
Push, Stop, and Replan: An Application of Pebble Motion on Graphs to
Planning in Automated Warehouses

Miroslav Kulich1, Tomáš Novák2, and Libor Přeučil1

Abstract— The pebble-motion on graphs is a subcategory of
multi-agent pathfinding problems dealing with moving multiple
pebble-like objects from a node to a node in a graph with a
constraint that only one pebble can occupy one node at a given
time. Additionally, algorithms solving this problem assume that
individual pebbles (robots) cannot move at the same time and
their movement is discrete. These assumptions disqualify them
from being directly used in practical applications, although
they have otherwise nice theoretical properties. We present
modifications of the Push and Rotate algorithm [1], which relax
the presumptions mentioned above and demonstrate, through
a set of experiments, that the modified algorithm is applicable
for planning in automated warehouses.

Warehouses are used by industries to store assembly parts
or goods to be sold. These warehouses often already have
a computer system that tracks the position of the product
in the racks, but the goods are usually moved to and from
the racks by human beings. They navigate through the
space between the racks searching for the correct rack and
then they search for the item. When assembling an order
composed by several different items, they usually spend a lot
of the time walking around the warehouse. Companies like
Amazon or SwissLog have therefore implemented solutions
for automated warehouses where robots bring whole racks to
picking stations. Here the human workers pick up the desired
items and pack them into boxes according to orders. Such
a system requires the robots to be able to navigate in the
warehouse and avoid obstacles which could be static – such
as walls and racks – or dynamic, mainly other robots and
occasionally human beings.

The problem of coordinating a fleet of robots is called
multi-agent pathfinding, which is known to be NP-complete
for a discrete graph and PSPACE-complete for real en-
vironments [2], [3]. Traditional planning methods can be
categorized into centralized and decentralized. Approaches
from the first category systematically search a composite
configuration space built as a Cartesian product of particular
robots’ configurations and provide optimal solutions [4]–
[6]. On the other hand, the thorough search is very time
consuming and only small instances can be thus solved.

Miroslav Kulich and Libor Přeučil are with Czech Institute of Informatics,
Robotics, and Cybernetics, Czech Technical University in Prague, Prague,
Czech Republic {kulich,preucil}@cvut.cz

Tomáš Novák2 is with the Department of Cybernetics, Faculty of Elec-
trical Engineering, Czech Technical University in Prague, Prague, Czech
Republic tomasnovakmail@gmail.com

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 688117,
by the Technology Agency of the Czech Republic under the project
no. TE01020197 “Centre for Applied Cybernetics”, and by the European
Regional Development Fund under the project Robotics for Industry 4.0
(reg. no. CZ.02.1.01/0.0/0.0/15 003/0000470).

Although many authors developed advanced search space
pruning, which decreases the time complexity [7]–[10], the
computational complexity is still high: problems with tens
of robots are solved in minutes.

Decoupled approaches plan paths for individual robots
independently from each other, which is followed by co-
ordination of the robots [11], [12]. Alternatively, prioritized
planning is used, which computes trajectories sequentially
for individual robots based on their priorities. Robots with
already determined trajectories are considered as moving
obstacles to be avoided by robots with lower priorities [13]–
[15].

Several computationally efficient heuristics have been in-
troduced recently [16]–[18]. Furthermore, another stream of
research is based on a solution of the problem called pebble
motion on graphs, the planning problem where only one
agent moves at a time (the 15-puzzle is the most famous
example of this problem). Luna and Bekris [19] present a
complete heuristics for general problems with at most n− 2
robots in a graph with n vertices based on the combination
of two primitives - “push” forces robots towards a specific
path, while “swap” switches positions of two robots if they
are to be colliding. An extension which divides the graph into
subgraphs within which it is possible for agents to reach any
position of the subgraph, and then uses “push”, “swap”, and
“rotate” operations is presented in [1].

