
Intl. Trans. in Op. Res. xx (2020) 1–22

Multi-robot search for a stationary object placed in a known
environment

Miroslav Kulich∗, Libor Přeučil
Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů

1580/3, 160 00 Prague 6, Czech Republic
E-mail: kulich@cvut.cz,preucil@cvut.cz

Abstract

The paper addresses the problem of multi-robot search for a stationary object in a priori known environment. Two
variants of the problem are studied given the working environment represented by a graph. The first one is an
extension of the Traveling Deliveryman Problem for multiple vehicles, while the second one is a generalization
of the Graph Search Problem. A novel algorithm is presented to solve both these problems, which is based on
a combination of Greedy Randomized Adaptive Search Procedure with Variable Neighborhood Descent. A set
of experimental evaluations was conducted over the benchmark instances derived from the TSPLIB library. The
results obtained show that the proposed approach outperforms state of the art approaches in quality of results for
both problems. Moreover, computational times for problems with the size of few hundreds of vertices allow using
the approach for on-line decision making in search and rescue scenarios.

Keywords: Combinatorial optimization; Metaheuristics; Graph Search Problem; Traveling Deliveryman Problem

1. Introduction

Assume a mobile robot autonomously operating in a priori known environment, in which a stationary
object of interest is randomly placed. The objective is to find the object, whose position is not known in
advance, in minimal time.

This problem is formulated as the Traveling Deliveryman Problem (TDP) provided that the envi-
ronment is represented by a graph and probability of appearance of the object is the same for all ver-
tices in the graph. TDP is well-known problem in the operational research community, and it has been
studied from various perspectives during the last few years. Although the problem is NP-hard Afrati
et al. (1986), several authors introduced exact algorithms (Fischetti et al., 1993; Gouveia and Voß, 1995;
Méndez-Dı́az et al., 2008). Besides this, Integer Linear Programming with Branch-and-Cut and Branch-
Cut-and-Price approaches were proposed for the Time-Dependent Traveling Salesman Problem which

∗ Corresponding Author: kulich@cvut.cz

1

This is a submitted version of the article: Kulich, M., and Přeučil, L. (2020). Multi‑robot search for a stationary object placed in a known
environment with a combination of GRASP and VND. International Transactions in Operational Research, Accepted ‑ Early view, which has
been published in a final form at https://doi.org/10.1111/itor.12794. The published paper is considerably extended over this draft.

https://doi.org/10.1111/itor.12794

generalizes TDP (Abeledo et al., 2012; Miranda-Bront et al., 2010, 2013; Godinho et al., 2014). The
best exact algorithm Abeledo et al. (2012), nevertheless, can solve instances with up to 107 vertices to
optimality in several hours.

More useful are heuristics and meta-heuristics which provide good quality solutions with much
lower computational effort. These rely particularly on Greedy Randomized Adaptive Search Procedure
(GRASP), introduced originally in Feo and Resende (1995), and Variable Neighborhood Search (VNS),
proposed in Hansen and Mladenović (1997). Salehipour et al. (2011) employ a GRASP for TDP and
compare the impact of VNS procedure as a local search phase with Variable Neighborhood Descent.
Mladenović et al. (2012) propose a General VNS (GVNS), which improves Salehipour’s results. Further
improvements were achieved by Silva et al. (2012) who propose a simple multi-start heuristics combined
with an Iterated Local Search procedure. To the best of our knowledge, the approach by Silva is thus the
one producing the best results. Nevertheless, a time needed to compute problems containing 100 vertices
is more than ten seconds and instances with 200 vertices are computed in approx. one minute.

Approaches used by the robotic community are simpler. Sarmiento et al. (2004) propose a modification
of breadth-first algorithm which iteratively constructs all possible routes of the defined length, fixes the
most promising one and starts the next search from this route as a prefix. Finally, a modified depth-first
search algorithm with pruning and limited branching was introduced in our previous work (Kulich et al.,
2014).

The Graph Search Problem (GSP), introduced in Koutsoupias et al. (1996), is formulated under the
same settings as TDP, with the only difference that each vertex has assigned a probability of finding the
object when visiting the vertex and probabilities of the vertices differ in general. Besides some theoretical
results regarding approximation schemes presented in Ausiello et al. (2000), no further developments are
present in the related literature. The only exception is our recent work (Kulich et al., 2016) in which a
tailored GRASP meta-heuristics for the GSP is introduced which finds near-optimal solutions for TDP
and GSP problems up to 107 vertices in about one second of computing time.

Other variants of the TDP received some attention in the last few years from the operational re-
search community also. Regarding the single-vehicle case, Heilporn et al. (2010) address the TDP with
time windows (TDPTW), where each vertex must be visited within a particular interval of time. They
propose different Integer Linear Programming (ILP) formulations and develop exact Branch-and-Cut
algorithms, in addition to some heuristic approaches. A different variant is considered in Dewilde et al.
(2013), named the TDP with profits, where a time-dependent (decreasing) profit is collected when vis-
iting a particular vertex. The whole set of vertices is not required to be visited, and the objective is to
maximize the overall profit of the tour. The authors consider a Tabu Search metaheuristic approach and
report good quality results, requiring on average more than 1000 seconds for instances having 200 or
more vertices. Finally, we point out the work by Rivera et al. (2016) where the vehicle is assumed to
have a limited capacity and multi trips are allowed. They propose two different ILP formulations and a
graph transformation procedure which allows tackling the problem by solving a Shortest-Path problem
with resource constraints. Computational results are reported on classical Capacitated Vehicle Routing
Problem (CVRP) instances.

Within the multi-vehicle setting, which this paper primarily focuses, several exact and heuristic algo-
rithms have been proposed recently. Lysgaard and Wøhlk (2014) propose a Branch-and-Cut-and-Price
(BPC) for the Cumulative Capacitated Vehicle Routing Problem (CCVRP), which is the natural ex-
tension of the single-vehicle case where the vehicles have finite capacity. Similarly, Luo et al. (2014)

study the problem where the capacity of the vehicles is not binding, but the routes must not exceed a
predefined maximum distance. Computational results are reported for instances with up to 50 vertices,
showing that the problem is indeed difficult to be approached by exact algorithms. The CCVRP has also
been addressed by heuristic approaches. Ngueveu et al. (2010) propose two Memetic Algorithms (MA)
and evaluate the approaches on CVRP instances ranging from 50 to 420 vertices. The results obtained
are later improved in Mattos Ribeiro and Laporte (2012), which propose an Adaptative Large Neigh-
borhood Search (ALNS). In a follow-up paper, Ke and Feng (2013) tackle the CCVRP by a two-phase
metaheuristics which can improve the best-known solution in 9 of the instances considered in the former
papers. Finally, we mention the application considered in Ribeiro et al. (2012), where a problem related
to the operations within oil fields is solved. The structure of the objective function is similar to the one in
the GDP, but they consider a multi-vehicle setting and time-windows at the vertices, generalizing, there-
fore, the TDPTW. They compare three different metaheuristics on instances 50, 100 and 500 vertices
and allowing the methods to execute 30, 180, and 7200 seconds, respectively.

