

Fig. 3: Selected best d-WRP solutions found by the proposed framework for maps: jh (top-left), pb (top-right), ta (bottom).

r=0.0, l=168.3 r=0.2, l=176.5 r=0.4, l=189.2

r=0.6, l=209.3 r=0.8, l=233.6 r=1.0, l=335.1

Fig. 4: rd-WRP solutions in a 40m× 40m map for d=∞
and increasing r. Wfree, Wobs = W \ Wfree are white, blue,
respectively. The visual coverage of W is 100% in all cases.

r=0.0, d=∞,
l=63.4, c=100.00%

r=0.5, d=1.0,
l=274.8, c=99.93%

r=0.9, d=5.0,
l=122.4, c=99.94%

r=0.0, d=∞,
l=187.5, c=100.00%

r=0.2, d=3.0,
l=358.5, c=100.00%

r=0.25, d=10.0,
l=216.1, c=99.99%

Fig. 5: Selected rd-WRP solutions in less structured environ-
ments (c is the percentage visual coverage of W).



MIKULA & KULICH: TOWARDS A CONTINUOUS SOLUTION OF THE d-VISIBILITY WATCHMAN ROUTE PROBLEM IN A POLYGON WITH HOLES 7

and offsetting. A standard combination of a visibility graph
computed by the algorithm proposed in [34] and Dijkstra’s
algorithm is used for obtaining distance matrix D (recall line 5
of Alg. 2). The authors’ Julia implementation of GLNS is
rewritten to C++ while preserving the structure and parameters
of the program.

We consider two parametrizations of our framework:

• Trade-off : imax=10, dsample=10m, kmax=10, tGLNS=1 s,
which provides a trade-off between solution quality and
runtime, and

• Best: imax=100, dsample=1m, kmax=100, tGLNS=100 s,
which aims at finding the best quality solutions regardless
of runtime.

The first three parameters are from Alg. 1-3, and tGLNS is
an upper runtime limit posed on GLNS (GLNS is an any-
time algorithm). Parameter value imax =100 is also used in the
reference algorithm DS+LKH. In addition, all parametrizations
share εcov = 0.001 (Alg. 1), the default mode of GLNS
(GLNS has three modes: slow, default, and fast; see [27]),
and number of vertices n◦ = 32 of the regular polygons used
to approximate circles (e.q., in Eq. (3)).

The proposed, and two reference algorithms are eval-
uated and compared on several d-WRP instances. More-
over, we show at the end how the proposed algorithm
can adapt to a robot with non-zero radius r and less
structured environments. For the main experiments, we use
the same polygonal environments: jh (20.6m× 23.2m),
ta (39.6m× 46.8m), pb (133.3m× 104.8m), and visibility
ranges d∈{∞, 10.0, 5.0, 4.0, 3.0, 2.0, 1.5, 1.0}m as in [7].
All the algorithms are randomized; thus, 20 solutions are
found for every instance-algorithm pair. The solutions’
quality is measured using two metrics: PDM=PD(lmean),
and PDB=PD(lbest), where lmean, and lbest are the mean
and best solution lengths, respectively, and PD(l) := 100 ·
(l − lref)/lref is the percent deviation from reference path
length lref

6. Besides, n denotes the mean number of generated
sensing locations for the DS+LKH. The same symbol also
denotes the mean number of polygons generated by Alg. 1.
Furthermore, rσ represents the mean number of samples per
neighborhood generated in Alg. 2.

Most of the experiments were executed within the same
computational environment using a single core of the Intel
Core i7-6700 CPU (3.40 GHz), 16 GB of RAM, and running
Ubuntu 20.04. Experiments with the SOM method make the
exception because the authors’ implementation was not made
public. Thus, we show the runtimes presented in [7] corrected
by factor β= 914

2302 ≈ 0.397 based on the single-thread CPU rat-
ings obtained from cpubenchmark.net7. With this correction,
the presented runtimes can be directly compared.

The results are shown in Tab. I. The first thing one
can notice is that the methods’ relative performance heavily
depends on the considered visibility range d. Conclusions
derived from experiments with either d=∞ or d=1m would

6The value of lref taken from [7] is computed by the deterministic
decoupling algorithm (sensor-placement [28] + Concorde [29]).

7The full CPU comparison: https://www.cpubenchmark.net/compare/AMD-
Athlon-Dual-Core-5050e-vs-Intel-i7-6700

TABLE II: Detailed view of the runtime.

Map d

Proposed (Trade-off ) Proposed (Best)

t [s]
% of time

t [s]
% of time

cov dij tspn rest cov dij tspn rest

jh

∞ 2.0 28.4 7.7 58.7 5.2 19.0 25.1 14.2 60.1 0.6
10.0 1.7 16.0 7.3 71.0 5.7 15.6 12.2 12.1 75.0 0.7
5.0 1.8 14.9 10.7 67.5 6.9 26.8 4.5 10.5 84.5 0.5
4.0 2.0 19.0 12.3 61.1 7.6 61.3 2.4 8.4 88.9 0.3
3.0 2.6 28.8 13.3 49.8 8.1 114.2 1.7 8.2 89.9 0.2
2.0 4.8 49.0 15.5 29.1 6.4 135.0 2.8 20.3 76.6 0.3
1.5 10.7 57.1 24.8 14.2 3.9 169.9 4.7 33.6 61.4 0.3
1.0 44.2 62.5 31.7 4.3 1.5 358.9 8.5 61.6 29.6 0.3