The main shortcoming of the pebble-motion solving algo-
rithms is that individual agents cannot move at the same
time. Therefore, the real usage of such a solution in a
warehouse would be time-wasting and ineffective. All of
the abovementioned algorithms also assume one type of
robots, while robots in an automated warehouse might be
split into those with and those without racks and assume
a constant time of node-to-node movements, which is not
possible in a real application. In this paper, we propose a
modification of the Push and Rotate (P&R) algorithm [1],
which is designed for the use in real warehouse applications
by allowing parallel movement of two types of robots (loaded
and unloaded) and accounts for non-constant node-to-node
movement time. The proposed algorithm moves robots on
the shortest possible trajectories to their destinations and in
case of a conflict it uses a modified push operation or one
of the newly proposed operations: stop and replan.

The rest of the paper is organized as follows. First, the
problem is described in Section I. The planning algorithm
is detailed in Section II, while experimental results are
presented and discussed in Section III. Section IV is finally
dedicated to concluding remarks.



Fig. 1: A map of a real warehouse.

I. PROBLEM DEFINITION

The complete solution for robot management in an auto-
mated warehouse is typically composed of three layers. The
highest layer is the warehouse management system (WMS),
which creates a queue of tasks that are supposed to be
accomplished from an order that is currently processed. The
order may consist of several items that are stored at different
locations. Their position is thus determined, and the manager
adds the information which rack has to be brought to which
picking station. The middle layer processes the queue from
WMS and determines an appropriate robot for each task.
The lowest layer, the path-planning algorithm, coordinates
the movement of the robots by computing their collision-
free trajectories given their start and goal positions.

The path planning in the last layer is addressed in this
paper. Specifically, we assume a connected, directed graph
G = (N,E), where N is a set of nodes and E is a set of
connections between them. For each robot ri ∈ R start si
and goal gi nodes are given as well as a subset of edges E
where the robot is allowed to operate. The aim is to find a
set of non-colliding trajectories from si to gi for each robot
while minimizing some global cost function. A typical cost
function is a sum of robots’ travel times or a plan completion
time.

Fig. 1 illustrates a map of a typical warehouse: nodes on
roads (red), positions of racks (grey), picking stations (blue
polygons), maintenance nodes/charging stations (orange),
queues before picking stations (light blue). Note that robots
with loaded racks cannot go to grey nodes if they are
occupied by some racks, while unloaded robots can. Two
types of edges are distinguished: straight lines (we call them
default) and turns, which allow robots to concurrently move
and rotate spline.

II. PROPOSED ALGORITHM

A. Warehouse-related requirements

Several challenges appear when designing an algorithm
for real continuous environments instead of for a discrete
world of graphs. On the other hand, one can employ several
simplifications in comparison to general graph algorithms
using typical properties of a warehouse to simplify the
topology of the associated graph. The main challenges that
had to be resolved during the algorithm design are discussed
in this section.

1) Non-constant time of movement between nodes: Con-
trary to standard graph algorithms, where robots move be-
tween nodes discretely, they can also occupy space between
the nodes. This movement is represented by a sequence of
time steps containing necessary information about the robots:
time, position, rotation, velocity and a set of occupied nodes.
A model of a robot’s movement is necessary to generate these
sequences. The precision of this model defines the usability
of the real scenario; however, in the proposed algorithm we
only use a very simple model and propose a modification to
deal with its inaccuracy in the real world scenario.

2) Node/edge conflicts, mainly at spline edges and com-
plicated junctions: A set of conflicting nodes and edges that
no robot can be present at the same time is defined for every
node and edge. This is mainly the case of spline edges and
complicated junctions as in Fig. 2.

3) Parallel movement of robots: is necessary to reduce
the makespan of the solution and make it viable for usage
in a real warehouse. To achieve this goal, all robots are
moved simultaneously at time-step. When one robot happens
to conflict with another robot, one of the operations described
in Section II-B is invoked to resolve the conflict. All of
the operations involve only the robots in conflict and the
positions of the task-accomplished robots. The consideration
of a simultaneous movement of robots causes an increase
in the complexity of the algorithm, but also adds more
flexibility.