Some inspiration can be also found in approaches to the Multiple Traveling Salesman Problem (mTSP)
or other routing problems. Bektas (2006) provides a review of ILP formulations as well as regard-
ing heuristics approaches. Besides genetic algorithms, neural networks, or ant colony optimization, the
cluster-first route-second scheme plays an important role. The fundamental idea of this approach is to
split all vertices into M clusters based on their location in space (M is the number of salesmen) and
solve the traditional Traveling Salesman Problem for each cluster separately. For example, Sathyan et al.
(2015) use k-means clustering for the first phase followed by application of a genetic algorithm or 2-opt
heuristics. Boone et al. (2015) employ an initial k-means clustering and modify it by taking points from
the cluster with the largest tour distance and adding them to one of the smaller clusters. Convex hulls,
fuzzy logic, and the TSP solution are used to determine which points to switch. Geetha et al. (2009)
improved the k-means algorithm for the Capacitated Clustering Problem by incorporating a priority
measure to the criterion on which are vertices assigned to clusters.

In our recent paper (Kulich et al., 2017) we presented a cluster-first route-second approach for the
Multiple Traveling Deliveryman Problem (mTDP) and the multi-vehicle case of GSP (mGSP). The ap-
proach extended our GRASP-based meta-heuristic for the single-vehicle problems Kulich et al. (2016)
by incorporating the clustering phase respecting special aspects of mTDP and mGSP.

In this paper, we build on experience from our recent work, especially Kulich et al. (2016, 2017) and
introduce a novel approach based on GRASP and VND for mTDP and mGSP. The proposed approach
uses a tailored clustering from Kulich et al. (2017) in GRASP as a constructive heuristics for generation
of initial solutions together with a set of designed operators used in VND to improve these solutions.
Furthermore, we derive equations for fast evaluation of changes of an objective function caused by ap-
plication of particular operators and show that neighborhoods defined by these operators can be explored
in time O(n2), where n is a number of vertices, which is the same as the complexity of operators for
TSP.

The rest of the paper is organized as follows. The problem is defined in Section 2, while the proposed
approach for mTDP and mGSP is introduced in Section 3. Computational results including instances of
both mTDP and mGSP as well as experiments with real robots are presented and discussed in 4. Finally,
Section 5 is dedicated to concluding remarks and future directions.

2. Problem Formulation

The formulation of the Graph Search Problem for multiple vehicles is a direct extension of the single-
vehicle case as presented e.g. in Kulich et al. (2014, 2016). That is, formally, given

• a complete undirected graph G = (V,E), where V = {v1, v2, . . . , vN} stands for a finite set of
N vertices and E is a set of edges between these vertices: E = {e1, e2, . . . eN2}, eij = (vi, vj),
vi, vj ∈ V , i 6= j,
• d : E → R: a cost dij associated with each edge eij representing a length of the shortest path from i

to j,
• w : V → 〈0, 1〉: a weight for each vertex representing a probability of a presence of the searched

object at the vertex,
• the number of the vehicles M , and
• si ∈ V, i ∈ 〈1,M〉: starting vertices of the vehicles (note that several vehicles can start from the same

vertex in general),

define a route x = 〈x1, x2, . . . xk〉 as a sequence of vertices of G, i.e. xi ∈ V for i ∈ 〈1, k〉. The overall
objective is then to find a tuple of M routesX = 〈x1,x2, . . . ,xM 〉 that

1. visits all vertices of V at least once:

∀v ∈ V ∃i, j : xij ∈ xi and xij = v,

2. all the routes start at the given starting vertices:

∀i ∈ 〈1,M〉 : xi1 = si and

.
3. minimizes the expected time to find the object1:

X = argmin
χ∈X

E(T |χ) =

M∑
i=1

|χi|∑
j=1

δχ
i

(j)wχ
i

(j), (1)

where

δχ
i

(j) =

j−1∑
k=1

d(xikx
i
k+1) (2)

is the time when the vertex xij , the j-th vertex of the i-th route χi ∈ χ is visited, wχ
i

(j) is the weight
of xij , and X is a set of all possible sets of routes in G. The minimal expected time is then

Texp = E(T |X) =

M∑
i=1

|xi|∑
j=1

δx
i

(j)wx
i

(j). (3)

1We assume that vehicles move with a constant velocity and thus time is proportional to distance.

Shortly, the aim is to minimize the average time the vertices are visited weighted by probabilities
assigned to the vertices.

The multi-vehicle Traveling Deliveryman Problem is a particular variant of mGSP with the only dif-
ference that the probability of finding the object is the same for all the vertices in the graph. These
probabilities can be omitted from the equations for this case.

3. The approach

The proposed approach to mGSP is based on the combination of the Greedy Randomized Adap-
tive Search Procedure (GRASP) (Feo and Resende, 1995) and Variable Neighborhood Descent
(VND) (Ribeiro and Vianna, 2005), see the general schema in Algorithm 1. The meta-heuristics con-
secutively constructs initial solutions using various heuristics from a given set of heuristics H (line 4).
Each of the obtained solutions is improved by a sequence of local search steps (line 5) and its cost is
updated accordingly (line 6). If the improved solution is better than the current best solution, which is
initially set to a high number in the algorithm (line 1), the best solution and its cost are updated (lines 7–
9). After all initial solutions are processed, the best solution found is reported (line 10). Nit at line 3 is a
predefined number of initial solutions generated by a single heuristics. More detailed description of the
particular steps of the GRASP follows in the next paragraphs.

Algorithm 1: GRASP scheme.
1 zbest ←∞.
2 foreach h ∈ H do
3 for k = 1, . . . , Nit do
4 Obtain a feasible solutionX using h.
5 ImproveX by applying a local search step
6 Update cost z ofX .
7 if z < zbest then
8 Xbest ←X
9 zbest ← z

10 returnXbest

3.1. Initial solution generation

Generation of initial solutions follows ideas of the clustering approach introduced in Kulich et al. (2017).
Because the algorithm in Kulich et al. (2017) is deterministic and a set of different initial solutions has
to be generated for GRASP, it was randomized as shown in Algorithm 2.

The approach, which has a greedy nature, initializes particular routes first so that each route contains
just the start vertex of the corresponding vehicle. Moreover, the time needed to traverse each route is set
to zero (lines 1–3). The algorithm maintains the set of not yet assigned vertices, R, which is initialized

at line 4. Vertices from R are examined and consecutively attached to most appropriate routes in the
loop (5–12). This is done by processing each pair consisting of a vertex v ∈ R and a route χ ∈ X: time
needed to visit the v if it is attached to the end of χ is determined (line 8) and used to compute a cost of
this attachment (line 9). We employ two different cost functions defining two heuristics for GRASP. The
first one is simply the distance as computed at line 8, while the second one is defined as

cχ,v =
d

1 + wv
,

which prefers vertices with high weights.
Contrary to the deterministic approach, where the pair (χ, v) with the lowest cost is selected, a pair

is chosen randomly according to the uniform distribution from a pool of κ pairs with the lowest costs
(line 10). Finally, v is attached to χ (line 11), removed fromR (line 12), and time to traverse χ is updated
(line 13). The algorithm finishes when R is empty and X is reported.