ta

∞ 1.2 8.9 2.8 84.0 4.3 4.3 20.4 19.5 58.8 1.3
10.0 1.2 6.5 3.7 84.1 5.7 9.3 5.2 14.0 80.0 0.8
5.0 1.5 15.2 5.6 72.4 6.8 49.0 1.4 10.5 87.9 0.2
4.0 1.7 23.3 7.4 62.4 6.9 110.6 0.9 8.7 90.3 0.1
3.0 2.5 41.5 7.3 45.0 6.2 124.3 1.4 17.2 81.2 0.2
2.0 6.5 65.8 12.4 18.3 3.5 181.1 3.1 40.7 56.1 0.1
1.5 19.0 69.5 21.6 7.2 1.7 282.3 5.4 58.2 36.3 0.1
1.0 104.2 68.5 29.3 1.7 0.5 971.3 7.9 81.0 11.0 0.1

pb

∞ 1.2 6.7 2.2 85.1 6.0 4.2 14.9 13.9 69.3 1.9
10.0 1.4 8.8 6.0 75.5 9.7 28.7 1.5 5.4 92.6 0.5
5.0 2.2 25.8 15.3 49.9 9.0 113.3 0.9 10.0 88.9 0.2
4.0 3.2 36.1 21.8 34.6 7.5 127.2 1.4 19.0 79.3 0.3
3.0 7.0 48.7 30.0 16.7 4.6 176.9 2.4 40.1 57.3 0.2
2.0 29.6 66.4 26.7 5.1 1.8 475.0 4.8 73.3 21.7 0.2
1.5 89.4 64.1 32.2 2.9 0.8 940.2 6.4 82.1 11.3 0.2
1.0 561.5 62.6 36.1 1.0 0.3 4425.1 8.4 88.1 3.4 0.1

significantly differ. However, one observation is consistent
regardless of d: the proposed (Best) provides the best quality
solutions at the cost of being the slowest. On average, it
provides (10.6 ± 6.6)%, (16.2 ± 8.6)%, and (23.2 ± 4.7)% better
solutions than the SOM for d≥ 10, 5≥ d≥ 3, and d≤ 2, re-
spectively. Similarly, it provides (16.7 ± 6.4)%, (16.4 ± 9.5)%,
and (6.0 ± 4.7)% better solutions than DS+LKH for the same
values of d, respectively. The runtime of the proposed frame-
work can be significantly reduced by considering Trade-
off parametrization. This parametrization provides solutions
within 2, and 7 seconds for d≥ 10, and 5≥ d≥ 3, respectively.
Regarding quality, it provides (10.4 ± 6.9)%, (11.6 ± 6.5)%,
and (11.8 ± 6.4)% better solutions than the SOM for d≥ 10,
5≥ d≥ 3, and d≤ 2, respectively. Compared to DS+LKH,
it provides (16.6 ± 6.8)%, and (11.6 ± 9.8)%, better solutions
for d≥ 10, and 5≥ d≥ 3, respectively. On the other hand,
for d≤ 2, the solutions are worse by (7.9 ± 6.5)% than the
solutions produced by DS+LKH. We believe that the observed
improvement, i.e., more than 10% on average for d≥ 3, is
meaningful, e.g., in robotics, because modern sensors are ex-
pected to have d≥ 3, and a reasonable frequency of the robots
mission-planning module (incorporating our framework) can
be about 0.1 Hz. Selected best solutions found by the proposed
framework are shown in Fig. 3.

A detailed view of the proposed framework runtime
can be seen in Tab. II. The table displays a percentage
share of runtime for the following parts of the algorithm:
cov∼ polygonal coverage of W ., dij∼Dijkstra’s algorithm,
tspn∼ solving the GTSP and TPP, and rest∼ the rest (e.g.,
computing Wfree, visibility graph, sampling). Note that
Dijkstra’s algorithm takes up to 88% of runtime with
decreasing d, which makes it the main bottleneck that reduces
the scalability of the framework. However, this issue is not
caused by the algorithm itself but rather by the fact that
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the number of samples (hence nodes of the graph supplied
to Dijkstra’s) does not scale well with decreasing d (try
computing n · rσ in Tab. I). We want to address this in
the future by more selective sampling and smarter adaptive
parametrization of the framework. Alternatively, we could try
to replace the current approach for computing the all-pairs
shortest paths before GTSP by some approximation as in [7].

Assuming r=0, the proposed framework guarantees at
least 100 · (1 − εcov)% visual coverage of W . However, with
non-zero r, it may happen that certain R∈R has no intersec-
tion withWfree, breaking the visual coverage warranty. Never-
theless, in practice, the framework provides satisfactory results
as shown in Fig. 4 (W: 40m× 40m). Here, our framework
still achieves nearly 100% visual coverage of the non-inflated
environment (white and blue) and preserves certain features
of high-quality solutions (e.g., peaking behind a corner of
a non-inflated obstacle), despite the fact that the inflation
highly limits the robot’s mobility and even makes some
corridors impassable. Other example solutions of the rd-WRP
in less structured environments (top: 20m× 20m, bottom:
40m× 40m) for various values of d, and r are shown in Fig. 5.

V. CONCLUSIONS AND FUTURE WORK
We introduced a novel heuristic framework for the challeng-

ing WRP in polygon with holes W . The framework guaran-
tees 100 ·(1−εcov)% visual coverage ofW , where εcov ∈ [0, 1]
is a user-defined value, while considering d-visibility constraint
(d-WRP). Also, it easily considers an agent with non-zero
radius r without guarantees but achieving high percentage
visual coverage in practice. The framework was thoroughly
experimentally evaluated on 24 instances of the d-WRP and
compared to two other major approaches from the litera-
ture. In terms of solution quality, the proposed framework
is superior to the previous methods. Our future work will
address improving runtimes and scalability of the framework
and making it fully continuous. We want to achieve the latter
by modifying GLNS [27] to solve the TSPN continuously,
replacing the current procedure that solves the combination of
discrete GTSP and continuous TPP.
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