4) Simplifications: A real warehouse environment in-
creases the complexity of the algorithm significantly; how-
ever, the graph of the warehouse has properties that can
be used to simplify the planning algorithm. It is assumed
that the graph is always biconnected. The decomposition
in the P&Rotate algorithm thus always ends up with one
component, and, therefore, it can be omitted. Moreover, the
swap operation always successfully completed as proved in
[1] and the rotate operation can be thus also omitted.

5) Runtime requirements: Robots in a warehouse are not
given their tasks at once, but rather the goals are assigned
one by one from the warehouse management system. When
a goal is assigned to the robot, the time to find the solution
should be minimized, which is a challenging requirement to
meet. The algorithm should thus be able to reuse the already
evaluated solution and add a new robot’s movement as fast
as possible to it.

6) On-the-fly processing: The algorithm produces plans
on the fly. This means that first parts of plans are available



(a) Spline shortcuts
(the green node is
in conflict with the
robot). (b) Complex spline junctions

Fig. 2: Complex spline junctions at the corners of aisles in
the warehouse.

and robots can start moving according to them before the
planner finishes. The only problem is in case of collision
when the planner virtually moves the time backward to
solve the collision. In the extreme case when one collision
resolution immediately causes a new conflict, the time can
be moved backward significantly. Therefore, some solution
buffer has to be introduced guaranteeing that the virtual time
in the planner is not behind the real-time. To do that, a
statistical evaluation to calculate the size of the solution
buffer has been done. Nevertheless, it can happen that the
buffer would get too small during the movement of the
robots; the movement would have to be paused in this
situation.

B. Algorithm description

The proposed planning algorithm consists of three parts:
the single robot path planning phase, the initial trajectory
generation, and the robot maneuvering phase, and uses
operations stop, push, and replan to modify the trajectories
in case of conflict. Moreover, the current state and time of
the warehouse is maintained.

The priority of each robot is, initially, equivalent to length
of the shortest paths from its origin to its destinations Besides
this, a temporary priority of each robot is initialized to these
constant priorities, incremented by the push operation and
reset to the value of the main priority. The stop operation tries
to resolve the conflict by stopping one of the robots, while the
push operation pushes robot with a lower temporary priority
out of the path of the other conflicting robot.

1) Single robot path planning phase: The shortest paths
for all robots from their start to their goal positions are
generated on the graph G making use of the standard A*
algorithm [20]. The used heuristic function is the Euclidean
distance to the goal, while the determination of edge cost
depends on the edge type. We define the cost Cl for spline
edges and Cs for edges to storage location nodes bellow,
while the default cost Cd = 1 is used for all other edges.

Traveling through spline edge is shorter than travel trough
two default edges, but longer than traveling through one;
thus Cd < Cl < 2Cd and is set to 1.5. The edges that end in
the storage location nodes are in most cases traveled by the
robots without racks. To enforce their preference to travel
under the racks and leave more space on the road nodes for

robots with racks, the cost Cs must be 0 < Cs < Cd and
0 < Cs <

CI

2 , and is set to 0.1. The robots that carry a rack
cannot use edges starting or ending at the storage location
nodes except initial and goal state of the robots.

2) Initial trajectory generation phase: The generated
paths are processed by the robot model. The output for
each robot rx is a list of time steps Jr = {j1, j2, . . . , jn},
where n is the number of time steps in the path. The output
data depends on the model parameters. Because we need to
discretize continuous movements, the time steps are samples
of real trajectory movement; thus sample frequency must be
defined reasonably. The algorithm directly processes the time
samples. Therefore the computational difficulty grows with
the sampling frequency. Choosing a too small number of
samples could lead to failure in case that there are not at
least 2 samples between two nodes – each where a robot
occupies one of the two nodes on the edge. The robots could
come into a conflict in moments that were not captured by
the samples; thus the algorithm would not detect it. It is
reasonable to have at least ten samples for each edge. To
make sure the sampling frequency Fs is sufficient, it should
meet the condition Fs > lmin

vmax
× 10, where lmin is the

minimum length of an edge and vmax is the maximal robot
velocity.

Algorithm 1: Robot maneuvering algorithm
Data: generated trajectories J
Result: Trajectories J , modified to be collision-free.