Algorithm 2: Generation of an initial solution.
Input: M – the number of vehicles

G = (V,E) – a graph
dij – costs of edges
wi – probabilities associated with vertices
si ∈ V, i ∈ 〈1,M〉 – starting vertices of vehicles

Output: X = 〈χ1, χ2, . . . χM 〉 – a tuple of sequences representing particular routes

1 for i← 1 to M do
2 χi ← 〈si〉
3 δχ

i ← 0

4 R← V \ {s1, s2, . . . , sM}
5 while R 6= ∅ do
6 foreach χ ∈ X do
7 foreach v ∈ R do
8 d = δχ + d(v, χ|χ|), where

χ|χ| is the last vertex of the route χ
9 cχ,v = c(d,wv)

10 select (χ, v) according to cχ,v
11 χ← χ+ v
12 R← R \ {v}
13 δχ ← δχ + d(v, χ|χ|)

14 return X = 〈χ1, χ2, . . . χM 〉

3.2. Route improvement

Each route generated in Algorithm 2 is improved using Variable Neighborhood Descent as depicted at
line 5 of Algorithm 1. VND is a local search procedure which iteratively and systematically explores
several neighborhoods of a given solution and updates the solution to the best neighbor found. Assume
for example 2-opt operator which takes two non-adjacent edges and replaces them by two new edges as
shown in Fig. 1. A neighborhood of a route χ defined by this operator is a set of all routes originating
from χ by application of some 2-opt operation.

Fig. 1: 2-opt operation: edges (xi, xi+1) and (xj , xj+1) are removed and replaced by edges (xi, xj) and
(xi+1, xj+1).

A general structure of VND is depicted in Algorithm 3. The algorithm consecutively takes operators
from a given set of local search operators O (lines 2–8), where NOi

(x) stands for a neighborhood of x
and f(χ) is a cost of a solution χ. If a better solution than the current one is found in a neighborhood
defined by the current operator, it becomes a new solution (line 5) and the process is restarted from the
first operator in the set (line 6). Otherwise, the algorithm continues with a next operator (line 8). The
algorithm finishes when all operators are processed without improvement. The found solution is reported
in that case (line 9).

Algorithm 3: General structure of Variable Neighborhood Descent
Input: x – an initial solution

O = 〈o1, o2, . . . , on〉 – a sequence of local search operators
Output: x – an improved solution

1 i← 1
2 while i ≤ n do
3 x′ ← argminχ∈NOi

(x) f(χ)

4 if f(x′) < f(x) then
5 x← x′

6 i← 1

7 else
8 i← i+ 1

9 return x

In the proposed approach, we consider two local search operators working with a single route:

• 2-opt: as described above and
• Swap: select two vertices in the tour and interchange them

together with three operators involving two routes:

• Move: remove a vertex from one route and add it to the second route,
• Exchange: select two vertices from different routes and exchange them, and
• Swap tails: select tails of two different routes and exchange them.

These operators, which are detailed in Section 3.2.1, define the improvement process as depicted in
Algorithm 4. Each route of an initial solution is improved by VND which employs 2-opt and Swap
(lines 1-2) at first. The improved solution is then refined by another VND with Move, Exchange, and
Swap tails operators (lines 3). Whenever one of these operators is successful, VND with 2-opt and
Swap is called again for both involved routes. Each route of the solution is finally refined by so-called
intensification and the result is reported.

Algorithm 4: Solution improvement.
Input:X – an initial solution
Output:X – an improved solution

1 foreach x ∈X do
2 x← V ND(x, 〈2-opt, Swap〉)
3 X ← V ND(X, 〈Move, Exchange,Swap tails〉)
4 foreach x ∈X do
5 x← intens(x, 0, ∅, x1)
6 returnX

Intensification is inspired by an adaptation procedure used in the Lin-Kernighan heuristics to solve
the Traveling Salesman Problem Lin and Kernighan (1973). The procedure is recursive with limited
backtracking. The idea is to consider each edge on the route sequentially as a seed for an improvement
procedure which attempts to find an improved route by application of a sequence of 2-opt moves. Par-
ticular 2-opt moves, in contrast to VND, do not necessarily improve the solution. Instead, a gain of the
whole sequence is tracked: whenever a better solution is found, it is accepted as the new initial solution
and the whole procedure is restarted from the first edge.

The procedure is shown in Algorithm 5. If a recursion depth is not reached (line 1), all vertices in the
neighborhood N depth

xi of the current vertex xi are sequentially processed. N depth
xi contains first ndepth

vertices nearest to xi according to distances d as defined earlier, where ndepth is a given size of the
neighborhood dependent on current depth. If the neighbor has not been considered in the current iteration
and the edge (xk, xk+1) is not next to (xi, xi+1), 2-opt on these two edges is performed (line 4). If this
leads to improvement of the current route, the process is restarted with the improved route as an initial
solution (line 6). Otherwise, a recursive step is called with the next vertex (line 6). This process is
repeated until all nodes have been considered as a seed.

Intensification is computationally demanding and it is therefore performed only for most promising
solutions, i.e. it is applied only if the cost of the current solution is less than 110% of the current best
solution.

Algorithm 5: Intensification procedure: intens(x, depth,R, xi).

1 if depth < α then
2 foreach xk ∈ N depth

xi do
3 if xk /∈ R ∧ xk+1 6= xi then
4 x′ ← 2-opt({xi, xi+1}, {xk, xk+1})
5 if f(x′) < f(x) then
6 return intens(x′, 0, ∅, x1)
7 else
8 return intens(x′, depth+ 1, R ∪ {xk}, xk)

9 return x

3.2.1. Local search operators
Contrary to the Traveling Salesman Problem, where a change of solution cost caused by application of a
local search operator (e.g. 2-opt) can be straightforwardly determined in constant time, some preprocess-
ing and additional data structures are needed for mGSP. Derivation of cost change for operators used in
the improvement phase of GRASP follows. Note a property directly resulting from Eq. 1 – the expected
time for all vehicles is a sum of the expected times for particular routes. This means that improving a
route of one vehicle leads to the same improvement of the whole solution.

2-opt

Given a route x = 〈x1, x2, . . . , xn〉, its cost, which corresponds to the expected time of finding an
object, is computed as:

c(x) = E(T |x) = δ1w1 + δ2w2 + · · ·+ δiwi

+ · · ·+ δjwj + · · ·+ δnwn,
(4)

where δi is time needed to reach the i-th vertex on the route x as defined in Eq. 2. Application of the
2-opt operator on x and edges (xi, xi+1) and (xj , xj+1) as depicted in Fig. 1 results in the route x′ =
〈x1, x2, . . . , xi, xj , xj−1, . . . , xi+2, xi+1, xj+1, . . . , xn〉. Summing contribution of particular nodes in

the order they appear in x′, its cost can be expressed as:

c(x′) = δ1w1 + δ2w2 + · · ·+ δi−1wi−1 + δiwi

+ (δi + di,j)wj

+ (δi + di,j + dj,j−1)wj−1 + . . .

+ (δi + di,j + dj,j−1 . . . dj−k+1,j−k)wj−k + . . .

