
Noname manuscript No.
(will be inserted by the editor)

Solving the traveling delivery person problem with limited
computational time

Jan Mikula · Miroslav Kulich

Received: date / Accepted: date

Abstract The traveling delivery person problem (TDP) is a customer-oriented modifica-
tion of the traveling salesperson problem, which minimizes the sum of delivery times at
customers’ destinations. Besides classical applications in routing or emergency logistics,
it has recently emerged in other research areas like mission planning in mobile robotics,
where the goal is to search a known or unknown environment efficiently. In such a specific
use case, the time to solve the problem is usually limited to units or tens of seconds, or a
solution’s usefulness depends on the time needed to obtain it. In this paper, we solve the
TDP under these restrictions for the first time. We review the methodology for evaluating
stochastic algorithms in less traditional applications and then apply it to create a new meta-
heuristic for the problem. The process of designing the metaheuristic combines systematic
and empirical approaches and is described in a step-by-step fashion. Evaluated on several
sets of benchmark instances, the final method significantly outperforms the current best ap-
proach from the literature under hard time limit settings with limits ranging from 1 to 100
seconds. As shown on a subset of the instances, it also provides competitive results in the
traditional sense and with cost targets corresponding to the best-known solutions worsened
by 1%. Analyzing different target solution costs shows that more accessible targets are found
by the proposed method even faster when compared to the reference method. Moreover, the
proposed method finds four new best-known solutions of 500-customer instances.

Keywords metaheuristics · traveling delivery person problem · minimum latency problem ·
run-time distribution · variable neighborhood search

J. Mikula
Aff. 1: FEE, CTU in Prague; Technická 2, 16000 Praha 6, Czech Republic
Aff. 2: CIIRC, CTU in Prague; Jugoslávských partyzánů 1580/3, 16000 Praha 6, Czech Republic
The author to whom all correspondence should be addressed.
E-mail: mikulj14@fel.cvut.cz, jan.mikula@cvut.cz
ORCID: 0000-0003-3404-8742

M. Kulich
CIIRC, CTU in Prague; Jugoslávských partyzánů 1580/3, 16000 Praha 6, Czech Republic
E-mail: miroslav.kulich@cvut.cz
ORCID: 0000-0002-0997-5889

This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is
not the Version of Record and does not reflect post‑acceptance improvements, or any corrections. The Version of Record is available online
at: https://doi.org/10.1007/s10100‑021‑00793‑yʺ

https://doi.org/10.1007/s10100-021-00793-y

2 Jan Mikula, Miroslav Kulich

Declarations

Funding. This work has been supported by the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 688117, the project Rob4Ind4.0

CZ.02.1.01/0.0/0.0/15 003/0000470, and the European Regional Development Fund.
The work of Jan Mikula was also supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS21/185/OHK3/3T/37.

Conflicts of interest/Competing interests. Not applicable.

Availability of data and material. Not applicable.

Code availability. The code is available at http://imr.ciirc.cvut.cz/Downloads/Software.

1 Introduction

The traveling delivery person problem. Suppose a delivery person departing from a depot
and a set of customers waiting for their deliveries. The travel times from the depot to all
customers and between all pairs of the customers are known. The traveling delivery person
problem (TDP) asks for a sequence of visits such that each customer is served (exactly
once), and the sum of all customers’ waiting times is minimized. The waiting time of the
i-th customer in sequence x is called a latency of the delivery person at i-th customer and
is denoted as δ x

i . The latency is just the travel time from the depot for the first customer.
However, the following customers must wait the same amount of time as the customer before
them, plus the additional time required to move to their place. The delivery person seeks to
satisfy the customers rather than minimize own travel expenses; therefore, the problem can
be viewed as customer-oriented. A closely related and well-studied traveling salesperson
problem (TSP) can be formulated similarly to the TDP. However, the TSP minimizes the
total travel time to visit all customers, which is solely beneficial to the service provider.
Thus, the TSP is so-called server-oriented (Archer and Williamson, 2003). Both problems
are known to be NP-hard for general metric spaces (Sahni and Gonzalez, 1976). As their
range of applications is multidisciplinary and wide, they have received much attention in the
operations research literature in past decades. For an exhaustive overview of the TSP and
its applications, see Cook (2012); practical applications of the TDP that are traditionally
mentioned by operations research community are, e.g., customer-centered routing such as
pizza-delivery or repairs of appliances, data retrieval in computer networks or emergency
logistics (Fischetti et al., 1993; Ausiello et al., 2000; Campbell et al., 2008).

The TSP / TDP in mobile robotics. Recently, a different side of the scientific community
started noticing these problems and seeking their efficient solutions — mobile robotics.
Well-studied is, for example, the robotic variant of the TSP where the customers repre-
sent points of interest in a considered environment, and the travel time between a pair of
points is proportional to a precomputed length of the shortest collision-free path connecting
them (Faigl and Hollinger, 2014). An efficient solution to this problem leads to an algorithm
that helps a mobile robot to effectively build a map of the environment in which it oper-
ates or to patrol an area that is a-priori known. In fact, many variants of the TSP are often
considered in robotics, e.g., TSP with neighborhoods (Gentilini et al., 2013), generalized

Solving the traveling delivery person problem with limited computational time 3

0

1

2

3

4

5

6

7

8

9

10

11

12 13 14 15 16

17

18

19

20

21

(a) Discrete MRS instance.

0

1

2

3

4

5

6

7

8

9

10

11

12 13 14 15 16

17

18

19

20

21

(b) TDP solution.

0

1

2

3

4

5

6

7

8

9

10

11

12 13 14 15 16

17

18

19

20

21

(c) Another solution.

Fig. 1: How the TDP is used in mobile robotics.

TSP (Smith and Imeson, 2017), or orienteering problem (Gunawan et al., 2016). The TDP
has also found its way to robotic problems. As shown in Kulich et al. (2014, 2017), it can
be used to formulate the mobile robot search (MRS), another problem proven to be NP-hard
in Sarmiento et al. (2004). The solution can be applied, e.g., as an efficient planner in a
rescue scenario where a mobile agent searches for victims after some catastrophic event.

The TDP used to solve the MRS: toy example. Here we briefly demonstrate the exact utiliza-
tion of the TDP in mobile robotics on a toy instance of a discrete MRS shown in Fig. 1. As-
sume an autonomous mobile robot operating in a known environment with obstacles (sized
33×37m2) and a task of finding a single object whose location is unknown but limited to a
discrete set of possible places labeled 1,2, . . . ,21 (shown in blue). The robot possesses a 2D
map of the environment. It can compute (and eventually execute at a constant speed 1m/s)
the shortest collision-free path between any two points of the environment. The shortest
paths between the labeled places are shown in yellow in Fig. 1a. If the robot reaches any of
the labeled places, it can report with certainty whether the object is there or not. In the MRS,
the robot’s goal is to visit the labeled places in such an order that it finds the searched object
at the earliest on average. In a more formal language, the MRS is the problem of finding a
sequence of visits x = (x0 = 0,x1, . . . ,xn) (permutation of the labels; n = 21) starting at the
robot’s initial position (labeled 0, shown in green), which minimizes the expected time to
find the searched object texp = E[T |x] = ∑

n
i=1 δ x

i p(xi) (Sarmiento et al., 2004). Here T is a
random variable taking the value of the time when the object is found, δ x

i is the latency of
arriving at xi, and p(xi) is the probability that the object is located at xi. By assuming that all
the labeled points are equally likely to exhibit the searched object, i.e., p(k) = 1/n, we can
solve the MRS by solving the TDP (compare minimizing E[T |x] to minimizing Cost(x) in
Eq. (2), Sec. 3). A high-quality solution obtained by solving the TDP is shown in Fig. 1b.
The solution has the total latency (sum of latencies over all visits) equal to 1524s; therefore,
the expected time texp = 1524s/21≈ 72.6s. Note that the time to find the object in the worst
possible case is when the object is located at xn and is thus equal to the total time of travel
ttot = 160s along the sequence x. Further note that minimizing the expected time texp and
the worst time ttot is not the same, which illustrates another solution in Fig. 1c. Here the dis-
played sequence has texp = 1561s/21≈ 74.3s (this solution is worse on average), but it also
has ttot = 146s (this solution is better in the worst case).

4 Jan Mikula, Miroslav Kulich

Planning in mobile robotics: why is time so important? The previous paragraph shows how
the TDP can be used to find an efficient multi-goal plan for a specific mission assigned to a
mobile robot. Here we explain that such a use case has certain specifics that need to be re-
spected when designing a solver for the TDP. The most crucial aspect is time. In real scenar-
ios, the current instance of the problem continuously changes because, e.g., new sensor data
are received, the environment changes unexpectedly, or execution failure occurs. Robots are
therefore continually planning and replanning (Ceallaigh and Ruml, 2015). When replan-
ning, a long time spent on recovery (finding a new solution) is unfavorable. Even if we
consider a static environment, we still want the robot to start moving (executing the plan) as
soon as possible since the time spent finding the solution is added to the total latency, thus the
plan depreciates. Lastly, the TDP can be used to solve more complex variants of the MRS,
e.g., continuous MRS or a variant where the environment is only partially known (Kulich
et al., 2014, 2017). In such a case, frequent replanning can be at the core of a more complex
planning framework, and thus rapidly solving a single instance of the TDP becomes crucial.
Given the above, the time for obtaining a single TDP solution is usually limited to units of
seconds (tens if we are generous). At the same time, naturally, the best possible quality of
the solution is promoted. Since we deal with an NP-hard problem and the computational
time is extremely restricted, it would be unwise to hope for optimal solutions for bigger
instances. Therefore, by the best possible quality, we mean the best quality that any of the
available solvers can provide (within the time limit).

Motivation. The primary motivation of this work is to solve the TDP in the specific con-
text of mobile robotics introduced in Kulich et al. (2014, 2017) and depicted above. In the
considered context, the computational time to solve the problem is often limited, or the so-
lution’s usefulness depends on the time needed to obtain it. The authors of related works
usually do not consider any of these restrictions. The literature seems to follow two main
streams. Either the authors seek an exact algorithm that will solve the problem to optimal-
ity (e.g., Fischetti et al., 1993; Abeledo et al., 2013; Bulhões et al., 2018), or their approach
relies on metaheuristics that are able to find good quality solutions in reasonable computing
time (e.g., Salehipour et al., 2011; Silva et al., 2012; Mladenović et al., 2013). However,
the term reasonable is often not well-specified. Usually, it merely holds that — the faster
method, the better — as long as its average solution quality is comparable to the current state
of the art. Nevertheless, this vague metric is not sufficient to tell which algorithm presented
in the literature will provide the best solution after it has run for tmax seconds. Therefore,
we do not know if existing methods would be sufficiently good in mobile robotics or any
context where the computational time is strictly limited. This situation is resolved in our
paper. We systematically design a new method for the TDP and experimentally compare it
to the current state of the art using various metrics.

Contribution and main contents. In this paper, we present a new metaheuristic for the TDP
whose design is based on empirical testing according to a general run-time distribution
(RTD) methodology (Feo et al., 1994). We motivate the choice of the methodology and
explain its specific usage in detail. We also describe in a step-by-step fashion the process
of designing the method from various metaheuristic schemes and their parametrizations
that we initially considered. Finally, we perform an extensive computational evaluation of
our method and compare it with a state-of-the-art reference. Apart from other authors, we
present three types of results. We show how the methods behave when the computational
time is strictly limited to 1, 2, 5, 10, 20, 50, and 100 seconds. The choice of the time limits

Solving the traveling delivery person problem with limited computational time 5

reflects the requirements of mobile robotics presented in previous paragraphs. We also com-
pare the methods by means of time-to-target (TTT) plots, which is the most general way
of comparison (Resende and Ribeiro, 2016). The TTT-plots can produce the probability
that one method finds a solution (of a certain quality) more quickly than the other method.
Our third type of result is the one that authors of related works usually provide — mean
solution costs and computational times from several runs with a fixed number of iterations.