1 solved← false
2 while !solved do
3 if conflict detect() then
4 resolve crash(crash)
5 end
6 if check finished() then
7 solved← true
8 else
9 resolve priority reset()

10 resolve replan()
11 state shift(1)
12 end
13 end

3) Robot maneuvering phase: This phase is described in
Algorithm 1. The loop (line 2) is repeated until no conflict
exists. First, it is checked whether there is a conflict in
the current state of robots (line 3). Detected conflicts are
immediately resolved by the resolve crash Algorithm. After
that, it is checked whether all robots reached their final
destination (line 6). When the problem is not solved yet,
temporal priorities are reset, and paths of robots blocked by
already finished robots are replanned (lines 9–10). Moreover,
the time is incremented, and all robots are moved accordingly
(line 11).

The conflict detect procedure searches through all the
blocked nodes and edges and checks whether they are
occupied by some robot other than the currently tested one.



The resolve crash algorithm solves one crash at the time.
If several conflicts occur at the same time, only the first one
is resolved; however, all the operations will cause the time to
move one back; thus the other conflicts will also be resolved.
The algorithm consists of two steps: it is first decided which
operation from the set {stop, push, replan} will be used,
and this operation is executed.

The decision is done in several steps. As we do not allow
to move a robot which is already in its final destination,
replanning of the other robot in the conflict is invoked by
the replan operation. When no robot is finished, it is tested
whether stop can be used by checking two conditions for
both robots. The first one is that the other robot’s path does
not cross the node that the tested robot would be stopped at.
In Fig. 3a, the robot r2 has a path planned in a way, that
stopping the robot r1 would not help to resolve the conflict. If
the path was planned differently (Fig. 3b), the stop operation
helps to resolve the conflict completely.

The other ond condition is implemented to prevent dead-
lock situations that might arise from stop. When the robot is
stopped, it is put into the idle state and waits until the first
edge on its path is empty. To avoid possible deadlocks, the
robot that is supposed to continue without stopping cannot
have any idle robots on its way. When no other operation is
selected, the push operation is chosen.

r2

r1

(a) If r1 is stopped, the robot r2
would still crash into it.

r2

r1

(b) stop operation is possible.
Stopping robot r1 allows robot
r2 to move towards its goal.

Fig. 3: Examples showing situations when the stop operation
is possible and when it is not.

C. Operations

The stop operation (Algorithm 2) aims to stop one robot
so that the other one can continue without disruption. It is
decided which robot should be stopped (line 1) first. The
algorithm already gets a set of one or two robots, which
can be stopped and selects the one with a lower temporary
priority. The time is then shifted back until the rstop is not
occupying the conflicting node (line 2). rstop is thus in some
other node ns, where it will be stopped.

The wait sequence is generated (line 3) as a sequence of
steps shift time steps where the robot rstop stands still at
the node ns ending with the time step with a special idle
flag. If this special time step is the next step, it is checked
during the state shift (Algorithm 1, line 11) whether the edge
that the robot rstop is going to move at is not in conflict

a2 a1

(a) Original push operation.

r2 r1

(b) New push operation.

Fig. 4: Comparison of the original and new push operation
on simple case.

with any other robot. The wait sequence is extended to the
moment there is no conflict. The generated wait sequence is
then added to the path after the current state extending the
planned trajectory Jrstop (line 4).

Algorithm 2: stop operation
Data: Robots that crashed r1 and r2, robot model L
Result: Stops one of the robots and resolves the

conflict.
1 [rstop, rgo]← Decide which robot to stop
2 steps shift ← Shift time back until rstop is not

occupying the conflicting node
3 Jwait ← Generate wait sequence using L.
4 Update Jrstop with Jwait

The push operation is based on the same operation from
the P&R algorithm, which is used for the movement of
agents even when there is no conflict. In the proposed
algorithm, only the part of the operation that is invoked when
the next node is occupied by an agent is considered, because
it is used for resolving conflicts only and not moving the
robots itself. The original push moves a robot only by one
node; thus the operation can be executed several times for a
single robot if the robots have a conflict on a long isthmus as
is illustrated in Fig. 4a with the red arrows. The new version
moves the agents arbitrarily far when moving on an isthmus
or when the closest nodes cannot be used for example if they
are occupied by finished robots (Fig. 5a).