+ (δi + di,j + dj,j−1 · · ·+ di+2,i+1)wi+1

+ (δj+1 − di,i+1 − dj,j+1 + di,j + di+1,j+1)wj+1

+ · · ·+ (δn − di,i+1 − dj,j+1 + di,j + di+1,j+1)wn

(5)

To compute improvement obtained by application of the operation (i.e. a difference of c(x′)− c(x)),
the similar trick as in Mladenović et al. (2012) is used. The cost functions are summed first followed by
subtraction of a double of c(x):

∆2−opt(x, i, j) =

c(x′)− c(x) = c(x′) + c(x)− 2Sb(n) =

2Sb(i) + (δi + δj + di,j)(γj − γi)
+ 2Se(j + 1) + (di,j + di+1,j+1 − di,i+1 − dj,j+1)(γn − γj)
− 2Sb(n),

(6)

where

Sb(i) =

i∑
k=1

δkwk, Se(i) =

n∑
k=i

δkwk (7)

are contributions to the cost of first and last i vertices respectively. Note that c(x) = Sb(n) = Se(1). γi
is then defined as

γi =

i∑
k=1

wk. (8)

If Sb, Se, and γ of all vertices are precomputed for a givenx, which can be done iteratively inO(n), the
complete 2-opt neighborhood is explored in O(n2). This is possible because a size of the neighborhood
is n2 and evaluation of a single 2-opt operation takes constant time thanks to the knowledge of all terms
in Eq. 6. Algorithm 3 thus assumes that Sb’s, Se’s, and γ’s are precomputed and when a better solution
is found, these values are updated at line 5.

Swap

Given a route x with a cost defined in Eq. 4, Swap interchanges vertices at positions i and j. The

resulting route is thus x′ = 〈x1, x2, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1 . . . , xn〉 and its cost

c(x′) = Sb(i− 1) + wj(δi + Λ1)

+ wi+1(δi+1 + Λ2) · · ·+ wj−1(δj−1 + Λ2)

+ wi(δj + Λ3)

+ wj+1(δj+1 + Λ4) + · · ·+ wn(δn + Λ4), where

(9)

Λ1 = di−1,j − di−1,i
Λ2 = Λ1 + dj,i+1 − dj,i+1

Λ3 = Λ2 + dj−1,i − dj−1,j
Λ4 = Λ3 + di,j+1 − di,j+1

(10)

Improvement after application of the operator is computed directly as a difference of the costs

∆swap(x, i, j) = c(x′)− c(x) = wjΛ1 + (γj−1 − γi)Λ2

+ wiΛ3 + (γn−1 − γj)Λ4 + (δj − δi)(wi − wj).
(11)

Again, all the terms in Eqs. 9 and 10 are known and the whole neighborhood NSwap(x) can be thus
explored in O(n2).

Move

The Move operation involves two routes. It removes the i-th vertex from a route x and adds
it before j-th vertex of a route y = 〈y1, y2, . . . , yn〉, so that resulting routes will be x′ =
〈x1, x2, . . . , xi−1, xi+1, . . . , xn, 〉 and y′ = 〈y1, y2, . . . , yj−1, xi, yj , . . . , yn〉. Influence of vertex re-
moval is expressed directly as

∆remove(x, i) =

− wiδi + (γn − γi)(di−1,i+1 − di−1,i − di,i+1)
(12)

while cost change caused by the addition of a vertex is

∆add(y, j, p) = wp(δj−1 + dj−1,p)

+ (γn − γj−1)(dj−1,p + dp,j − dj−1,i),
(13)

where p is the index of the vertex added. Improvement after application of the operation is finally

∆move(x, i, y, j) = ∆remove(x, i) + ∆add(y, i, idx(xi))

which can be determined in constant time assuming that γ’s are precomputed. idx(xi) is the index of xi.
Note that all possible pairs of routes and all possible positions on them are evaluated resulting in a total
complexity of neighborhood exploration O(n2).

Exchange

Exchange swaps i-th vertex of x with j-th vertex of y. The resulting routes after application of Ex-
change will be x′ = 〈x1, x2, . . . , xi−1, yj , xi+1, . . . , xn, 〉 and y′ = 〈y1, y2, . . . , yj−1, xi, yj , . . . , yn〉.
Improvement of this operation can be computed as a sum of improvements of two Move operations,
which can be further simplified. For the route x we get

∆ex(x, i, ,j) = −wiδi + wp(δi−1 + di−1,p)

+ (γn − γi)(di−1,p + dp,i+1 − di−1,i − di,i+1)
(14)

The same applies for y with reordered parameters. Improvement of the whole operation is then evalu-
able in constant time:

∆exchng(x, i,y, j) = ∆ex(x, i,y, j) + ∆ex(y, j,x, i)

Swap tails

Finally, Swap tails takes the last part of x starting from the vertex i and swaps it with the tail of y
starting at j. Improvement for x is

∆tail(x, i, y, j) = Sye (j)− Sxe (i)

− (γyn − γ
y
j−1)(δ

y
j + δi−1 + di−1,idx(y,j)).

(15)

Similarly to Exchange, improvement of Swap is a sum of improvement of the particular routes. Im-
provement of the whole operation is therefore

∆swap tails(x, i, y, j) = ∆tail(x, i, y, j) + ∆tail(y, j, x, i),

which can be again determined in constant time.

4. Results

Performance of the proposed approach has been evaluated for both mTDP and mGSP. The experiments
for mTDP were run on a set of standard instances from TSPLIB (Reinelt, 1991) with sizes between 52
and 1002 and various numbers of vehicles. As there are no benchmark instances for mGSP, instances
from TSPLIB were also used for which probabilities of vertices were generated randomly. To ensure
repeatability of experiments, a generator from random.org was utilized for generating 10000 normally
distributed random numbers between 1 and 10 and the string ”2016-09-11” was set as a seed2. Random
numbers were assigned to vertices respecting the order, i.e. i-th vertex of a TSPLIB instance has assigned
i-th random number. The numbers were furthermore normalized to make the sum of probabilities of all
vertices for an instance equal to one.

2We are ready to publish the generated sequence if the paper is accepted

random.org

Concerning the parameters of the method, we set κ = 2, which provides good variability as well as
the quality of generated initial solutions. The size of the sequences of 2-opt moves in intensification is
α = 20, ndepth = 5 for first 4 depths of backtracking, and ndepth = 1 for the rest. Nit is set to 50,
generating a total of 100 initial solutions. Starting positions of all vehicles are all set to the first vertex of
the instance.

The proposed GRASP approach was compared with two existing methods. The first one is a variant
of classical cluster-first, route-second approach. It splits the vertices into M clusters using k-means and
then runs a GRASP meta-heuristic proposed in Kulich et al. (2016) for each cluster. More specifically,
we employed k-means++ – an augmentation of k-means which significantly improves both the speed and
the accuracy of k-means (Arthur and Vassilvitskii, 2007). The second approach is our algorithm (Kulich
et al., 2017) which employs greedy heuristics for clustering instead of k-means. According to our knowl-
edge, this algorithm provides currently-best solutions for both mTDP and mGSP. In the next text we refer
to the methods as kmeans for the cluster-first, route-second approach employing k-means for clustering,
heuristic for the approach presented in Kulich et al. (2017) and proposed for the proposed method.