Structure. The rest of this paper is organized as follows. Related works and the method-
ology are reviewed in Sec. 2. The TDP is formally defined in Sec. 3. The solution ap-
proach, which includes considered algorithms, extended methodology, and description of
the proposed metaheuristic, is described in Sec. 4. The proposed metaheuristic is evaluated
in Sec. 5. Finally, Sec. 6 is devoted to concluding remarks.

2 Related literature review

Solving the TDP follows two major courses in the operations research community. The first
one aims to find the optimal solutions using exact algorithms; however, it is limited to small
instances due to infeasible computing times. The second major course seeks just high-quality
solutions in exchange for much lower computational times and is applicable even to big in-
stances. Here the core solution methods are heuristics and more general search strategies
called metaheuristics. Approximation algorithms, which lie somewhere in the middle, are
also known for the TDP. These methods give approximate solutions but, unlike heuristics,
with a theoretically proven guarantee of performance. In this branch, the researchers focus
primarily on lowering the approximation factor or computational complexity of their algo-
rithms; however, computational results on benchmark instances are usually not present in
their works. For the use in mobile robotics, we choose metaheuristics. The choice is natural
since optimality is not required, and low computational times are the priority. For complete-
ness, we review all classes of algorithms for the TDP in Subsec. 2.1. Then we review the
general methodology suggested by Hoos and Stützle (1998) for evaluating stochastic algo-
rithms in various scenarios in Subsec. 2.2.

2.1 Existing algorithms for the TDP

Early exact algorithms proposed by Lucena (1990); Bianco et al. (1993) rely on non-linear
integer formulations in which a Lagrangian relaxation is used to derive lower bounds. Fis-
chetti et al. (1993) develop an integer linear programming (ILP) formulation and new the-
oretical results on the matroidal structure of a class of combinatorial problems. The results
are used to derive lower bounds for the TDP and are embedded into an enumerative algo-
rithm capable of solving 60-vertices instances to optimality. Other ILP formulations and
exact algorithms are proposed in Méndez-Dı́az et al. (2008); Ban et al. (2013); Naeni and
Salehipour (2019).

In addition to TDP-specialized solutions, several exact approaches are developed for
the time-dependent traveling salesperson problem (TDTSP), a generalization of both the
TSP and the TDP. Some of these formulations are proposed in Gouveia and Voß (1995);
Abeledo et al. (2010, 2013); Miranda-Bront et al. (2014); Godinho et al. (2014). Among
these, the strongest algorithm is the branch-cut-&-price developed by Abeledo et al. (2010,
2013), capable of solving almost all instances from the TSPLIB (Reinelt, 1991) with up

6 Jan Mikula, Miroslav Kulich

to 107 vertices within the limit of 48 hours. Some larger TSPLIB instances, with up to 150
vertices, are solved by Roberti and Mingozzi (2014) who introduce a new way of computing
lower bounds for the TDP based on dynamic ng-path relaxation. The last approach is further
advanced in Bulhões et al. (2018). Their branch-&-price algorithm with improved usage of
ng-paths, now considered the new state-of-the-art exact algorithm for the TDP, provides new
optimal solutions for 13 TSPLIB instances, the largest of which has 195 vertices.

Approximation algorithms for the TDP on a tree and on a general metric graph are de-
veloped, e.g., in Blum et al. (1994); Ausiello et al. (2000); Archer and Williamson (2003);
Fakcharoenphol et al. (2007); Archer et al. (2008); Archer and Blasiak (2010). Here, solv-
ing the TDP on a graph means that the particular instance of the problem was constructed
using the shortest-path metric from a given graph with arbitrary costs on its edges. The
lowest approximation factors in the literature are 3 (Frederickson and Wittman, 2012) and
3.59 (Chaudhuri et al., 2003) for the tree and the general graph respectively.

The heuristic approach mostly relies on general search strategies, especially variable
neighborhood search (VNS) and greedy randomized adaptive search procedure (GRASP).
VNS proposed originally by Mladenović and Hansen (1997) is a single-start stochastic meta-
heuristic based on the idea of improving a single solution by some temporal non-improving
steps. In its scheme, two phases alternate: a shake which allows escaping local optima and a
local search phase, which descents towards one. Additionally, a systematic change of neigh-
borhoods within the search is applied. General VNS (GVNS) is a variant that uses variable
neighborhood descent (VND) in the local search phase. VND can be seen as a determinis-
tic variant of VNS, which explores a solution space using several neighborhood structures,
usually in sequential order. Greedy randomized adaptive search procedure (GRASP), unlike
VNS, is a multi-start process developed and established within the research community by
many authors’ works, e.g., Hart and Shogan (1987); Feo and Resende (1989); Feo et al.
(1994). Greedy randomized adaptive construction heuristic is applied to each restart to cre-
ate a new solution, which is then improved by VND, and the best overall solution is returned
at the end. GVNS and GRASP have similarities and also significant differences. They both
use VND as a local search method, and both are stochastic to be able to escape local optima
— but in a different way. While GVNS randomly perturbates the best current solution (in
the shaking phase), GRASP creates an entirely new one in a randomized fashion and starts
the search from the beginning.

Salehipour et al. (2011) propose a GRASP for the TDP that embeds either VND or VNS
and evaluate both variants on a set of randomly generated benchmark instances of sizes
ranging from 10 to 1000. Silva et al. (2012) later present a simple and effective metaheuristic
called GILS-RVND, which is based on the combination of GRASP, iterated local search
(ILS) with randomized perturbations, and randomized VND (RVND). It improves all the
results obtained by Salehipour et al. (2011) on their instances and finds new best solutions for
two of TSPLIB (Reinelt, 1991) instances. Mladenović et al. (2013) propose a GVNS, able
to improve the previous results obtained by Salehipour et al. (2011) as well; however, GILS-
RVND still performs slightly better in terms of solution quality. Ban et al. (2013) suggest a
metaheuristic algorithm combining between tabu search (TS) and VNS that uses memory
structures to discourage the search from coming to unpromising solutions. The authors show
that it compares well with the state-of-the-art algorithms (Salehipour et al., 2011; Silva et al.,
2012) in the quality of obtained solutions. The TS-VNS, however, does not improve the
results by GILS-RVND in the matter of computional time.

To the best of our knowledge, since its publication in 2012 to this day, the GILS-RVND
by Silva et al. has been the one heuristic method providing the best trade-off between its sim-
plicity, solution quality, and computational time in the literature. Thanks to its advantageous

Solving the traveling delivery person problem with limited computational time 7

characteristics, it was more recently chosen by other authors as the base method for their
improvement ideas. Rios (2016) propose versions of GILS-RVND for parallel computing in
CPU/GPU hybrid systems. Santana et al. (2020) improve GILS-RVND by means of data
mining (DM) techniques. Their new hybrid method, called multi-DM GILS-RVND (MDM-
GILS-RVND), utilizes the frequent itemset mining (FIM) technique to gather segments of
high-quality solutions in the first half of GILS-RVND iterations. In the other half, the seg-
ments are used to construct new initial solutions with every other restart. MDM-GILS-
RVND is shown to perform almost equally as GILS-RVND on small instances (n ≤ 50),
better in terms of computational time on medium instances (50 < n ≤ 200), and better in
both terms of time and solution quality on large instances (200 < n).

2.2 Evaluating stochastic algorithms

Hoos and Stützle (1998) point out pitfalls related to stochastic methods evaluation and intro-
duce a methodology for evaluating a certain class of algorithms called Las Vegas algorithms.
An algorithm A is said to be a Las Vegas algorithm for problem class Π , if (i) whenever for
a given problem instance π ∈ Π it returns a solution, it is guaranteed to be a valid, and (ii)
on each given instance the run-time of A is a random variable. Hoos and Stützle classify
three types of possible application scenarios for Las Vegas algorithm A :

1. there are no time limits, i.e., we can afford to run the algorithm as long as it needs to
find a valid (or of sufficient quality) solution;

2. there is a time limit tmax, which can be very small in case of real-time applications such
as robotics;

3. the utility U : R→ [0,1] of a solution depends on the time t needed to find it.

It is apparent that evaluating the performance of A in these scenarios must be done using
different criteria for each. E.g., in the case of Type 1, the mean time of several runs might
suffice to characterize the run-time (rt) behavior roughly, but it is basically meaningless for
Type 2, which needs more adequate criteria such as P(rt≤ tmax) — the probability of finding
a solution within the given time-limit. Also, we can observe that Type 1 and 2 are special
cases of the most general Type 3, which can only be appropriately characterized by the run-
time distribution (RTD) function rtd(t) = P(rt ≤ t) or its approximation. In addition, from
RTD, other criteria, like the mean run-time, its standard deviation, median, percentiles, or
success probabilities P(rt ≤ ti) for arbitrary time-limits ti, can be extracted. The RTD was
first used by Feo et al. (1994) and further addressed by other authors, e.g., Hoos and Stützle
(1998), and Aiex et al. (2002). Hoos and Stützle encourage to use the RTD to characterize the
behavior of algorithm A completely and uniquely and stress out the possible pitfalls (such
as imprecisions or erroneous conclusions) when other simpler methodologies are used.

As we mentioned earlier, Hoos and Stützle originally proposed the methodology for Las
Vegas algorithms that either return a valid solution in a finite time rt or do not find any (then
rt = ∞). However, in the case of TDP, the usual solution methods are improving strategies,
i.e., they construct a valid solution in the early stage of their run-time and spend the rest of
the time improving it without the loss of validity. In order to apply the RTD to improving
strategies a solution cost goal cgoal needs to be considered. The function rtd(t) = P(rt ≤ t)
is then seen as the probability that the algorithm finds a solution with cost c≤ cgoal in time
rt ≤ t. The use of this technique is recommended in Resende and Ribeiro (2016) for many
problems (including TSP) and the value of cgoal is often chosen to be 1% worse than the
currently best known solution by the authors.

8 Jan Mikula, Miroslav Kulich

To conclude, the single most useful (thanks to its universality) way to characterize the
run-time of stochastic solution methods for the TDP, which is relevant even in the mobile
robotics context, seems to exist. The problem is that it is barely used in the related literature.
Instead, other authors use the best and mean solution costs and average values of CPU times,
which are higher by far (especially for larger instances) from the time limits imposed by our
context (order of seconds). Since neither rtd(t) nor P(rt≤ tmax) is used to characterize one’s
algorithm, we can conclude that their results can be relevant only to the solution scenario
of Type 1, i.e., limit-less computation times, while for the other two no valid conclusions
can be made. Unlike the other authors, in this work, we focus on designing a universally
well-performing method in all scenarios 1-3 and use the RTD methodology to achieve it.

3 Problem definition

The traveling delivery person problem, also known as the repairperson problem, or the min-
imum latency problem, is formally described by: (i) G= (V,E): a complete undirected graph
with N vertices V = {v1, . . . ,vN} in which every pair of distinct ones vi 6= v j is connected
by a unique edge ei, j = (vi,v j) ∈ E; (ii) d : E → R+

0 : a non-negative cost d(i, j) associated
with each edge ei, j representing a length of the shortest path (or travel time) from vi to v j;
(iii) s ∈ V : a starting vertex (depot) of the delivery person (all other vertices represent the
customers). Let the sequence of vertices x = (x0 = s,x1, . . . ,xn), where n = N − 1 is the
number of customers, be a Hamiltonian path in G starting from the depot. Furthermore, let
d(xi,x j) be the cost of an edge between i-th and j-th vertex in x. The cumulative cost, also
denoted as the latency, to reach the k-th vertex in sequence x is defined as

δ
x
k =

k

∑
i=1

d(xi−1,xi) . (1)

Finally, the total cost of x, also denoted as the total latency, is defined as

Cost(x)=
n

∑
k=1

δ
x
k =

n

∑
k=1

k

∑
i=1

d(xi−1,xi) . (2)

The objective of the TDP is to find an optimal path x? that minimizes the cost, i.e., x? =
argminx∈H (π) Cost(x), where π = (G,d,s) is an instance of the TDP and H (π) is the set
of all Hamiltonian paths in graph G starting in s.