The new push (Algorithm 3) decides first which robot
rpush will be pushed away and which robot rgo will continue
on its path (line 1). The robot to be pushed is the one with a
lower temporary priority, as it is less likely that the robot was
pushed recently and the higher-priority robot has more likely
a longer trajectory to travel through. In some situations, the
chosen robots cannot be pushed due to a direction of adjacent
edges, see, e.g., Fig. 5b. The other robot is selected in this
case.

Next, push finds the closest node to rpush that is not on
the path of rgo. List of nodes and edges that are on a path of



r3

r1

r4

r2

(a) The robot r2 cannot
be pushed to the clos-
est nodes, because those
are occupied by finished
robots r3 and r4 and must
be pushed to the top left
red node.

r2 r1

(b) It is impossible to push the robot
r1, because the only exiting edge
ends on a node occupied by the robot
r2, which is trying to push it. The
robot r2 must be pushed.

Fig. 5: Admissibility of the push operation.

rgo are thus created (lines 3 and 4). Moreover, a list of nodes
that are forbidden to expand during the search is determined.
First, the node where rgo is going to wait is added to the
node list to prevent robot rpush from being pushed through
this node and all nodes with finished robots are added since it
is not possible to move them (line 5). The path is then found
(line 7) using a modified version of Dijkstra’s algorithm [21]
that accounts for the blocked edges and nodes with forbidden
expansion. The state of the algorithm is shifted back until
the robot rpush does not occupy a node (line 8) and all its
future time steps are removed from its planned trajectory to
be later replaced with the push trajectory (line 9).

The trajectory is generated using the robot model, and
the reset flag is added to the last generated step (line 10).
The temporary priority of rpush is increased by rgo (line
13) to push other robots that might get into conflict with
rpush while being pushed. This way only a robot with a
very high priority would be able to push this robot back.
Priorities ensure that the non-finished robot with the highest
priority always moves towards its destination. When the
push is finished, the robot rpush resets its temporary priority
when the time step with the reset flag is encountered in the
Algorithm 1 (line 9).

As the push of rpush is executed on directed edges, moving
back to the original position using the same path might be
impossible. Instead, the algorithm generates a trajectory from
the last node of push path to the goal node of rpush (line
11) using replan. The trajectories are added together to form
a new trajectory of the robot rpush.

The algorithm stops rgo at the last visited node before the
conflict. First, we need to shift the time to a state where rgo is
at this node. However, the state was shifted back before thus
the state must be shifted by (steps shift − tback to node),
where tback to node is the number of steps from robot rgo
leaving the previous node before the state shift back (line 14).
This shift can be either forward or backward. Similarly to
stop, the operation generates the wait sequence Jwait for rgo
with a minimal wait of (steps shift− tback to node) steps to

ensure that rpush will get to the state of conflict. The special
idle flag is added to the last step of the wait (line 15). The
operation adds the Jwait sequence into the Jrgo trajectory
right after the current step (line 16) and the operation is
complete.

Algorithm 3: The push operation.
Data: Robots in conflict, robot model L, graph G
Result: Resolves conflict with push operation.

1 [rpush, rgo]← Decide which robot to let go and
which robot to push.

2 tback to node ← Number of steps from when rgo left
last node.

3 blocked nodes← Nodes in path of rgo.
4 blocked edges← Edges in path of rgo.
5 no expansion nodes← A node where rgo waits or

nodes with already finished robots.
6 np ← Last node that rpush occupied.
7 push path← Find a path to closest node to np with

respect of blocked nodes, blocked edges and
no expansion nodes on graph G.

8 [steps shift, tnow] ← Shift state back until rpush is
occupying a node.