All experiments were performed within the same computational environment: a standard PC with an
Intel R©Core i7-3770 CPU at 3.4 Ghz running OS Sabayon with the Linux kernel 4.4.0. The algorithms
have been implemented in C++ and compiled by clang 3.8.1. with “-O2” flag. 50 runs were run for
each experimental setup consisting of an instance, the number of vehicles, and a method to provide
statistically significant results.

The results for mTDP are presented in Table 1, where the meaning of the symbols is the following:
M stands for the number of vehicles, BKS for the best-known solution (to the best of our knowledge,
there is no other mTDP solver and BKS is thus the best solution found by one of the evaluated methods),
SD is standard deviation, and T is execution time in ms averaged over all runs for a given setup. PDB
is the percent deviation to BKS of the best solution values found by the algorithm (denoted as best),
i.e. PDB=(best-BKS)/BKS. Similarly, PDM is the percent deviation of the mean solution value to BKS.
The best solution was found by the proposed approach for all instances, PDB for proposed is therefore
omitted as it zero for all setups.

The results show that regarding quality, proposed outperforms the other methods in all cases. PDB’s
of kmeans and heuristic are worse on average by 19.5% and 8.2% respectively, while PDM’s averaged
over all runs are 1.3% for proposed, 23.8% for kmeans and 8.4 for heuristic. proposed provides
better results by more than 33% than kmeans and by more than 15% in comparison to heuristic in
extreme cases.

Regarding computational times, proposed is faster than the other methods for small problems and
small numbers of vehicles, while heuristic is fastest for the other problems. This is most significant
for pr1002 problem containing 1002 vertices, where the proposed method is slower by three orders than
the others.

Similarly, results for mGSP are summarized in Table 2 in the same way as for mTDP. Again, PDB
for proposed is omitted as it is zero for all cases. All running times slightly increased in comparison to
mTDP, but ratios remain similar. Also quality of generated solutions did not change much, proposed
outperforms both kmeans and heuristic by 18.3% and 9% respectively on average regarding PDB,
while average PDM’s are 1.6% for proposed, 22.3% for kmeans and 9.3 for heuristic.

2 4 6 8 10

M

P
D

M
 [%

]

0.
0

0.
5

1.
0

1.
5

2.
0

(a) berlin52

2 4 6 8 10

M
P

D
M

 [%
]

0
1

2
3

4
5

(b) gil262

2 4 6 8 10

M

P
D

M
 [%

]

0
1

2
3

4
5

6

(c) u724

2 4 6 8 10 20 40 100

M

P
D

M
 [%

]

0
2

4
6

8 Move
Move+Exchange
Move+Tails
all operators

(d) pr1002

Fig. 2: Influence of operators on solution quality

4.1. Influence of operators

We also studied the influence of operators working with two routes on quality of a generated solution
and time complexity. A set of experiments was performed for mGSP instances with the same settings
as in the previous case for four variants of the proposed GRASP scheme differing in operators used.

The Move operator only was used in the first variant, Move and Exchange were employed in the second
variant, Move and Swap Tails in the third one, and all three operators in the last one.

The resulting graphs for the selected problems are shown in Figs. 2 and 3. It can be seen that all three
operators have an influence on solution quality and that combination of all three operators leads to best
results in the majority of cases. On the other hand, the difference to the combination of Move and Swap
Tails is not big. Furthermore, this combination provides better solutions in the rest of cases.

Justification of usage of Exchange can be seen if Fig. 3 which shows computational time of the vari-
ants. The variant with Exchange thus reduces computational burden in all cases except pr1002, in many
cases even significantly. This is especially the case of u724, where time is reduced twice in comparison
to the combination of Move and Swap Tails.

4.2. Real world experiment

As a proof of concept that the proposed approach can be successfully deployed in real-world scenarios,
we demonstrated it with real robots on the SyRoTek system (Kulich et al., 2013). SyRoTek is a platform
for e-learning and distant experimentation in robotics and related areas consisting of thirteen robots
equipped with standard robot sensors (laser range-finders, sonars, odometry, etc.) and it is freely available
at http://syrotek.felk.cvut.cz. The robots operate in the Arena of size 3.5× 3.8 m and are fully
programmable and remotely controlled.

The test scenario was as follows. Assume a polygonal map of the environment in the form of a polygon
with holes as depicted in Fig 4b and a team of two robots. The aim is to navigate the robots through the
environment with the aim minimize expected time of finding an object of interest placed randomly in the
environment. A robot can detect an object if their distance is smaller than a sensor range (0.3 m in our
case) and there is no obstacle between the robot and the object.

In order to employ the proposed GRASP-based approach which minimizes Eq. 1, a graphG(V,E) has
to be built first. A conforming constrained Delaunay triangulation with constrains on a triangle area and
its angles Shewchuk (2002) is used to generate a triangular mesh. Centers of generated triangles with a
larger area than a predefined threshold form a set of vertices V , see Fig. 4b. We are aware that this is not
the best solution as for example Kazazakis and Argyros (2002) or Faigl and Kulich (2006) produce less
number of vertices, but the used approach is good enough to demonstrate the feasibility of the proposed
planning algorithm.

A set of edges E is produced in two steps. First, two vertices are connected with an edge if they are
mutually visible, i.e. there is no obstacle between them and a cost of the edges is the Euclidean distance
of the vertices. All-pairs shortest path Johnson’s algorithms Johnson (1977) is run to compute costs of
edges between all pairs of vertices and thus to construct a full graph.

Weight of a vertex is computed as a sum of contributions of all points of the environment δ-visible from
the given vertex (visible and closer to the vertex than a sensor range). Point contribution is determined as
a 1
K , where K is a number of vertices from which the point is δ-visible. In other words, each point in the

environment has a contribution one which is equally divided to vertices from which it is δ-visible. The
motivation for this computation is that a weight of a vertex corresponds to the area visible from it for the
first time. As the order of vertices in which they will be visited is not known in advance, the probability
that a point in the intersection of δ-visibility regions of K points will be first seen from a given vertex is

http://syrotek.felk.cvut.cz

2 4 6 8 10

M

T
 [m

s]

0
10

20
30

40

(a) berlin52

2 4 6 8 10

M
T

 [m
s]

0
10

00
20

00
30

00
40

00
(b) gil262

2 4 6 8 10

M

T
 [m

s]

0
50

00
0

10
00

00
15

00
00

(c) u724

2 4 6 8 10 20 40 100

M

T
 [m

s]

0
20

00
00

60
00

00

Move
Move+Exchange
Move+Tails
all operators

(d) pr1002

Fig. 3: Influence of operators on computational time

1
K .

Given G(V,E), costs of edges, and weights of vertices, the proposed mGSP solver can be run to
provide paths for particular robots. The robots are finally navigated along these paths running Smooth
Nearness Diagram (SND) algorithm Durham and Bullo (2008) for robot motion control and collision
avoidance. Robot’s positions were taken from the localization system provided by SyRoTek.

Several experiments were done with the same setup. The robots during the mission are shown in
Fig. 4a, the generated routes for one mission are depicted in Fig. 4c, while the trajectories traversed by
robots are shown in Fig. 4d.