Note that we regard an open variant of the problem, i.e., travel from the last customer
back to the depot is not considered. In the literature, authors sometimes consider a closed
variant where a Hamiltonian circuit is considered instead of the path. However, we believe
that in the TDP’s customer-oriented view, the open variant is a more natural way of defining
the problem. A delivery person whose only goal is to satisfy customers (minimize the total
latency) would see no benefit in treating the depot as a last imaginary customer regardless
if he or she wants to return to the depot after the last delivery. This is different in the TSP’s
server-oriented view because traveling from the last customer back to the depot clearly adds
to the total travel time, which is being minimized. Furthermore, similar arguments apply
regarding the MRS problem from mobile robotics shown in Fig. 1. Here, the goal is to search
for something in a way that is the most efficient on average. However, while executing the
search plan, the actual mission is accomplished once the object is found, and then the robot
can abort the rest of the plan. In this case, it is apparent that considering the travel from the
last place of the plan to the robot’s initial position is meaningless.

Solving the traveling delivery person problem with limited computational time 9

GRASP-GVNS

sequence of local search neighborhoods (6)

local search strategy (2)

sequence of perturbation neighborhoods (4)

number of GVNS iterations (8)

GVNS stopping condition (2)

constructive heuristic (3)

GRASP

sequence of local search neighborhoods (6)

local search strategy (2)

constructive heuristic (3)

GVNS

sequence of local search neighborhoods (6)

local search strategy (2)

sequence of perturbation neighborhoods (4)

Fig. 2: Considered metaheuristics and their variable components (the number of options is
shown in parentheses).

4 Solution approach

This section details the proposed method for the TDP and the process of its design. The pro-
cess is based on empirical testing of a wide range of algorithms, among which the best one is
selected. We consider three general metaheuristic schemes: 1. GVNS, 2. GRASP, 3. a com-
bination of the two, i.e., GRASP that in local search uses GVNS instead of VND; and many
variants of their subprocedures and parametrizations. The whole scope is outlined in Fig. 2
and detailed in Subsec. 4.1-4.4, and 4.6. We evaluate all combinations according to the RTD
methodology, and the overall best one is selected as the proposed method. How the RTD
methodology is used is concertized in Subsec. 4.5. Finally, the best method is proposed at
the end of Subsec. 4.6. For readers’ convenience, we provide a handy overview of symbols
that appear in this section in Tab. 1. The union of symbols in the table and symbols defined
in Sec. 3 creates a full set of special symbols used in the algorithms’ schemes. Any other
symbols denote temporal variables created within the schemes.

4.1 General schemes

We consider three general schemes: GVNS, GRASP, and a combination of the two GRASP-
GVNS (G+G). The scheme of the hybrid metaheuristic G+G is presented in Alg. 1. The ini-
tialization is done on line 2: an iteration counter i is set to 1, a stopping flag stop to false,
and the best solution’s cost c? to ∞. The main loop (lines 3-23) runs until the stop flag is

Sym. Meaning Sym. Meaning

imax no. of main-loop iter. srcl size of a restricted candidate list
cgoal target solution cost R set {ri } of [0,1]-real values, i = 1, . . . , |R |
tmax CPU time limit p seq. (pi) of positive integers, i = 1, . . . , |p |
jmax no. of inner-loop iter. n seq. (Ni) of neighborhoods, i = 1, . . . , |n |

Table 1: Overview of special symbols that appear in algorithms.

10 Jan Mikula, Miroslav Kulich

Algorithm 1: GRASP-GVNS

1 Function G+G(imax, cgoal , tmax, jmax, R, p, n):
2 i← 1; stop← false; c?← ∞

3 while stop = false and i≤ imax do . main G+G loop ∼ main GRASP loop
4 α ← random value ∈ R
5 srcl ←max(1,bα ·Nc)
6 x← Construct(srcl)

7 j← 1
8 while stop = false and j ≤ jmax do . inner G+G loop ∼ main GVNS loop
9 k← 1

10 while stop = false and k ≤ |p | do . inner GVNS loop
11 x′← Shake(x, pk)

12 (x′, stop)← Improve(x′, tmax, cgoal , n)
13 if Cost(x′)< Cost(x) then
14 x← x′
15 k← 1
16 j← 1 . only for G+G-b

17 else
18 k← k+1

19 j← j+1

20 if Cost(x)< c? then
21 x?← x
22 c?← Cost(x)

23 i← i+1

24 return x?

true or the maximum number of iterations imax is reached. In GRASP, a new solution is
constructed in each iteration, then improved and evaluated. The construction (line 6) is done
in a greedy randomized fashion where the integer parameter srcl controls the level of ran-
domness. Admissible values for srcl are in a range from 1 to N, where N is a size of the
instance. 1 corresponds to a purely greedy solution and N to a totally random solution. Pa-
rameter srcl can be either set to some fixed value from the range, or can be constructed as
on lines 4-5 of the G+G algorithm. The latter option enables srcl to vary in each iteration.
The GRASP’s improvement phase follows on lines 7-19, and the final evaluation is done on
lines 20-23. The G+G scheme’s improvement phase has embedded the GVNS metaheuris-
tic. To obtain a pure GRASP, lines 7-19 can be replaced by the improvement (VND/RVND)
procedure appearing on line 12 with a proper refactorization (replacing x′ by x).

The embedded GVNS metaheuristic is composed of two additional nested loops —
the main GVNS loop (lines 8-19) whose number of interations is controlled by counter j
and input parameter jmax, and the inner GVNS loop (lines 10-18) controlled by counter k
and parameter |p |. The parameter |p | is the number of elements (positive integers) of the in-
put sequence p = (p1, p2, . . .), which take a role in the perturbation phase (line 11), where
the k-th member of the sequence is passed to the Shake procedure. The procedure is ap-
plied to the current solution x and results in a new temporary solution x′, which is improved

Solving the traveling delivery person problem with limited computational time 11

(line 12) and evaluated (lines 13-18). If the cost of the temporary solution is less than the cost
of the current, then the temporary is assigned to the current, and k is reset back to 1. Else, k is
incremented, and the loop starts over with the next element of p. Note the stop flag returned
by the improving procedure (line 12). If it is true, then the current loop breaks preliminary
and the flag propagates to stop the outer loops as well. This way, the whole algorithm can be
instantly and safely terminated at any time, returning the incumbent solution x?, achieving
a certain stopping condition modularity discussed in the next Sec. 4.2.

After the whole GVNS subroutine (lines 7-19) ends and returns the current solution x,
the final evaluation (lines 20-22) finishes the current main GRASP loop iteration. Within
one iteration of GRASP, several GVNS iterations are performed. How many depends on the
parameter jmax. Note line 16, which resets the counter j to 1. It is optional, and it can be
either omitted (G+G-a), or not (G+G-b). If omitted, then jmax is the exact number of GVNS
iterations. If the line is present, then the GVNS iteration counter j resets to 1 with each im-
provement, and the GVNS loop breaks after jmax iterations with no observed improvement.
Finally, to obtain a pure GVNS metaheuristic, the following changes must be applied to
Alg. 1. In order: jmax is replaced by imax, srcl by 1, x by x?, and x′ by x. Then, the following
lines are removed: 3-5, 16, and 20-23.

4.2 Stopping conditions

A stopping condition of the general schemes is determined by a tuple of parameters (imax,
cgoal , tmax), where imax is the number of main-loop iterations, cgoal is the target solution cost,
and tmax is the CPU time limit. Given the constant imax, the algorithm stops and returns a
valid solution after a fixed number of iterations imax, if not stopped earlier by other criteria.
Given the CPU time limit, the algorithm finishes, at worst, after tmax seconds. At last, the
algorithm can also stop after it has found a solution with cost smaller or equal to given goal
cgoal . The considered algorithms are expected to run in several different modes depending
on the combination of stopping conditions. For instance, when imax is some positive integer,
tmax = ∞, and cgoal < 0, the algorithm will always stop after the fixed number of iterations
imax. This configuration is the most common in the literature. Other useful configuration is
to set, e.g., imax = ∞, and tmax, cgoal to some reasonable values in accordance with Sec. 4.5.
In this case, the algorithm will either stop after it has found a good enough solution or after
the time limit has passed. The introduced variability opens a range of different applications
and a possibility to generate several types of results used to compare the algorithms in vari-
ous scenarios.

4.3 Construction and perturbation

The Construct procedure implements the greedy randomized adaptive construction shown
in Alg. 2, lines 1-8. First, a partial solution x is initialized with the depot s and a candidate list
(CL) with the remaining vertices (line 2). In the main loop (lines 3-7), a restricted candidate
list (RCL) is built by considering only min(srcl , |CL|) nearest CL elements with respect to
the last added vertex to x (line 4). srcl ∈ {1, . . . ,N} is an argument passed to the procedure
and |CL| is the cardinality of CL. Finally, a candidate is selected from the RCL by random,
appended to the end of x, and removed from the CL (lines 5-7). The process repeats until
the CL becomes empty, i.e., all vertices are added to x, and then the finished solution is
returned. We consider three variants of the construction procedure in accordance with Fig. 2:

12 Jan Mikula, Miroslav Kulich

Algorithm 2: G+G subroutines: GRASP construction and GVNS perturbation

1 Function Construct(srcl):
2 x← s; x← (x); CL←V \{x}
3 while CL is not empty do
4 Create RCL⊂ CL considering only min(srcl , |CL |) nearest candidates to x.
5 x← random value ∈ RCL
6 Append x to the end of x.
7 CL← CL\{x}
8 return x

9 Function Shake(x, p):
10 p←min(p+1, |x |)−1 . adjust p in case |x |< p
11 Create p+1 random subpaths s0,s1, . . . ,sp of x, where s0 is the one starting

with the depot. This can be done by removing p random distinct edges from x.
12 Create sequence of indices i = (1, 2, . . . , p) and shuffle it randomly.
13 x′← s0
14 foreach i ∈ i do
15 if random Boolean value then
16 Append reversed si to the end of x′.
17 else
18 Append si to the end of x′.

19 return x′

(a) deterministic, (b) randomized with a fixed rate of randomness, (c) randomized with a rate
of randomness randomly chosen from a uniform discrete probability distribution. All the
variants can be implemented by the Construct(srcl) procedure, where (a) srcl = 1, (b) srcl
is fixed in the range from 2 to N, and (c) srcl is constructed as in lines 4-5 of Alg. 1.

The VNS metaheuristic employs a mechanism that prevents it from getting stuck in local
optima. Mladenović and Hansen (1997) call this mechanism shaking or the shake phase in
the original paper where the VNS was introduced. The shaking is also present in the VNS’s
generalized version that we use, and we also refer to it by the term perturbation. It resembles
the work of Silva et al. (2012), who use the perturbation called double-bridge for the TDP.
Double-bridge was originally developed by Martin et al. (1991) for the TSP. It removes and
re-inserts four edges from and to the given path such that a new feasible path is generated.
The edges to be removed are chosen randomly. Our perturbation procedure Shake shown
in Alg. 2, lines 9-19, generalizes the mechanism by considering p edges instead of four.
It works as follows. A valid path x and a positive integer parameter p are passed to the
procedure. First, the path is partitioned by removing p random distinct edges (line 11). The
subpaths resulting from this operation are labeled as s0,s1, . . . ,sp in the order they appear
in x. Next, the first subpath s0 is assigned to a partial solution x′ (line 13), and a sequence
i of indices from 1 to p is created and randomly shuffled (line 12). The algorithm then
goes through each index i in the randomized sequence (lines 14-18) and appends either the
corresponding si (line 18) or its reversed version (line 16) to the end of x′. The probability of
reversing si before appending it to x′ is 50%. The partial solution x′ becomes feasible after
the last remaining subpath is appended, and at this point, the procedure ends and returns x′.