9 Jrpush
← Jrpush

(j0, . . . , j(tnow)).
10 Jpush ← Generate trajectory using push path and L.
11 Jreplanned ← Generate trajectory from last node of

push path to goal node of rpush using replan.
12 Jrpush

← Jrpush
∪ Jpush ∪ Jreplanned.

13 temporary priority of rpush ← temporary priority of
rpush+ temporary priority of rgo.

14 Shift state by (steps shift− tback to node).
15 Jwait ← Generate wait sequence with at least

(tback to node − steps shift).
16 Update Jrgo with Jwait.

The replan operation (Algorithm 4) is used when one of
the robots in conflict is finished (Fig. 6). The finished robots
cannot be moved, thus push and stop would not help in this
case. The operation plans a new trajectory of the robot rx
from its current node nc to the goal node ng while avoiding
all nodes that the finished robots occupy. The property of a
graph that by removing any storage location nodes, the graph
will not become disconnected, is considered.

At first, the algorithm identifies which of the robots is
not finished (line 1) to select the one that needs to be
replanned. All nodes occupied by finished robots are added
to the list nodes to avoid (line 2) to ensure that they are
avoided. The solution state is shifted back until the robot rx
is not occupying the conflicting node (line 3). The operation
removes the planned trajectory of the robot rx from the
current state to replace it further with the replanned one
(line 6). The algorithm then calculates the shortest path
from the currently occupied node nc to the goal node ng

using A* algorithm (line 7) assuming that all the nodes from
nodes to avoid are set as unreachable. A trajectory for rx
describing its movement from node nc to its goal node ng



r2

r1

Fig. 6: Both operations stop and push would fail, because
the robot r1 is finished and cannot be moved. This situation
requires the replan operation.

is generated (line 8) and added to the planned trajectory Jrx
(line 9).

Note that replan operation removed a part of the planned
trajectory and replaced it with a new one. If rx was perform-
ing the push operation, the reset flag for resetting the priority
would be deleted. The algorithm resets the priority (line 10)
to avoid this loss because the change of the trajectory causes
the robot is no longer performing the push operation.

Algorithm 4: replan operation
Data: Robots in conflict, robot model L, graph G
Result: A new trajectory Jrx of a non-finished robot

rx.
1 rx ← The robot that is not finished.
2 nodes to avoid← Nodes occupied by finished

robots.
3 tnow ← Shift state back until rx is not occupying the

current node.
4 nc ← Node occupied by rx.
5 ng ← Goal node of rx.
6 Jrx ← Jrx(j0, . . . , j(tnow)).
7 P ← Calculate the shortest path from nc to ng

avoiding nodes in nodes to avoid.
8 Jreplan ← Generate trajectory using P and L.
9 Jrx ← Jrx ∪ Jreplan

10 temporary priority of rx ← main priority of rx.

D. Algorithm limitations

As already mentioned, limitations of the proposed algo-
rithm are caused by simplifications made and specialization
on the real environment. Specifically, the directed graph must
be connected and biconnected at prospective goal nodes
except maintenance nodes.

Another limitation is the maximal number of robots in a
given map. This number should be theoretically the same as
in the P&R algorithm, i.e., n − 1 where n is the number
of robots. Because no robot can finish on road nodes, the
number of robots is thus n−nr, where nr is the number of
road nodes. In the warehouse used during development and
testing of the algorithm, the rate of robots to nodes (ignoring

pick-station, isthmuses leading to and from pick-stations and
queue parts of graph) is approximately 0.52.

E. Algorithm advantages

The calculation of trajectories for a high number of robots
in a big warehouse is computationally demanding. Also, the
goals for robots do not have to be known in advance, and
some might be added later on. The proposed algorithm solves
both of these issues as discusses below.

The algorithm moves the state forward in time, and only
when any conflict occurs, it moves the state back in time.
For one operation, the time the state is moved back is the
maximal time of the conflicted robots moving from the last
node on the edge. However, if the operation causes another
conflict before the operation is finished (e.g., stopping one
robot causes a new conflict with another robot), the state
could be moved back again. The amount of back-shifting
is not limited, but long shifts are highly improbable. The
algorithm can start running, buffer a solution for some time
and then the robots can start moving in real time with s low
risk of the solution state moving behind the real state of the
warehouse. Implementation of the safety stop of the system
when the state of the robots gets close to the state of the
solution should be, of course, implemented. The buffering
time must be decided by numerous simulations, and the
available computational power must also be considered. The
discussion about practical values of the buffering time is
made in Section III.