(a) (b) (c) (d)

Fig. 4: Real experiment. (a) The robots performing the mission. (b) The map with generated goals (note
that obstacles were inflated by Minkowski sum enabling to plan non-colliding paths for circular-shaped
robots). The starting positions are highlighted in yellow and orange. (c) Planned routes. (d) Trajectories
traversed by robots.

5. Conclusion

The paper addresses the problem how to plan routes for a team of robots in order to find an object
of interest placed randomly in a priori known environment. We formulated the problem as a multi-
vehicle variant of the Graph Search Problem given a graph describing the environment and proposed
a novel algorithm to this problem based on the Greedy Randomized Adaptive Search Procedure meta-
heuristics which employs Variable Neighborhood Descent. The presented experimental results show that
the method outperforms state-of-the-art approaches in quality of provided solutions for all tested setups.
Moreover, computational time for instances containing less than 300 vertices is 3 seconds at maximum
on a standard PC. These two properties qualify the approach to be employed in on-line decision making
in robotics as a typical size of robotic problems rarely exceeds this size.

We also performed experiments for setups where weights of particular vertices are equal which leads
to a solution of the multi-vehicle Traveling Deliveryman Problem as a particular case of mGSP. The
results show that the proposed method is suitable for this problem too as ratios of solution quality and
computation time to the compared approaches are similar to mGSP.

Future research will go in several directions. First, we would like to increase the scalability of the
approach to allow solving problems with sizes over 1000 vertices in seconds. One of the possible streams
is to integrate Tabu Search into GRASP. Another option how to reduce computational time is to explore
only a subset of vertices for each operation instead of a full neighborhood. The intuition is that adjacent
vertices in a route are generally close to each other in good solutions.

Another interesting stream would be to reformulate the problem to consider changes of vertices’
weights according to the order the vertices are visited as indicated in Section 4.2. Incorporating of these

changes into the objective function and consequently to the algorithm should improve expected time of
finding an object in realistic scenarios.

Finally, we would like to study properties of mGSP for multi-robot search in an unknown space
similarly to using a mTSP solver for exploration task Faigl et al. (2012) and a GSP solver for search in
a priori unknown environment Kulich et al. (2014, 2016).

Acknowledgement

This work has been supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 688117, by the Technology Agency of the Czech Repub-
lic under the project no. TE01020197 “Centre for Applied Cybernetics”, the project Rob4Ind4.0
CZ.02.1.01/0.0/0.0/15 003/0000470, and the European Regional Development Fund.

References

Abeledo, H., Fukasawa, R., Pessoa, A., Uchoa, E., 2012. The time dependent traveling salesman problem: polyhedra and
algorithm. Mathematical Programming Computation 5, 1, 27–55.

Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N., 1986. The complexity of the travelling
repairman problem. Theoretical Informatics and Applications

Arthur, D., Vassilvitskii, S., 2007. K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
pp. 1027–1035.

Ausiello, G., Leonardi, S., Marchetti-Spaccamela, A., 2000. On salesmen, repairmen, spiders, and other traveling agents. In
Bongiovanni, G., Petreschi, R. and Gambosi, G. (eds), Algorithms and Complexity, Lecture Notes in Computer Science.
Vol. 1767. Springer Berlin Heidelberg, pp. 1–16.

Bektas, T., 2006. The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34,
3, 209–219.

Boone, N., Sathyan, A., Cohen, K., 2015. Enhanced approaches to solving the multiple traveling salesman problem. In
Proceedings of the AIAA Infotech@Aerospace Conference., American Institute of Aeronautics and Astronautics.

Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F., Vansteenwegen, P., 2013. Heuristics for the traveling repairman problem
with profits. Computers & Operations Research 40, 7, 1700–1707.

Durham, J.W., Bullo, F., 2008. Smooth nearness-diagram navigation. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pp. 690–695.

Faigl, J., Kulich, M., 2006. Sensing locations positioning for multi-robot inspection planning. In IEEE Workshop on Distributed
Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), pp. 79–84.

Faigl, J., Kulich, M., Přeučil, L., 2012. Goal assignment using distance cost in multi-robot exploration. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ Int. Conf. on, pp. 3741 –3746.

Feo, T.A., Resende, M.G., 1995. Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 2, 109–133.
Fischetti, M., Laporte, G., Martello, S., 1993. The delivery man problem and cumulative matroids. Operations Research ,

March 2015, 1055–1064.
Geetha, S., Poonthalir, G., Vanathi, P., 2009. Improved k-means algorithm for capacitated clustering problem. INFOCOMP

Journal of Computer Science 8, 4, 52–59.
Godinho, M.T., Gouveia, L., Pesneau, P., 2014. Natural and extended formulations for the Time-Dependent Traveling Salesman

Problem. Discrete Applied Mathematics 164, 138–153.
Gouveia, L., Voß, S., 1995. A classification of formulations for the (time-dependent) traveling salesman problem. European

Journal of Operational Research 2217, 93.

Hansen, P., Mladenović, N., 1997. Variable Neighborhood Search. Computers & Operations Research 24, 1, 1097–1100.
Heilporn, G., Cordeau, J.F., Laporte, G., 2010. The Delivery Man Problem with time windows. Discrete Optimization 7, 4,

269–282.
Johnson, D.B., 1977. Efficient algorithms for shortest paths in sparse networks. J. ACM 24, 1, 1–13.
Kazazakis, G.D., Argyros, A.A., 2002. Fast positioning of limited-visibility guards for the inspection of 2d workspaces. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), IEEE, Lausanne, Switzerland, pp.
2843 – 2848.

Ke, L., Feng, Z., 2013. A two-phase metaheuristic for the cumulative capacitated vehicle routing problem. Computers and
Operations Research 40, 2, 633–638.

Koutsoupias, E., Papadimitriou, C., Yannakakis, M., 1996. Searching a fixed graph. In Meyer, F. and Monien, B. (eds),
Automata, Languages and Programming, Lecture Notes in Computer Science. Vol. 1099. Springer Berlin Heidelberg, pp.
280–289.

Kulich, M., Chudoba, J., Košnar, K., Krajnı́k, T., Faigl, J., Přeučil, L., 2013. Syrotek – distance teaching of mobile robotics.
Education, IEEE Transactions on 56, 1, 18–23.

Kulich, M., Miranda-Bront, J.J., Přeučil, L., 2016. A meta-heuristic based goal-selection strategy for mobile robot search in an
unknown environment. Computers & Operations Research In press.

Kulich, M., Přeučil, L., Miranda-Bront, J.J., 2014. Single Robot Search for a Stationary Object in an Unknown Environment.
In 2014 IEEE International Conference on Robotics and Automation, pp. 5830–5835.

Kulich, M., Přeučil, L., Bront, J.J.M., 2017. On multi-robot search for a stationary object. In 2017 European Conference on
Mobile Robots (ECMR), pp. 1–6.

Lin, S., Kernighan, B., 1973. An effective heuristic algorithm for the traveling-salesman problem. Operations research
Luo, Z., Qin, H., Lim, A., 2014. Branch-and-price-and-cut for the multiple traveling repairman problem with distance con-

straints. European Journal of Operational Research 234, 1, 49–60.
Lysgaard, J., Wøhlk, S., 2014. A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem.