Solving the traveling delivery person problem with limited computational time 13

Algorithm 3: Variable neighborhood descent (VND); randomized VND (RVND)

1 Function Improve(x, tmax, cgoal , n):
2 i← 1; stop← false

3 Shuffle sequence n randomly. . only for RVND
4 while i≤ |n | do
5 Denote the i-th neighborhood structure in sequence n as Ni.
6 x′← argmin

x̃∈Ni(x)
Cost(x̃)

7 if Cost(x′)< Cost(x) then
8 x← x′
9 i← 1

10 if Cost(x)≤ cgoal then
11 stop← true

12 break
13 Shuffle sequence n randomly. . only for RVND

14 else
15 i← i+1

16 Get the total CPU time t since start.
17 if t ≥ tmax then
18 stop← true

19 break

20 return (x, stop)

4.4 Local search

The local search in all considered general schemes is performed by a method based on
variable neighborhood descent (VND). VND explores a solution space using several neigh-
borhood structures. Its success relies on the following facts: a local optimum for one neigh-
borhood structure is not necessarily a local optimum with respect to another neighborhood
structure, and a global optimum is a local optimum with respect to all considered neigh-
borhood structures. Mjirda et al. (2017) provides an overview of sequential VND variants
and their comparison on the TSP. With respect to their notion, we use basic VND with the
best improvement strategy, a variant that performed the best in combination with the GVNS
scheme, as the authors report.

Additionally, the order in which the neighborhoods are considered in the VND can be
either (a) fixed (deterministic) or (b) randomized. The latter, RVND, randomly selects an
available neighborhood to be used in each iteration. Satyananda and Wahyuningsih (2019)
compare the performance of VND and RVND on instances of the capacitated vehicle routing
problem. Here, the selection of operators in random order outperforms the fixed-sequence
VND in a matter of solution quality, however, the classical VND usually requires lesser itera-
tions to reach the local optimum. Similar observations report Silva et al. (2012) for the TDP
after obtaining some preliminary results. Nevertheless, neither Satyananda and Wahyun-
ingsih nor Silva et al. consider real-time application scenarios as we do. In our context, the
supremacy of RVND over VND is not so obvious, especially if the lesser iterations of VND

14 Jan Mikula, Miroslav Kulich

and complex search strategies (Alg. 1) are considered. Thus, we study both variants in this
paper.

The pseudo-code of (R)VND is shown in Alg. 3. The method takes an initial solution
as input and returns its improved version in the end. Alternatively, no improvement can
be found, and the same solution as the initial is returned. The method also checks if the
additional stopping conditions are met. One of them is met, when the total run-time (since
the start of the whole algorithm, not just the subprocedure) is over tmax. The other one is
met, when (R)VND finds a solution with cost c≤ cgoal . If at least one of these two situations
is detected, the method terminates immediately and returns the best solution found so far
together with the stop flag. The procedure is parametrized by a sequence n = (N1, N2, . . .)
of operators also called neighborhood structures. In general, N ∈ n is an operator, which
takes a feasible solution x ∈H (π) of an instance π and a tuple of parameters as an input
and returns a new feasible solution x′ ∈H (π) as the output. The range of solutions that
can possibly be obtained by applying the operator N on a particular solution x is called the
N -neighborhood of x and is denoted as N (x).

The initialization of Alg. 3 is done first. A neighborhood structures counter i is set to
1, the stop flag is set to false (line 2). In addition, the members of the sequence n are
randomly shuffled (line 3) in case of RVND. The main loop follows (lines 4-19). Inside, the
best neighbor solution x′ of neighborhood Ni(x) is found (line 6). Here, the neighborhood
structure Ni is the i-th in the sequence n and x is the currently best solution. If the cost of x′
is less then the cost of x (line 7), then x′ is assigned to x, counter i is set back to 1 (line 9), and
in case of RVND, the sequence n is again shuffled (line 13). In addition, the cost goal check
is performed (lines 10-12), with the chance of breaking the main loop and setting the stop
flag to true if the goal-accomplishment condition is satisfied. If the solution improvement
condition on line 7 is not satisfied, then the counter i increments by one (line 15), which
assures that the next neighborhood structure in the sequence is selected in the next run of
the main loop. At last, the run-time goal check is performed (lines 16-18). First, the total
CPU time t is obtained (line 16), and then the check is done in analogous way as in case
of the cost goal check (lines 17-18). If not terminated prematurely, the main loop finishes
after all available neighborhood structures have been tried, and no more improvement was
obtained.

The core of the improvement procedure described in previous paragraphs is a systematic
exploration of a solution space using several neighborhood structures (operators). We con-
sider operators which are often used for solving TSP, TDP, and other routing problems.
The complete set is as follows: 2-opt, 1-point, or-opt2, or-opt3, or-opt4, or-opt5,
2-point, and 3-point. Operator 2-opt takes two non-adjacent edges from path x and
replaces them by two new edges in order to obtain a new feasible path x′. All the other
operators, unlike 2-opt, can be defined as a special case of a more general operator that
we call 2-string. The definition of 2-string is what comes next. Let Y be a set of all
tuples (x,X ,Y, i, j) such that x ∈H (π), X ∈ {0,1, . . . ,n− 1}, Y ∈ {γ ∈ {0,1, . . . ,n− 1} :
X + γ ≤ n}, i ∈ {0,1, . . . ,n−X}, and j ∈ {γ ∈ {0,1, . . . ,n−Y} : γ − i ≥ X ∨ i− γ ≥ Y}.
Then we define operator 2-string as a relation 2-string : Y 7→H (π) which takes a
string of vertices of size X that come after i-th vertex of x and a string of vertices of size
Y that come after j-th vertex of x and interchanges them to create a new path x′ ∈H (π).
With this definition of 2-string, we can define other operators as the latter with fixed X
and Y to some values specific for each operator. For the fixed values of X and Y for all the
operators except 2-opt see Tab. 2.

The computational complexity of exploring the whole neighborhood N (x) for N ∈ n
(see Alg. 3, line 6) is addressed next. Note that all considered operators take two parameters

Solving the traveling delivery person problem with limited computational time 15

x0 x1

xi

x j+1

x j+Y

xi+X+1

x jxi+1

xi+X

x j+Y+1

xn−1

xn

x0 x1

xi

x j+1

x j+Y

xi+X+1

x jxi+1

xi+X

x j+Y+1

xn−1

xn

Fig. 3: General operator 2-string(x, X, Y , i, j) applied on path x = (xk) for k = 0, . . . ,n,
where 0 < X , 0 < Y , i+X < j, and j+Y < n. Edges (xi,xi+1), (xi+X ,xi+X+1), (x j,x j+1),
(x j+Y ,x j+Y+1) are removed and replaced by edges (xi,x j+1), (x j+Y ,xi+X+1), (x j,xi+1),
(xi+X ,x j+Y+1). Left: the original path x, right: the resulting path x′ obtained by applying
the operator on x.

Operators: 1-point or-opt2 or-opt3 or-opt4 or-opt5 2-point 3-point

X = 0 0 0 0 0 1 1
Y = 1 2 3 4 5 1 2

Table 2: All operators except 2-opt can be defined as 2-string with fixed X and Y .

(i and j) and all pairs need to be tried when exploring N (x). Therefore, the computational
complexity of exploring the whole neighborhood is clearly O(n2+k), where k is the num-
ber of additional loops (over the vertices) needed to compute the improvement obtained by
applying the operator on x with given parameters i and j. For the TSP, the improvement
computation is straightforward without any loop, therefore k = 0 and the whole neighbor-
hood can be explored in O(n2). Mladenović et al. (2013) show, that the same holds for the
TDP, if some additional structures are considered and a pre-processing step is performed.
They derive the improvement for 2-opt and some other operators. For 2-opt, we use their
result. For the general 2-string operator, we derived the improvement in a similar fashion
as shown by the authors.

4.5 Time-to-target plots

This subsection explains how specifically the RTD methodology is used in the design pro-
cess of our method. More specifically, it introduces a so-called time-to-target plot (TTT-
plot) that can be used as a metric for comparing algorithms. Consider an instance π of
an optimization problem class Π , a set of all its valid solutions H (π), a cost function
Cost : H (π) 7→ R+

0 , a cost of the optimal solution c? = minx∈H (π) Cost(x), and a tar-
get cost value cgoal ∈ R+

0 : cgoal ≥ c?. We call algorithm A a Las Vegas improving algo-
rithm, if (i) whenever for a given π it returns a solution x, it is guaranteed to be valid with

16 Jan Mikula, Miroslav Kulich

Cost(x)≤ cgoal , and (ii) for each π ∈Π the run-time rt of A is a random variable. The al-
gorithm A runs nrun times on the fixed instance π . The runs are assumed to be independent,
i.e., the random number generator is initialized with a different seed every time. The rts of all
runs are recorded and saved and then used to produce a TTT-plot. TTT-plots construction is
well-described in Resende and Ribeiro (2016) and we follow the same methodology shown
by the authors. After finishing the last run, the recorded rts are sorted in increasing order and
the probability pi = (i−1/2)/nrun is associated with each i-th sorted rti, for i = 1, . . . ,nrun.
The meaning of pi can be understood as follows: pi is the probability that the algorithm finds
a solution at least as good as the target cgoal in at most rti seconds. Finally, the TTT-plot is
constructed by plotting all points (rti, pi). Clearly, the TTT-plot is an approximation of the
cumulative RTD capable of characterizing the run-time behavior of Las Vegas improving
algorithms as we defined them.

Whenever two algorithms A1 and A2 are evaluated on the same instance and their TTT-
plots are superimposed, it might not be clear on the first sight, which algorithm performs
better and by how much. To compare the algorithms productively, some adequate metric
must be introduced. Let RT1 and RT2 be random variables representing the time needed by
algorithms A1 and A2 respectively to find a solution as good as the given target value. Let
p12 = P(RT1 ≤ RT2) be the probability, that random variable RT1 takes a value smaller or
equal to the value taken by RT2. Assuming that both algorithms stop when (and only if) they
find a solution at least as good as the target, we can say that A1 performs better than A2 if
p12 > 0.5. An iterative procedure to compute p12 with arbitrary small approximation error
for two algorithms is introduced in Ribeiro et al. (2009). Ribeiro and Rosseti (2015) develop
a program to compute the approximation of p12 from provided TTT-plots of two algorithms.
In this work, we use a computation inspired by their program.

4.6 Ms-GVNS: the proposed metaheuristic

This subsection proposes the final metaheuristic and its parametrization, selected as the best
among many considered variants in trial testing. All variants are tested on 15 instances of
the TDP from Salehipour et al. (2011): TRP-S{50,100,200}-R{1,2,3,4,5}. We choose the
best method as the one maximizing a value of a custom-designed metric based on general
RTD methodology. The metric is described next. For each pair consisting of a method and
an instance, nrun = 200 runs are performed to compute a single TTT-plot. Each instance’s
target solution cost is chosen as the 1.01-multiple of the best solution reported by Silva
et al. (2012). The computed plot is then superimposed with a TTT-plot of the reference
method, GILS-RVND, computed earlier on the same instance, and the probability ptr =
P(RTtested ≤ RTreference) is determined as described in Sec. 4.5. The final metric value for a
given method is then computed as a weighted average of ptr’s over the 15 instances, where
the weights are sizes of instances (i.e., 50, 100, or 200). This way the metric emphasizes
good performance on larger instances. Using the metric, we design the best metaheuristic
in two phases. First, we empirically select several promising sets of neighborhoods for the
improvement procedure. Second, we combine the promising sets with other parameters and
test many configurations. Finally, we select the best-performing method and propose it.