The algorithm allows for tasks being added during the
calculation. The state of the solution must be moved back to
the time when the new robot is supposed to start moving
and the robot is simply added with its shortest path to
its destination. It might cause new conflicts in previously
calculated trajectories, but for conflicts that it does not affect,
there is no need for recalculation, while the trajectories
of these robots are already collision-free. One issue that
might occur is that due to the impact of the newly added
robot, some robots will perform operations that are no longer
needed. For example, the newly added robot r1 affects
another robot r2 that in the previous calculation would get
into conflict with the robot r3. In the previous iteration, the
robot r2 pushed the robot r3, and this trajectory was added
to its trajectory. In the next iteration, the robot r1 stops
the robot r2, and it will not get into conflict with the r3,
but while the robot r3 has the trajectory of the operation
already calculated, it will still perform it. This might lead to
unnecessary movements and delays.

III. EXPERIMENTS

The goal of the experiments is to assess the usability of
the proposed algorithm in practice. The experiments were
performed on a computer with an Intel i7-4771 processor
and 8GB RAM running Linux Mint.

The warehouse map displayed in Fig. 1 was used for
experiments. A task for 50 robots (22 carrying a rack and
28 without it) with various distances between start and
goal nodes was created randomly. Maintenance and storage



0 1000 2000 3000 4000

Algorithm iterations [-]

10
0

10
2

10
4

10
6

ti
m

e
 [
m

s
]

State time

Real-time

(a) Real-time during the state time of the
algorithm during the calculation of the se-
quential approach.

10 20 30 40 50

Number of robots [-]

0

50

100

150

N
u

m
b

e
r 

o
f 

c
o

n
fl
ic

ts
 [

-] Standard approach

Sequential approach

(b) The number of conflicts for the sequen-
tial and standard approaches.

10 20 30 40 50

Number of robots [-]

10
0

10
2

10
4

10
6

ti
m

e
 [

m
s
]

Standard approach

Sequential approach

(c) Calculation time of the sequential and
standard approaches..

location nodes were used as start and goal positions. The
algorithm was executed with 2 to 50 robots to study the
influence of the growing number of robots on the algorithm
performance.

A. Execution delay

One of the main advantages of the algorithm is discussed
in Section II-E: the algorithm moves forward in time, and
calculated trajectories can be performed before the algorithm
finishes. As the algorithm can move back in time, the risk of
the execution being before the calculation must be addressed.

The algorithm was executed with 50 robots and the time
of the solution state was compared to real-time. In Fig. 7a
one can see that the difference between state time and real-
time grows (logarithmic scale was used for easier visual
comparison); thus it is highly unlikely that the lines ever
cross. In this case, the buffering time can be very small; thus
the robots can start moving towards their goals instantly.

The more difficult the problem is (bigger warehouse, more
robots), the higher is the risk of the execution catching
up with the algorithm. This can be overcome with more
computational resources and reasonable buffering time. One
can also assume that not all robots will move at the same
time. Some robots might be charging at the maintenance
stations while others might be waiting in queue for a picking
station.

B. Two approaches comparison

The ability of the algorithm to add robots to the plan
during the calculation was also discussed in Section II-
E. The extreme case of adding robots one by one to the
beginning of the solution was tested to assess the impact on
the results. The algorithm assumes that k robots have already
their plans and then a plan for the k+1th robot is calculated.
This approach is named sequential, while the approach of
assuming all n robots at once is named standard.