European Journal of Operational Research 236, 3, 800 – 810. Vehicle Routing and Distribution Logistics.
Mattos Ribeiro, G., Laporte, G., 2012. An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle

routing problem. Computers and Operations Research 39, 3, 728–735.
Méndez-Dı́az, I., Zabala, P., Lucena, A., 2008. A new formulation for the traveling deliveryman problem. Discrete Appl. Math.

156, 17, 3223–3237.
Miranda-Bront, J.J., Méndez-Dı́az, I., Zabala, P., 2010. An integer programming approach for the time-dependent TSP. Elec-

tronic Notes in Discrete Mathematics 36, 351–358.
Miranda-Bront, J.J., Méndez-Dı́az, I., Zabala, P., 2013. Facets and valid inequalities for the time-dependent travelling salesman

problem. European Journal of Operational Research
Mladenović, N., Urošević, D., Hanafi, S., 2012. Variable neighborhood search for the travelling deliveryman problem. 4OR pp.

1–17.
Ngueveu, S.U., Prins, C., Calvo, R.W., 2010. An effective memetic algorithm for the cumulative capacitated vehicle routing

problem. Computers & Operations Research 37, 11, 1877 – 1885. Metaheuristics for Logistics and Vehicle Routing.
Reinelt, G., 1991. Tsplib - a traveling salesman problem library. INFORMS Journal on Computing 3, 4, 376–384.
Ribeiro, C.C., Vianna, D.S., 2005. A grasp/vnd heuristic for the phylogeny problem using a new neighborhood structure.

International Transactions in Operational Research 12, 3, 325–338.
Ribeiro, G.M., Laporte, G., Mauri, G.R., 2012. A comparison of three metaheuristics for the workover rig routing problem.

European Journal of Operational Research 220, 1, 28–36.
Rivera, J.C., Murat Afsar, H., Prins, C., 2016. Mathematical formulations and exact algorithm for the multitrip cumulative

capacitated single-vehicle routing problem. European Journal of Operational Research 249, 1, 93–104.
Salehipour, A., Sörensen, K., Goos, P., Bräysy, O., 2011. Efficient GRASP+VND and GRASP+VNS metaheuristics for the

traveling repairman problem. 4OR 9, 189–209.
Sarmiento, A., Murrieta-Cid, R., Hutchinson, S., 2004. A multi-robot strategy for rapidly searching a polygonal environment.

In Lemaı̂tre, C., Reyes, C.A. and González, J.A. (eds), Advances in Artificial Intelligence - IBERAMIA 2004, 9th Ibero-
American Conference on AI, Puebla, México, November 22-26, 2004, Proceedings, Springer, pp. 484–493.

Sathyan, A., Boone, N., Cohen, K., 2015. Comparison of approximate approaches to solving the travelling salesman problem
and its application to uav swarming. International Journal of Unmanned Systems Engineering 3, 1, 1–16.

Shewchuk, J.R., 2002. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry 22, 1–3, 21 –
74. 16th {ACM} Symposium on Computational Geometry.

Silva, M.M., Subramanian, A., Vidal, T., Ochi, L.S., 2012. A simple and effective metaheuristic for the Minimum Latency
Problem. European Journal of Operational Research 221, 3, 513–520.

Problem M BKS kmeans heuristic proposed
PDB PDM SD T [ms] PDB PDM SD T [ms] PDM SD T [ms]

berlin52

2 68713 9.18 18.90 6154 65 2.22 2.22 1 44 1.25 552 25
4 36855 17.37 21.70 1317 33 7.84 7.84 0 20 0.48 211 12
6 27994 22.40 28.77 940 19 9.18 9.18 0 9 0.38 123 13
8 24263 19.21 28.33 1209 13 4.97 4.97 0 7 0.51 70 15

10 22800 20.11 26.90 1197 9 4.91 4.91 0 5 0.54 77 15

bier127

2 2249045 4.79 15.44 168919 573 6.43 7.40 8825 393 3.63 34964 319
4 1148181 6.70 27.07 81356 256 13.23 13.23 0 119 2.07 10534 122
6 783613 29.98 37.48 37073 189 12.23 12.23 0 84 1.09 5056 104
8 628096 28.77 39.89 31155 129 13.54 13.54 0 53 0.93 2187 115

10 547501 28.36 40.17 22537 100 11.84 11.84 0 40 0.65 2338 130

gil262

2 149205 3.25 6.76 2561 4348 3.33 4.06 636 3209 1.51 1176 2188
4 82251 19.33 19.89 183 2185 5.91 6.16 83 1060 1.38 499 995
6 61598 21.15 25.98 2053 1198 6.22 6.27 28 634 1.55 385 1069
8 52575 23.23 28.41 2067 841 5.19 5.21 7 470 1.35 285 1249

10 48025 25.35 29.42 1529 615 4.72 4.72 3 346 0.81 201 1467

lin318

2 2967790 7.03 8.95 22516 6141 10.45 11.81 14860 6018 3.19 46446 3209
4 1652372 11.81 17.49 43079 2288 9.54 9.86 2656 1720 1.72 13140 2013
6 1265217 16.39 20.05 32703 1432 13.18 13.27 1011 970 1.40 7710 2453
8 1076975 17.90 22.07 40888 1033 12.76 12.79 266 578 1.42 6162 2829

10 975942 19.81 23.29 34525 760 15.72 15.73 220 582 1.57 5654 3334

pcb442

2 5273584 5.60 6.77 29620 24214 0.07 0.92 21018 14676 1.68 44107 13446
4 2676970 21.66 22.06 9065 9347 6.45 6.92 7084 3871 1.41 17714 5038
6 1872102 29.67 32.61 20854 4933 9.79 9.94 2247 1687 1.15 11618 4689
8 1529430 33.02 36.71 37093 3108 5.09 5.21 1111 1294 0.84 4984 4552

10 1344161 35.50 39.24 22193 2334 4.37 4.41 735 1015 0.67 3946 5217

rat575

2 959549 6.16 6.77 3390 70798 3.78 4.53 3022 39692 2.17 6389 30352
4 496821 14.23 20.13 12550 25405 5.71 6.21 1100 10062 1.27 3204 12241
6 345969 21.60 23.86 7821 11629 8.63 8.89 473 4373 1.41 1937 15137
8 275558 27.76 29.31 4796 7482 9.94 10.07 186 2388 1.11 1443 19672

10 234400 31.96 35.50 4146 5626 11.32 11.38 105 1464 1.32 1518 25918

u724

2 7214847 6.01 7.16 29926 80266 4.30 5.10 26656 60029 2.55 87912 65586
4 3832465 11.44 15.03 81181 28066 1.91 2.40 7600 16984 1.74 25961 31949
6 2725276 18.40 19.69 20709 15513 7.42 7.77 4646 8657 1.29 18374 38807
8 2198999 23.62 25.68 23246 11430 10.32 10.46 1408 6532 1.22 13261 47640