During the first phase, we consider four general schemes: pure GRASP, pure GVNS,
G+G-a, and G+G-b; with fixed parametrizations, except the local search operators. The two
variants of G+G differ in the exclusion / inclusion of line 16 in Alg. 1, respectively. The pa-
rameters are fixed to the following values that appear reasonable to us: p = (4,8,12,16),
R = {.00, .01, . . . , .25}, jmax = 10. Also, here we prefer RVND over the fixed-sequence

Solving the traveling delivery person problem with limited computational time 17

VND. Thus, we do not take the order of neighborhoods into account, and the notion of
sets instead of sequences is applicable. For eight considered neighborhoods (presented in
Subsec. 4.4), we get 8+ 28+ 56+ 70+ 56+ 28+ 8+ 1 = 255 possible operators’ com-
binations. To reduce the number, we empirically select just some of them. First, a set of
all eight neighborhoods M8 = {Nop : op ∈ ops8}, ops8 = {2-opt, 1-point, or-opt2,
or-opt3, or-opt4, or-opt5, 2-point, 3-point }, and its eight corresponding subsets
M8\op = M8 \{Nop}, each containing one lesser neighborhood than M8, are tested as part
of the four considered schemes. The results are averaged over the algorithms and the best set
among M8\op, op ∈ ops8, is chosen and denoted as M7. Then, the set of considered opera-
tors is changed to ops7← ops8\(M8−M7). In the next iteration, sets M7\op, op∈ ops7, are
tested and evaluated analogously as above. The same is repeated for M6, . . . ,M1. Following
this strategy strictly, we would obtain 37 sets of operators. However, if the second-best set
performs almost equally as the best one, we expand the search from it as well. Using this re-
laxed strategy, we eventually obtain 57 combinations. Among these, we choose the best six
as the most promising. They share some common features. For example, all of them contain
operators 2-opt, 1-point, and at least one of or-opt2, or-opt3, or or-opt4, and none
of them contains or-opt5, or 3-point.

The second phase aims to find the best combination of the general scheme and all of its
parameters. The considered schemes are the same as in the previous phase. The considered
parameters include the six promising operators’ sets; four different configurations of the
perturbation: p1 = (4), p2 = (4,8), p3 = (4,8,12), and p4 = (4,8,12,16); and eight different
values of the inner iteration constant jmax ∈ {10,20,30,40,50,100,150,200}. Also, some
versions use fixed-sequence VND and some RVND. The constructive heuristic has several
different variants as well: fixed srcl = 1 for a deterministic strategy, srcl = 3 for a fixed-
randomness strategy, and srcl constructed as in line 5-6 of Alg. 1 with R = {.00, .01, . . . , .25}
for the variable-randomness strategy. Overall, we evaluate more than 2300 methods, among
which the best configurations carry some common features. They follow the G+G scheme,
they are fully deterministic except the perturbation, and the perturbation is parametrized by
either p3 or p4.

Ultimately, the best configuration, and the method that we propose, is G+G-b with deter-
ministic construction srcl = 1, perturbation parametrized by p = (4,8,12), fixed-sequence
VND as the local search strategy, and sequence of neighborhoods n = (N2-opt,N1-point,
Nor-opt2,Nor-opt3,Nor-opt4). The number of GVNS iterations of the best version was
originally fixed to jmax = 30; however, we later found out the method works even better when
the value scales with the size of the solved instance, therefore we propose jmax = dsize(i)/5e.
Although the final method is based on the general G+G scheme, its construction heuristic is
deterministic, and therefore the relation with GRASP is no longer accurate. Thus, we call
the metaheuristic more precisely as multi-start GVNS (Ms-GVNS).

An extended description of the method’s design, the sub-results that guided us through
the design process, and some extra insights are available in Mikula (2021), Appx. A.

5 Computational evaluation

Thorough computational evaluation of Ms-GVNS and its comparison with the reference
method follows. As our reference — the state-of-the-art method for the TDP — we choose
the original GILS-RVND (Silva et al., 2012) for its simplicity and the right trade-off be-
tween solution quality and run-time. We purposely leave out the parallel versions proposed
by Rios (2016) since we assume single-processor computing. We also decide not to con-

18 Jan Mikula, Miroslav Kulich

Inst
%mG

UB GILS-RVND Ms-GVNS

tmax : 1 2 5 10 20 50 100 1 2 5 10 20 50 100

R1 18.31 1.03 0.65 0.31 0.16 0.08 0.03 0.00 0.83 0.60 0.24 0.12 0.05 0.01 0.01
R2 13.15 1.24 1.02 0.59 0.35 0.24 0.07 0.05 0.93 0.71 0.48 0.31 0.20 0.11 0.06
R3 20.61 1.08 0.54 0.29 0.15 0.08 0.02 0.01 0.69 0.35 0.13 0.10 0.06 0.03 0.01
R4 12.65 1.12 0.74 0.30 0.08 0.04 0.01 0.00 0.71 0.41 0.08 0.03 0.01 0.00 0.00
R5 14.85 1.26 0.87 0.46 0.27 0.18 0.07 0.02 0.81 0.53 0.34 0.30 0.15 0.07 0.04
R6 13.28 1.46 0.94 0.41 0.13 0.05 0.00 0.00 1.33 0.70 0.23 0.11 0.03 0.00 0.00
R7 18.39 1.49 1.17 0.53 0.23 0.08 0.01 0.00 1.17 0.70 0.42 0.19 0.09 0.03 0.00
R8 16.60 1.15 0.85 0.29 0.12 0.01 0.00 0.00 0.90 0.54 0.22 0.13 0.05 0.01 0.00
R9 16.94 1.17 0.74 0.46 0.25 0.06 0.00 0.00 1.03 0.78 0.39 0.30 0.09 0.00 0.00

R10 18.03 1.03 0.99 0.44 0.17 0.06 0.03 0.00 1.09 0.70 0.21 0.10 0.05 0.00 0.00
R11 11.49 0.81 0.50 0.24 0.12 0.08 0.02 0.01 0.38 0.29 0.13 0.06 0.03 0.01 0.00
R12 17.78 1.06 0.61 0.34 0.15 0.09 0.03 0.01 0.61 0.31 0.19 0.09 0.05 0.02 0.00
R13 16.66 1.13 0.79 0.35 0.23 0.06 0.02 0.00 0.43 0.23 0.07 0.03 0.01 0.00 0.00
R14 17.04 1.52 0.81 0.43 0.16 0.08 0.01 0.00 1.12 0.54 0.32 0.15 0.05 0.01 0.00
R15 12.69 1.17 0.83 0.40 0.13 0.05 0.00 0.00 0.74 0.51 0.24 0.12 0.04 0.00 0.00
R16 16.96 1.84 1.04 0.68 0.30 0.14 0.02 0.00 1.55 1.05 0.67 0.37 0.19 0.06 0.03
R17 20.35 0.86 0.61 0.32 0.17 0.06 0.02 0.01 0.79 0.61 0.41 0.21 0.11 0.03 0.01
R18 15.52 1.77 1.02 0.33 0.22 0.09 0.02 0.00 1.24 0.69 0.39 0.26 0.22 0.11 0.07
R19 13.22 1.31 0.95 0.45 0.34 0.16 0.05 0.03 0.97 0.71 0.43 0.18 0.12 0.04 0.00
R20 35.21 1.26 0.77 0.25 0.11 0.01 0.00 0.00 0.77 0.43 0.11 0.01 0.00 0.00 0.00

avg 16.99 1.24 0.82 0.39 0.19 0.08 0.02 0.01 0.90 0.57 0.28 0.16 0.08 0.03 0.01

Table 3: Time-limits results on 200-customer instances. All times are in seconds.

sider the newest improved version MDM-GILS-RVND (Santana et al., 2020) for reasons
we explain next. As the authors’ results suggest, the MDM improvement over the original
is more significant as the instances go large, e.g., up to 500 or 1000 customers. However,
for these instances, the reported run times (> 500 seconds) are still a lot above the range
that our paper mainly focuses on (< 100 seconds). Since, in the first half of its iterations,
the MDM version is practically identical to its predecessor, it is reasonable to assume that
on the instance which takes MDM, e.g., 500 seconds to solve, after 100 seconds of run-
time, the average quality of the incumbent solution would be no better than in case of plain
GILS-RVND. That being said, we choose the simpler of the two algorithms while obtaining
a nearly equivalent comparison with our method as if we have chosen the more complex
one. Also, the MDM extension to GILS-RVND introduced by Santana et al. is a general
one and might be applied only with minor adjustments to any greedy or semi-greedy restart-
ing heuristic solving any TSP or TDP variant, where the solution is a Hamiltonian path or
circuit. As future research, we also consider extending our proposed method to the MDM
version. For now, nevertheless, we regard heuristics without DM techniques as they bring
no additional value for scenarios we study in this paper.

Both methods, Ms-GVNS and GILS-RVND, are implemented in C++ under the same
framework. All possible parts of the code are shared in order to ensure fairness. This includes
improvement computations of all operators as they are described in Sec. 4.4, despite the
fact, that Silva et al. use conceptually different improvement calculations for their GILS-
RVND. The authors of Silva et al. (2012) were so kind to provide us with their code so
we could ensure that our implementation of GILS-RVND is not worse, in any sense, than
their implementation. Ms-GVNS (the proposed) is parametrized as in Sec. 4.6, and GILS-
RVND (the reference) as in Silva et al. (2012). All experiments described in this section

Solving the traveling delivery person problem with limited computational time 19

Inst
%mG

UB GILS-RVND Ms-GVNS

tmax : 1 2 5 10 20 50 100 1 2 5 10 20 50 100

R1 19.1 12.1 6.8 4.8 3.7 2.6 1.6 1.5 6.0 5.2 4.0 3.1 2.2 1.7 1.2
R2 19.9 12.8 7.3 4.5 3.4 2.1 1.4 1.0 5.6 4.5 3.4 2.2 1.5 1.0 0.7
R3 23.8 11.7 6.8 4.8 3.3 2.4 1.5 1.1 5.5 4.5 3.1 2.4 1.7 1.2 0.9
R4 15.9 12.2 7.1 4.8 3.3 2.5 1.7 1.2 5.1 4.2 3.4 2.7 2.2 1.5 1.2
R5 21.7 11.6 6.8 4.7 3.3 2.3 1.7 1.2 5.8 4.7 3.5 2.7 2.2 1.3 1.1
R6 19.9 13.3 6.9 4.4 3.1 2.2 1.5 1.0 5.2 4.2 2.9 2.3 1.5 1.1 0.9
R7 19.9 11.7 7.4 4.8 3.7 2.8 1.7 1.5 5.3 4.7 3.6 2.9 2.2 1.5 1.3
R8 17.2 13.1 7.0 4.8 3.4 2.4 1.6 1.3 5.5 4.9 3.5 2.7 1.9 1.3 0.9
R9 23.8 12.5 7.2 4.5 3.4 2.3 1.5 1.1 4.0 3.5 2.8 2.4 1.8 1.3 1.1

R10 22.8 13.4 7.1 4.9 3.3 2.5 1.5 1.1 3.9 3.1 2.6 2.1 1.6 1.2 0.9
R11 27.3 11.8 6.2 3.8 2.8 1.9 1.2 0.9 4.4 3.6 2.6 1.8 1.4 0.9 0.7
R12 17.3 13.7 7.6 4.9 3.6 2.5 1.6 1.2 5.5 4.9 3.9 2.9 2.3 1.4 1.1
R13 11.6 12.0 6.7 4.7 3.5 2.3 1.7 1.3 4.8 4.0 2.8 2.2 1.6 1.1 0.8
R14 14.2 12.5 7.3 4.5 3.2 2.5 1.6 1.3 4.6 4.1 3.0 2.1 1.8 1.1 1.0
R15 14.1 12.0 7.4 5.0 3.4 2.6 1.7 1.3 3.9 3.2 2.6 1.8 1.3 0.9 0.8
R16 18.7 12.2 6.7 4.3 3.2 2.5 1.6 1.1 5.3 4.2 3.1 2.4 1.8 1.0 0.8
R17 16.4 12.0 6.6 4.3 3.3 2.4 1.6 1.3 5.0 4.6 3.2 2.6 1.7 1.2 0.8
R18 18.3 11.8 6.6 4.6 3.2 2.1 1.3 1.0 5.7 4.8 3.6 2.6 1.9 1.2 0.9
R19 13.1 12.7 7.5 4.7 3.6 2.3 1.4 1.1 5.4 4.6 3.2 2.5 1.7 1.1 0.7
R20 18.4 13.7 7.2 4.7 3.3 2.3 1.6 1.2 5.2 4.5 3.4 2.7 2.2 1.4 1.2

avg 18.7 12.4 7.0 4.6 3.4 2.4 1.6 1.2 5.1 4.3 3.2 2.5 1.8 1.2 1.0

Table 4: Time-limits results on 500-customer instances. All times are in seconds.

are executed on a personal computer with Intel® Core™ i7-7700 CPU (3.60 GHz), 32 GB
of RAM, and Ubuntu 18.04.1 LTS. The implementation is single-threaded, and only one
physical core of the CPU is used for each experiment.

The proposed is tested against the reference on several sets of standard benchmark in-
stances generated by Salehipour et al. (2011). The available sets consider 10, 20, 50, 100,
200, 500, and 1000 customers, respectively, and each is composed of 20 random instances.
Recall from Sec. 4.6 that instances R1-R5 with 50-200 customers (15 in total) are used in
the process of designing the proposed. Performance on the remaining 125 instances should
demonstrate how general is the method’s obtained configuration. However, we should not
limit this demonstration only to random instances. Thus, we also consider the ten instances
selected by Salehipour et al. from TSPLIB (Reinelt, 1991), sized 70-532. For the evaluation,
we use three different metrics that we call time-limits, TTT-plots, and fixed-iters.

1. Time-limits, our key results: a computational time limit is given to the method, 50 runs
are performed, and the solution costs are recorded. This approach is realized on instances
with 200, 500, and 1000 customers and those from TSPLIB. The considered time limits
are 1, 2, 5, 10, 20, 50, and 100 seconds. Recall from Sec. 1 that we focus on solving the
problem under strict time constraints with the motivation to later solve some more com-
plex problems from mobile robotics. Thus time-limits are the key results as they reflect
this intention. A practical advantage of this result type is that the total time required by
the experiments is reasonably bounded regardless of instance size.

2. TTT-plots, complementary results (1): plots from 200 executions are obtained, and the
probability ppr ≈P(RTp <RTr) is computed as described in Sec. 4.5. Here, RTp and RTr
are random variables representing the time needed by the proposed and the reference re-

20 Jan Mikula, Miroslav Kulich

Inst
%mG

UB GILS-RVND Ms-GVNS

tmax : 1 2 5 10 20 50 100 1 2 5 10 20 50 100

R1 18.3 676.1 502.6 247.2 93.6 12.3 6.9 5.7 9.4 8.1 6.1 5.6 5.2 4.2 3.5
R2 23.6 679.5 626.6 350.8 132.2 21.2 7.7 5.9 9.8 8.4 6.8 6.2 5.3 4.4 3.8
R3 15.6 685.2 588.8 355.2 117.5 17.9 6.9 5.4 10.7 9.9 7.8 6.6 5.7 4.6 3.8
R4 15.7 673.8 664.0 328.9 133.6 21.0 7.5 5.6 8.7 7.3 6.2 5.4 4.9 4.3 3.7
R5 21.8 766.3 586.0 313.7 142.4 21.5 7.5 5.6 9.3 8.1 6.3 5.8 5.4 4.7 4.2
R6 19.0 629.9 586.6 342.0 136.5 23.9 7.9 5.8 10.9 9.9 7.9 7.0 6.4 5.3 4.6
R7 19.9 720.8 636.7 368.9 140.2 27.3 7.9 6.5 10.9 9.6 7.8 7.3 6.6 5.7 4.9
R8 18.6 760.0 542.4 348.5 126.4 23.4 7.3 5.5 10.5 9.3 7.8 7.0 6.1 4.8 4.0
R9 22.6 675.8 617.0 368.8 126.8 24.5 8.3 6.2 11.7 10.9 8.9 8.1 7.0 5.6 4.5

R10 15.6 761.7 508.9 312.0 160.7 24.9 8.0 6.1 11.1 10.0 8.2 7.6 6.5 5.5 4.6
R11 20.6 688.0 586.8 335.0 137.0 25.9 7.7 6.2 11.5 9.9 7.4 7.0 6.1 4.8 4.0
R12 19.8 687.7 584.5 381.2 153.9 27.2 8.3 6.5 10.5 9.5 7.9 7.0 6.4 5.3 4.4
R13 19.1 656.3 599.2 355.8 143.3 26.4 7.6 6.0 11.3 10.1 8.1 6.6 6.0 4.9 4.1
R14 17.3 683.0 556.5 365.2 145.0 24.8 7.2 5.7 8.4 7.2 6.2 5.4 4.9 4.0 3.5
R15 15.9 674.2 645.3 327.8 143.7 23.6 7.7 5.7 9.2 8.1 6.3 5.7 4.9 4.2 3.5
R16 17.5 692.5 562.0 358.4 138.1 27.8 7.8 5.9 11.3 10.0 8.3 7.3 6.1 4.7 3.9
R17 20.3 661.2 571.6 316.9 144.1 27.0 7.8 5.9 10.2 9.4 8.5 7.4 6.6 5.3 4.4
R18 23.8 670.4 649.2 365.6 134.8 29.0 8.3 6.4 10.8 9.7 7.8 7.1 6.5 5.5 4.5
R19 18.7 737.2 593.3 375.0 141.9 28.7 7.7 5.8 9.5 8.1 6.9 6.3 5.7 4.6 3.8
R20 24.1 776.6 559.6 333.2 142.1 29.1 7.9 6.0 9.2 8.3 7.2 6.6 6.0 4.8 4.1

avg 19.4 697.8 588.4 342.5 136.7 24.4 7.7 5.9 10.2 9.1 7.4 6.7 5.9 4.9 4.1

Table 5: Time-limits results on 1000-customer instances. All times are in seconds.

Inst
%mG

UB GILS-RVND Ms-GVNS

tmax : 1 2 5 10 20 50 100 1 2 5 10 20 50 100

st70 12.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rat99 10.97 0.14 0.05 0.01 0.00 0.00 0.00 0.00 0.18 0.11 0.02 0.01 0.00 0.00 0.00

kroD100 13.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lin105 18.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pr107 4.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.10 0.05 0.02 0.00 0.00 0.00
rat195 4.18 1.48 1.15 0.43 0.23 0.10 0.02 0.02 0.11 0.03 0.02 0.02 0.01 0.01 0.00
pr226 56.68 0.11 0.06 0.01 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00
lin318 26.23 3.40 2.33 1.16 0.64 0.38 0.27 0.07 1.23 0.88 0.62 0.38 0.25 0.16 0.07
pr439 22.85 6.42 4.46 2.44 1.33 1.06 0.57 0.34 2.56 2.13 1.38 0.86 0.71 0.40 0.16
att532 44.17 16.95 6.27 4.01 2.74 1.79 1.05 0.73 5.14 4.22 3.04 2.31 1.56 0.94 0.67

Table 6: Time-limits results on TSPLIB instances. All times are in seconds.

spectively to find a solution that is as good as given cgoal . This approach is realized on
instances with 10, 20, 50, 100, 200, and 500 customers and those from TSPLIB. The tar-
get value cgoal is the optimum for instances 10, 20, 50, where it is known (Salehipour
et al., 2011; Silva et al., 2012), and the best solution reported by Silva et al. worsened
by 1% for instances 100, 200, and 500. For TSPLIB instances, we use cgoal obtained
as our best-found solution worsened by 1%. We do not use the best solutions reported
by other authors for TSPLIB instances because they treat them as a closed TDP with a
Hamiltonian circuit as the solution. (Recall from Sec. 3 that we consider an open variant

Solving the traveling delivery person problem with limited computational time 21

with a Hamiltonian path as the solution.) Lastly, since the factor 1.01 used to worsen the
best solution is arbitrary in essence, we also test different values: 1.02, 1.05, 1.10, and
1.20 on 500-customer instances and analyze the outcomes.

3. Fixed-iters, complementary results (2): a fixed number of iterations imax = 10 is given
to the method, 10 runs are performed, and returned solution costs and run-times are
recorded. This approach is realized on instances with 10, 20, 50, 100, 200, and 500
customers and those from TSPLIB. This type of evaluation is the most common in the
literature.

We intentionally leave out 1000-customer instances for the complementary results because
of the tremendous time requirements of related experiments. Nevertheless, we believe that
the remaining results provide a sufficiently detailed view of our method’s performance and
behavior.

In the tables presented hereafter, cbest is the best-known solution, Best and Mean de-
note the best and the mean solution cost found by the examined method respectively, %bG,
and %mG are the best, and a mean percentage gap from cbest computed as 100 · (Best−
cbest)/cbest , and 100 · (Mean− cbest)/cbest respectively, and Time is the average run-time
over 10 executions. For instances with up to 200 customers, cbest corresponds to values
reported by Silva et al. (2012), while for 500 and 1000 -customer instances they are the
minimum of values reported by Silva et al. (2012), Rios (2016), and Santana et al. (2020).
For TSPLIB instances, cbest is the best solution found by the reference in our experiments
(we do not use other authors’ values because they consider the closed variant, similarly as
with cgoal for TTT-plots). In the context of TTT-plots, we report TTT, as the average (over
200 runs) time to target solution, and %ppr as the probability ppr in percents. An over-lined
symbol (e.g., %bG) indicates that the value is averaged over instances of the same size. We
use blue and orange colors to emphasize %bG, %mG, Time, TTT, and %ppr values where
Ms-GVNS and GILS-RVND respectively performed better than the other. If the same values
for both methods are black, then the methods performed equally. If one of the values is in
color, but the values appear equal, then the difference was lost after rounding. Additionally,
we note that while generating fixed-iters results on instances of sizes 10-500, we performed
the same experiments as Silva et al. (2012), however with our own implementation, im-
provement calculations, different random number generator seeds and using more powerful
hardware. For %bG and %mG, our obtained results are identical (except some small sta-
tistical error), to the ones reported by the authors. On the other hand, our values of Time
are significantly lower. Thus, we report unchanged values of %bG, %mG from Silva et al.
(2012), and our updated values of Time in the results.