10 1899414 27.45 29.67 29270 8838 11.26 11.31 866 3859 1.08 9223 57133

pr1002

2 62531684 4.92 5.50 194529 300765 5.09 5.94 256320 193190 2.30 638581 223976
4 33311971 9.82 10.58 224774 85212 11.55 12.09 79727 55299 2.31 293324 97320
6 23897982 13.08 14.34 404059 45121 11.47 11.95 48038 27321 1.97 226279 121200
8 19169589 18.63 20.34 476898 31752 9.27 9.52 24908 14990 1.62 134931 139253

10 16494748 18.70 21.81 660805 23205 19.56 19.83 20578 9670 1.31 86057 148598
15 13126541 23.50 28.10 260240 15023 11.72 11.79 6968 5880 1.14 63299 199791
20 11753981 24.06 27.22 206195 10195 10.10 10.12 2341 3361 0.83 40410 251827
30 10630016 25.11 27.63 159026 7064 9.59 9.62 2259 1974 0.35 18346 373446
40 10203089 29.64 32.19 173794 7062 6.83 6.84 1091 1833 0.37 14307 426098
50 10032496 31.25 33.78 108641 6802 5.78 5.78 637 1742 0.23 9057 478671

100 9890230 33.26 35.55 102717 6910 0.92 0.92 22 968 0.10 3729 421952

Table 1: Comparison of the algorithms for mTDP instances. The number in a problem name specifies a
number of vertices.

Problem M BKS kmeans heuristic proposed
PDB PDM SD T [ms] PDB PDM SD T [ms] PDM SD T [ms]

berlin52

2 1183.28 8.97 18.23 96.7 67 11.74 11.74 0.1 58 0.39 6.9 29
4 660.59 13.27 18.20 22.9 40 7.78 7.78 0.0 24 0.39 2.3 14
6 526.19 16.84 20.37 11.9 22 8.20 8.20 0.0 12 0.59 1.8 13
8 471.17 13.47 18.05 14.1 15 8.44 8.44 0.0 8 0.27 1.1 15

10 447.11 12.47 17.64 15.3 11 3.49 3.49 0.0 4 0.27 1.1 16

bier127

2 16395.26 4.46 14.58 1231.8 638 3.20 3.94 60.6 472 3.37 236.0 311
4 8356.24 16.76 30.32 589.4 319 7.89 7.99 7.6 176 2.60 101.2 131
6 5806.67 27.36 37.72 449.9 238 10.89 10.89 0.3 114 2.00 43.0 116
8 4716.36 25.26 37.43 278.9 153 12.32 12.32 0.0 64 1.09 30.9 121

10 4148.67 28.50 37.17 206.0 124 8.89 8.89 0.0 42 1.32 24.8 135

gil262

2 533.07 4.09 7.68 12.3 4378 4.44 5.68 2.8 3543 2.64 6.1 2654
4 302.30 17.59 18.21 0.9 2679 7.56 7.83 0.4 1037 1.93 2.4 1223
6 229.23 19.89 24.07 7.9 1452 5.20 5.32 0.2 613 1.28 1.9 1275
8 197.43 21.84 27.01 6.6 1042 5.36 5.40 0.1 383 2.05 1.1 1343

10 183.43 21.93 26.69 5.8 811 6.78 6.78 0.0 318 1.06 1.0 1497

lin318

2 9038.73 6.35 9.16 70.6 6901 13.57 14.39 36.5 6598 3.09 126.6 3802
4 5053.88 13.10 18.13 66.6 2549 11.17 11.59 8.6 1759 2.35 49.6 2370
6 3890.79 16.19 20.61 94.8 1804 12.84 13.02 4.9 875 1.45 31.6 2676
8 3325.37 18.17 23.07 131.6 1316 12.12 12.14 0.6 604 1.22 18.1 3062

10 3049.70 18.38 22.47 127.9 1054 14.92 14.93 0.4 547 1.16 14.7 3421

pcb442

2 11066.99 5.44 8.65 166.6 19777 8.88 9.87 49.8 14081 2.83 107.8 15780
4 5786.41 20.99 21.68 20.7 8756 5.11 5.44 11.2 3411 2.85 44.2 5815
6 4181.07 24.76 29.00 86.7 5195 6.24 6.37 3.5 1743 1.38 27.4 5451
8 3454.99 28.90 31.91 69.3 3694 5.19 5.25 1.2 1125 0.68 12.0 5118

10 3048.55 32.15 34.49 43.0 2930 4.90 4.91 0.3 729 0.85 9.1 5617

rat575

2 1553.78 5.07 5.90 6.6 51279 4.73 5.95 8.5 30045 1.92 11.6 39367
4 816.14 15.23 18.36 19.8 20830 8.16 9.10 2.8 8578 1.31 5.4 15545
6 574.14 19.41 22.06 13.9 12318 12.88 13.16 0.9 4679 1.76 4.3 18645
8 461.13 25.81 27.52 8.0 8815 14.47 14.66 0.4 2735 1.78 2.8 21831

10 398.31 29.63 32.41 7.4 6901 11.48 11.60 0.3 1862 1.58 2.9 25953

u724

2 9459.41 6.03 7.23 39.3 88676 7.95 9.42 48.8 65825 2.33 92.6 71599
4 5004.09 11.38 15.62 108.0 31175 9.34 10.31 17.4 17132 2.38 50.1 33528
6 3598.73 18.85 20.15 33.8 19127 10.41 10.64 4.7 10722 1.98 26.5 40147
8 2930.00 24.66 26.43 32.0 14217 15.14 15.36 2.6 6698 1.55 19.4 47348

10 2547.98 27.90 30.08 40.0 11010 10.10 10.20 1.5 4547 1.69 15.8 53018

pr1002

2 58480.15 5.28 6.37 286.7 272616 3.16 4.34 281.8 243931 2.54 571.7 371600
4 31385.39 10.02 10.86 109.3 78987 14.88 15.88 110.2 53754 2.94 343.4 193579
6 22583.08 14.45 15.75 326.0 51723 10.89 11.29 52.5 33497 2.77 201.9 248863
8 18382.21 17.96 20.61 449.5 36915 13.23 13.49 19.9 19485 2.21 152.6 283945

10 16008.10 17.61 21.39 564.0 27326 10.94 11.07 12.4 11881 1.42 91.3 295323
15 12865.68 20.78 26.09 322.2 17006 12.94 13.01 5.5 6989 1.41 59.3 359504
20 11608.85 22.83 26.15 216.7 12541 10.47 10.50 2.9 4006 0.96 36.3 428881
30 10546.04 24.09 26.01 190.1 8821 9.14 9.16 1.6 2113 0.52 18.4 617506
40 10169.98 27.70 29.48 105.6 8459 7.72 7.72 0.2 1515 0.28 11.4 676410
50 9995.37 30.46 31.82 133.3 8488 5.79 5.79 0.1 1333 0.28 7.6 745812

100 9871.34 30.98 33.05 79.9 8343 0.90 0.90 0.0 1004 0.07 2.9 645638

Table 2: Comparison of the algorithms for mGSP instances.

	Introduction
	Problem Formulation
	The approach
	Initial solution generation
	Route improvement
	Local search operators

	Results
	Influence of operators
	Real world experiment

	Conclusion