To produce our main results, time-limits, we simulate a scenario where the algorithms
are allowed to run for a fixed time tmax, and then they immediately return a solution whose
cost is recorded. Seven different values for tmax are used (1, 2, 5, 10, 20, 50, and 100 sec-
onds), and 50 runs are executed for each experimental setup consisting of a method, an
instance, and a time-limit. The values of %mG over 50 runs on instances with 200, 500,
and 1000 customers and TSPLIB instances are presented in Tables 3, 4, and 5, respectively.
The column called %mG of UB shows the mean gaps of upper bounds from the best-known
solutions. The upper bounds are obtained by the deterministic greedy algorithm used to
generate the initial solution in Ms-GVNS. For 200-customer instances, both Ms-GVNS and
GILS-RVND return a better solution than the upper bound even after one second of com-
puting time. As expected, the proposed method converges more quickly towards cbest . After
100 seconds, the solution returned by both methods is of similar quality. For 500-customer
instances, the values after one second are closer to the upper bound, and after 100 seconds,

22 Jan Mikula, Miroslav Kulich

●

●

●

●

●

●

●

av
er

ag
e

m
G

 [%
]

time limit [s]
1 20 50 100

0.01

0.1

1

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) 200 customers

●

●

●

●

●

●

●

av
er

ag
e

m
G

 [%
]

time limit [s]
1 20 50 100

1

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) 500 customers

●

●

●

●

●

●

●

av
er

ag
e

m
G

 [%
]

time limit [s]
1 20 50 100

10

100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) 1000 customers

Fig. 4: Convergence of the average mean gap from Tables 3, 4, and 5 for Ms-GVNS (blue)
and GILS-RVND (orange). The dashed magenta horizontal line is the average %mG of the
upper bound.

Ms-GVNS typically still returns higher-quality solutions. The convergence of the average
%mG can be better tracked in Fig. 4, which shows the last rows (avg) of these tables plot-
ted as graphs. See the graph for the largest instances with 1000 customers. Here, after one
second, the proposed returns a solution better than the upper bound and converges to the
best-known solution. However, the reference starts significantly above the upper bound and
gets below it typically after no less than 20 seconds. This behavior is caused by generating
the initial solution in a randomized way as it is done by GRASP. Such an initial solution
can be very far from the optimum, and it takes many operations to get anywhere nearby it.
This behavior could be neglected by generating a purely greedy solution at first, saving it
as the incumbent, and then run GILS-RVND as usual. Note that this improvement would
merely change the behavior of Ms-GVNS, which works with the purely greedy solution
from the start, and provides better-than-UB solutions after no more than one second. Even
if we considered the improved reference as suggested, after 100 seconds Ms-GVNS would
still return better solutions which are on average by 1.8% closer to cbest than solutions re-
turned by the reference. Based on these observations, we claim that Ms-GVNS is superior to
GILS-RVND in most scenarios with up to 1000 customers and a hard limit on computational
time ranging from 1 to 100 seconds. Additionally, Tab. 6 shows that the same holds for the
selected instances from TSPLIB.

The complementary results, fixed-iters and TTT-plots, are summarized in Tab. 7 for in-
stances with 10, 20, 50, 100, and 200 customers. For instances with up to 50 customers, both
methods found the optimal solution in all executions over all instances and sizes, i.e., the av-
erage values of %bG and %mG are both exactly zero. For 100 and 200-customer instances,
GILS-RVND’s %mG is slightly better than Ms-GVNS’s, as well as is %bG for 200-customer
because Ms-GVNS did not find the best-known solution for two instances (R1 and R2). On
the other hand, the Time improvement of Ms-GVNS over GILS-RVND is significant: 37%,
82%, 118%, 136%, and 40% for the considered sizes, respectively. The average TTT-plots

Solving the traveling delivery person problem with limited computational time 23

GILS-RVND Ms-GVNS

Size %bG %mG Time TTT %bG %mG Time TTT %ppr

11 0.000 0.000 1.3 ·10−3 5.2 ·10−5 0.000 0.000 9.0 ·10−4 4.5 ·10−5 61.9
21 0.000 0.000 1.4 ·10−2 7.1 ·10−4 0.000 0.000 7.4 ·10−3 5.2 ·10−4 70.5
51 0.000 0.000 2.6 ·10−1 2.5 ·10−2 0.000 0.000 1.2 ·10−1 1.5 ·10−2 69.0

101 0.000 0.000 3.3 ·100 9.8 ·10−2 0.000 0.002 1.4 ·100 5.1 ·10−2 70.9
201 0.000 0.035 2.9 ·101 2.0 ·100 0.004 0.080 2.1 ·101 1.1 ·100 67.7

Table 7: Average Fixed-iters and TTT-plots results on instances with 10, 20, 50, 100, and
200 customers. All times are in seconds.

GILS-RVND Ms-GVNS

Inst cbest cgoal %bG %mG Time TTT Best %bG Mean %mG Time TTT %ppr

R1 1841210 1859799 0.01 0.80 615.3 371.9 1848215 0.38 1852248.7 0.60 952.3 282.4 56.15
R2 1815664 1834733 0.05 0.41 608.8 112.5 1815478 −0.01 1818765.5 0.17 806.1 58.0 71.30
R3 1826738 1851374 0.35 0.69 627.0 84.9 1830510 0.21 1833469.3 0.37 939.6 59.9 62.76
R4 1802921 1827358 0.35 0.72 635.7 128.8 1803003 0.00 1811107.7 0.45 934.8 82.4 63.45
R5 1821250 1842214 0.15 0.70 556.8 185.8 1823213 0.11 1829110.9 0.43 837.5 111.7 62.76
R6 1782731 1804486 0.22 0.46 615.4 98.0 1786903 0.23 1790935.4 0.46 806.7 48.0 72.67
R7 1846251 1866478 0.09 0.63 666.6 275.2 1847322 0.06 1853758.1 0.41 936.6 165.2 63.68
R8 1819636 1839054 0.07 0.53 618.9 248.4 1818621 −0.06 1826246.4 0.36 893.3 154.9 62.40
R9 1729796 1751157 0.23 0.42 599.0 86.1 1734166 0.25 1739277.9 0.55 794.9 101.1 45.97

R10 1761174 1780368 0.09 0.35 624.1 148.4 1762984 0.10 1766260.3 0.29 874.9 102.8 62.21
R11 1797771 1815859 0.01 0.21 530.6 101.1 1797111 −0.04 1801042.4 0.18 825.9 49.0 72.26
R12 1774452 1792196 0.00 0.53 575.4 151.9 1775230 0.04 1780101.6 0.32 948.5 161.8 48.70
R13 1863905 1892435 0.53 0.76 625.2 88.0 1865963 0.11 1870876.1 0.37 817.7 34.2 80.68
R14 1796129 1817162 0.17 0.53 667.7 164.6 1798223 0.12 1802641.2 0.36 888.1 67.4 73.77
R15 1784919 1809056 0.35 0.71 621.4 125.5 1786988 0.12 1791543.4 0.37 780.7 25.2 91.22
R16 1804392 1828289 0.32 0.67 637.6 103.5 1806297 0.11 1809260.2 0.27 879.1 45.6 75.20
R17 1819909 1844005 0.32 0.80 594.0 112.9 1823132 0.18 1825989.3 0.33 926.1 54.4 71.85
R18 1825615 1844525 0.04 0.42 650.1 104.0 1825659 0.00 1829417.4 0.21 904.3 77.1 60.15
R19 1776855 1797040 0.13 0.33 598.1 105.2 1775030 −0.10 1779258.1 0.14 911.2 59.9 68.54
R20 1820168 1839021 0.04 0.57 623.4 213.8 1822641 0.14 1828615.0 0.46 942.5 165.4 56.79

avg - - 0.18 0.56 614.6 150.5 - 0.10 - 0.36 880.0 95.3 66.13

Table 8: Fixed-iters and TTT-plots results on instances with 500 customers. All times are in
seconds.

results are favorable towards Ms-GVNS. The average improvement in reaching the target
solution is 15%, 38%, 64%, 91%, and 73%, respectively, and the average probabilities of
returning the target solution before the reference are 62%, 71%, 69%, 71%, and 78% re-
spectively.

Detailed fixed-iters and TTT-plots results for 500-customer instances are shown in Tab. 8.
Here, the proposed provides better gaps; however, the run-time of classical fixed-iters ex-
periments is worse, on average, by about 43% when compared to the reference. The same
can be noticed in Tab. 9 for TSPLIB instances. It seems like the roles of the two algorithms
switch as we consider large problems. This observation is caused by two factors specific to
the fixed-iters computational context: (i) the longer the method runs, the better solution usu-
ally returns at the end, and (ii) the run-time of the method depends on the number of tries to
improve the incumbent solution before it gives up and moves to the next iteration. Regarding
the latter, GILS-RVND gives up after min(size(i),100), and Ms-GVNS after dsize(i)/5e·|p |

24 Jan Mikula, Miroslav Kulich

GILS-RVND Ms-GVNS

Inst cbest cgoal %bG %mG Time TTT Best %bG Mean %mG Time TTT %ppr

st70 19710 19907 0.00 0.00 0.8 0.0 19710 0.00 19710.0 0.00 0.3 0.0 71.52
rat99 56573 57138 0.00 0.00 3.9 0.1 56573 0.00 56718.2 0.26 1.5 0.1 58.34

kroD100 951609 961125 0.00 0.00 2.9 0.1 951609 0.00 951609.0 0.00 1.1 0.0 90.91
lin105 586751 592618 0.00 0.00 2.7 0.0 586751 0.00 586751.0 0.00 1.1 0.0 84.50
pr107 1981991 2001810 0.00 0.00 3.3 0.0 1984642 0.13 1984642.0 0.13 1.4 0.0 97.37
rat195 216154 218315 0.00 0.06 28.9 2.5 216154 0.00 216184.7 0.01 12.5 0.1 92.46
pr226 7101223 7172235 0.00 0.00 23.7 0.2 7101223 0.00 7101223.0 0.00 26.6 0.0 92.58
lin318 5569520 5625215 0.00 0.13 95.2 7.1 5569520 0.00 5572658.6 0.06 96.2 2.2 84.18
pr439 17724562 17879682 0.00 0.30 245.8 28.5 17702656 −0.12 17742375.1 0.10 301.5 16.8 68.52
att532 17449404 17620355 0.00 0.25 707.2 72.1 17445897 −0.02 17481759.1 0.19 1162.6 67.7 53.80

avg - - 0.00 0.07 - - - 0.00 - 0.07 - - 79.42

Table 9: Fixed-iters and TTT-plots results on TSPLIB instances. All times are in seconds.

cgoal
GILS-RVND Ms-GVNS

TTT TTT %ppr

1.01×Silva et al. (2012) 150.5 95.3 66.13
1.02×Silva et al. (2012) 31.3 18.8 72.98
1.05×Silva et al. (2012) 4.6 1.3 94.10
1.10×Silva et al. (2012) 1.2 0.1 98.81
1.20×Silva et al. (2012) 0.9 0.0 97.15

Table 10: Average TTT-plots results with different target solution costs on instances with
500 customers. All times are in seconds.

tries on instance i. In other words, for instances with 100, 200, and 500 customers, the ref-
erence retains the number of tries fixed to 100, but the proposed performs 63, 123, and
303 tries, respectively. Thus, Ms-GVNS is more thorough for larger instances than GILS-
RVND, which results in better gaps and longer running times, but for smaller instances, it is
the opposite. Thus, based on fixed-iters results alone, it is problematic to make an absolute
statement about which method performs better in general. Although fixed-iters computa-
tional context may provide useful, informative results, it is not suitable for the absolute
comparison of the methods. Rather, it is more relevant to compare the methods according
to their ppr in the TTT-plots context, as discussed in Sec. 2.2, and 4.5. In terms of probabil-
ity ppr, the proposed is almost always better than the reference, except for two 500-customer
instances. The average ppr is about 66% for 500-customer instances and 79% for TSPLIB
instances of various sizes. To complement Tab. 8, we show the TTT-plots for four selected
instances in Fig. 5: one with the lowest ppr (5a), one with ppr close to median (5b), and
two with the highest ppr (5c, 5d). Tab. 8 also shows in bold four newly found best-known
solutions for instances TRP-S500-R2, TRP-S500-R8, TRP-S500-R11, and TRP-S500-R19.

The last thing that we analyze is the influence of cgoal on TTT-plots. So far, the factor
used to worsen the best solution was 1.01. To provide a complete picture of how the two
methods behave, we repeated the experiments whose results are shown in Tab. 8 also for
other values of cgoal . The summary is shown in Tab. 10. We deduce that the more accessible
the goal is, the faster Ms-GVNS finds it compared to GILS-RVND. The average ppr for fac-
tors 1.01, 1.02, 1.05, 1.10, and 1.20 is about 66%, 73%, 94%, 99%, and 97%, respectively.

Solving the traveling delivery person problem with limited computational time 25

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Inst R9: ptr = 45.97%.

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Inst R7: ptr = 63.68%.

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Inst R13: ptr = 80.68%.

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Inst R15: ptr = 91.22%.

Fig. 5: TTT-plots for Ms-GVNS (blue) and GILS-RVND (orange) on four instances with
500 customers.

6 Conclusions

In this paper, we propose a new metaheuristic called Ms-GVNS based on general vari-
able neighborhood search with restarts, deterministic variable neighborhood descent, and
custom double-bridge inspired perturbations for solving the traveling delivery person prob-
lem. The method’s performance is assessed by three types of experiments: 1. with hard
upper limit on computational time (time-limits), 2. with target solution cost (TTT-plots),
and 3. with fixed number of iterations (fixed-iters). Experiments of the first type, time-
limits, are executed on standard benchmark instances with up to 1000 customers, and the
proposed method stably outperforms the reference metaheuristic, GILS-RVND, suggested
by Silva et al. (2012). Therefore, Ms-GVNS is suitable for real-time applications, e.g., in
mobile robotics, where the best possible solution is required while the computational time
is bounded by a hard limit. We present this finding as the key result of our paper.

Additionally, we also provide fixed-iters and TTT-plots results based on experiments
over a subset of the benchmark instances. In the literature’s most classical context, fixed-
iters, the proposed method provides better quality solutions in exchange for longer run-
times for instances of size 500. For smaller instances, this trend is observed reversely with
the reference method. For the 500-customer instances, the proposed method found four new
best-known solutions. Regarding the most general type of evaluation, TTT-plots, Ms-GVNS
is almost always better than the reference, except for two (out of 20) 500-customer instances.
Analysis of different target solution costs has shown that the more accessible the goal is, the
faster Ms-GVNS finds it compared to the reference.

26 Jan Mikula, Miroslav Kulich

As future research, we consider creating a general framework for the mobile robot
search, where the here-introduced metaheuristic is deployed. In this context, the restric-
tions on computational time studied in this paper arise. Regarding future improvements of
the proposed metaheuristic, we want to extend it to the MDM version similarly to what San-
tana et al. (2020) did with GILS-RVND. The application of DM techniques will not change
the main results presented in this paper. It will, however, further improve the performance
of Ms-GVNS on larger instances and in scenarios without strict time constraints.

Acknowledgements

This work has been supported by the European Union’s Horizon 2020 research and innova-
tion program under grant agreement No. 688117, the project Rob4Ind4.0 CZ.02.1.01/

0.0/0.0/15 003/0000470, and the European Regional Development Fund. The work of
Jan Mikula was also supported by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS21/185/OHK3/3T/37. The authors would also like to thank Marcos
Silva, who kindly provided us his code and datasets.

References

Abeledo H, Fukasawa R, Pessoa A, Uchoa E (2010) The time dependent traveling salesman
problem: Polyhedra and branch-cut-and-price algorithm. In: Festa P (ed) Experimental
Algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 202–213

Abeledo H, Fukasawa R, Pessoa A, Uchoa E (2013) The time dependent traveling salesman
problem: polyhedra and algorithm. Mathematical Programming Computation 5(1):27–55

Aiex RM, Resende MG, Ribeiro CC (2002) Probability distribution of solution time in
GRASP: An experimental investigation. Journal of Heuristics 8(3):343–373

Archer A, Blasiak A (2010) Improved Approximation Algorithms for the Minimum Latency
Problem via Prize-Collecting Strolls. In: Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, pp 429–447

Archer A, Williamson DP (2003) Faster approximation algorithms for the minimum latency
problem. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, pp 88–96

Archer A, Levin A, Williamson DP (2008) A Faster, Better Approximation Algorithm for
the Minimum Latency Problem. SIAM Journal on Computing 37(5):1472–1498

Ausiello G, Leonardi S, Marchetti-Spaccamela A (2000) On Salesmen, Repairmen, Spiders,
and Other Traveling Agents. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp 1–16

Ban HB, Nguyen K, Ngo MC, Nguyen DN (2013) An efficient exact algorithm for the
Minimum Latency Problem. Progress in Informatics (10):167

Bianco L, Mingozzi A, Ricciardelli S (1993) The traveling salesman problem with cumula-
tive costs. Networks 23(2):81–91

Blum A, Chalasani P, Coppersmith D, Pulleyblank B, Raghavan P, Sudan M (1994) The
minimum latency problem. In: Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing - STOC ’94, ACM Press, New York, New York, USA, pp 163–
171

Bulhões T, Sadykov R, Uchoa E (2018) A branch-and-price algorithm for the Minimum
Latency Problem. Computers & Operations Research 93:66–78

Solving the traveling delivery person problem with limited computational time 27

Campbell AM, Vandenbussche D, Hermann W (2008) Routing for Relief Efforts. Trans-
portation Science 42(2):127–145

Ceallaigh DO, Ruml W (2015) Metareasoning for Concurrent Planning and Execution. Pro-
ceedings of the Symposium on Combinatoral Search

Chaudhuri K, Godfrey B, Rao S, Talwar K (2003) Paths, trees, and minimum latency tours.
In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceed-
ings., IEEE Computer. Soc, pp 36–45

Cook WJ (2012) In Pursuit of the Traveling Salesman: Mathematics at the Limits of Com-
putation. Princeton University Press

Faigl J, Hollinger GA (2014) Unifying multi-goal path planning for autonomous data col-
lection. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, pp 2937–2942

Fakcharoenphol J, Harrelson C, Rao S (2007) The k -traveling repairmen problem. ACM
Transactions on Algorithms 3(4):40–es

Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters 8(2):67–71

Feo TA, Resende MGC, Smith SH (1994) A Greedy Randomized Adaptive Search Proce-
dure for Maximum Independent Set. Operations Research 42(5):860–878

Fischetti M, Laporte G, Martello S (1993) The Delivery Man Problem and Cumulative Ma-
troids. Operations Research 41(6):1055–1064

Frederickson GN, Wittman B (2012) Approximation Algorithms for the Traveling Repair-
man and Speeding Deliveryman Problems. Algorithmica 62(3-4):1198–1221, 0905.4444

Gentilini I, Margot F, Shimada K (2013) The travelling salesman problem with neighbour-
hoods: MINLP solution. Optimization Methods and Software 28(2):364–378

Godinho MT, Gouveia L, Pesneau P (2014) Natural and extended formulations for the Time-
Dependent Traveling Salesman Problem. Discrete Applied Mathematics 164:138–153

Gouveia L, Voß S (1995) A classification of formulations for the (time-dependent) traveling
salesman problem. European Journal of Operational Research 83(1):69–82

Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering Problem: A survey of recent
variants, solution approaches and applications. European Journal of Operational Research
255(2):315–332

Hart JP, Shogan AW (1987) Semi-greedy heuristics: An empirical study. Operations Re-
search Letters 6(3):107–114

Hoos HH, Stützle T (1998) Evaluating Las Vegas Algorithms - Pitfalls and Remedies. Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence pp 238–
245, 1301.7383

Kulich M, Přeučil L, Miranda-Bront JJ (2014) Single robot search for a stationary object
in an unknown environment. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp 5830–5835

Kulich M, Miranda-Bront JJ, Přeučil L (2017) A meta-heuristic based goal-selection strat-
egy for mobile robot search in an unknown environment. Computers & Operations Re-
search 84:178–187

Lucena A (1990) Time-dependent traveling salesman problem – the deliveryman case. Net-
works 20(6):753–763

Martin O, Otto SW, Felten EW (1991) Large-step Markov Chains for the Traveling Sales-
man Problem. Complex Systems 5:219–224

Méndez-Dı́az I, Zabala P, Lucena A (2008) A new formulation for the Traveling Delivery-
man Problem. Discrete Applied Mathematics 156(17):3223–3237

28 Jan Mikula, Miroslav Kulich

Mikula J (2021) Search for a static object in a known environment. Master’s thesis, Czech
Technical University in Prague, Faculty of Electrical Engineering

Miranda-Bront JJ, Méndez-Dı́az I, Zabala P (2014) Facets and valid inequalities for the
time-dependent travelling salesman problem. European Journal of Operational Research
236(3):891–902

Mjirda A, Todosijević R, Hanafi S, Hansen P, Mladenović N (2017) Sequential variable
neighborhood descent variants: an empirical study on the traveling salesman problem.
International Transactions in Operational Research

Mladenović N, Hansen P (1997) Variable neighborhood search. Computers & Operations
Research 24(11):1097–1100

Mladenović N, Urošević D, Hanafi S (2013) Variable neighborhood search for the travelling
deliveryman problem. 4OR 11(1):57–73

Naeni LM, Salehipour A (2019) A New Mathematical Model for the Traveling Repairman
Problem. In: 2019 IEEE International Conference on Industrial Engineering and Engi-
neering Management (IEEM), IEEE, pp 1384–1387

Reinelt G (1991) TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Com-
puting 3(4):376–384

Resende MGC, Ribeiro CC (2016) Optimization by GRASP. Springer New York, New York,
NY

Ribeiro CC, Rosseti I (2015) tttplots-compare: a perl program to compare time-to-target
plots or general runtime distributions of randomized algorithms. Optimization Letters
9(3):601–614

Ribeiro CC, Rosseti I, Vallejos R (2009) On the use of run time distributions to evaluate
and compare stochastic local search algorithms. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics)

Rios EFS (2016) Exploração de estratégias de busca local em ambientes cpu/gpu. PhD the-
sis, Universidade Federal Fluminense

Roberti R, Mingozzi A (2014) Dynamic ng-Path Relaxation for the Delivery Man Problem.
Transportation Science 48(3):413–424

Sahni S, Gonzalez T (1976) P-Complete Approximation Problems. Journal of the ACM
(JACM) 23(3):555–565

Salehipour A, Sörensen K, Goos P, Bräysy O (2011) Efficient GRASP+VND and
GRASP+VNS metaheuristics for the traveling repairman problem. 4OR 9:189–209

Santana Í, Plastino A, Rosseti I (2020) Improving a state-of-the-art heuristic for the min-
imum latency problem with data mining. International Transactions in Operational Re-
search 00:itor.12774, 1908.10705

Sarmiento A, Murrieta-Cid R, Hutchinson S (2004) A multi-robot strategy for rapidly
searching a polygonal environment. In: Lecture Notes in Artificial Intelligence (Subseries
of Lecture Notes in Computer Science), vol 3315, pp 484–493

Satyananda D, Wahyuningsih S (2019) Sequential order vs random order in operators
of variable neighborhood descent method. Telkomnika (Telecommunication Computing
Electronics and Control) 17(2):801–808

Silva MM, Subramanian A, Vidal T, Ochi LS (2012) A simple and effective metaheuristic for
the Minimum Latency Problem. European Journal of Operational Research 221(3):513–
520

Smith SL, Imeson F (2017) GLNS: An effective large neighborhood search heuristic for the
Generalized Traveling Salesman Problem. Computers and Operations Research 87:1–19