The number of conflicts to be solved for each amount
of robots from 2 to 50 for both approaches was recorded
and compared first. One can see in Fig. 7b that the sum of
conflicts for the sequential approach is comparable with the
standard approach for the amount of robots ranging from 2 to
39. This shows that the newly added robots in this task only

cause a few new conflicts with the comparison with the full
calculation. With the growing number of robots, however, the
probability of long parts of the trajectories of robots being
replanned due to the addition of new robots is growing. The
conflicts that have been solved previously might be thrown
away with the trajectory, and thus new conflicts must be
calculated. This result also confirms the expected property
that the number of conflicts grows exponentially with the
number of robots.

Perhaps the most significant impact of the standard ap-
proach is on the solution time. Running the algorithm multi-
ple times through the whole plan demands significantly more
computational resources. In each run, fewer resources are
needed since most conflicts were already solved. However,
the cumulative value of calculation time for the sequential
approach is always significantly higher as seen in Fig. 7c
(a logarithmic scale is used for better visualization). In less
extreme cases, adding a task during the calculation still
causes a delay. However, this is not as significant than the
recalculation of the whole solution.

For example, 40 robots start moving at the same time,
and the algorithm gets far in front of the real execution.
After a few seconds, when the algorithm is almost finished,
a task for a robot is added 2 seconds in advance to the real
execution. The algorithm will go back and use the already
calculated trajectories; thus only newly caused conflicts need
to be calculated again. Some extreme cases might occur; thus
it is very important to cautiously choose the optimal time
reserve when adding a task for a robot.

C. Solution quality

To measure the quality of generated trajectories, we
compute a theoretical lower bound as a sum the shortest
path length for each robot obtained by A* that ignores
all other robots in the assignment. The ratio of the sum
of trajectory steps for all robots provided by the proposed
algorithms in comparison to this bound is shown in Fig. 8.
This represents the effect of the operations on the trajectories
with an increasing number of robots. There are no conflicts
between the first 6 robots; thus their cumulative trajectory
length is the same as for the lowest threshold trajectories.
The cumulative trajectory length grows with the increasing



10 20 30 40 50

Number of robots [-]

0

5

10

15

20

25

E
x
te

n
s
io

n
 [

%
]

Fig. 8: Extension of the sum of trajectories lengths compared
to the sum of the lengths of the lower-bound trajectories.

number of conflicts. The figure is highly correlated with
Fig. 7b which represents the number of conflicts with the
increasing number of robots.

IV. CONCLUSION

A novel planning algorithm for coordination of a robotic
fleet in an automated warehouse based on a pebble motion
on a graph algorithm, Push and Rotate, is presented. The
algorithm allows a continuous movement of robots on their
trajectories instead of a discrete movement between nodes.
It also takes into consideration the rotation of the robots
and their different velocities. One of the main achievements
is that all the robots can move in parallel, which was not
possible with the original P&R. This is achieved by an
implemented system of priorities that assures that the robot
with the longest trajectory always moves towards its final
destination. Whenever the robots are involved in a push
operation, the accumulation of priorities overcomes problems
with deadlocks. The computational time for the solution that
has to be calculated before the result can be executed was
another challenge. The algorithm solves this issue inherently
by taking the shortest trajectories to destinations. The tra-
jectories are only modified during the calculation. Thus if
the algorithm is faster than real-time, the solution can be
executed before the calculation is finished. The algorithm
also allows adding robots during the calculation.

In future work, we want to study both the theoretical
and practical aspect of the algorithm more thoroughly. From
the theoretical point of view, the aim will be to prove
the completeness of the algorithm as well as to derive
bounds for the buffering time. Moreover, we want to perform
experiments in more challenging setups, i.e., scenarios in
larger maps and involving more robots. We are also preparing
experiments in a real environment.

REFERENCES

[1] B. DeWilde, A. Ter Mors, and C. Witteveen, “Push and Rotate:
A complete Multi-agent Pathfinding algorithm,” Journal of Artificial
Intelligence Research, vol. 51, pp. 443–492, 2014.

[2] J. Hopcroft, J. Schwartz, and M. Sharir, “On the Complexity of Motion
Planning for Multiple Independent Objects; PSPACE- Hardness of the
”Warehouseman’s Problem”,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, Dec. 1984.

[3] O. Goldreich, “Finding the Shortest Move-Sequence in the Graph-
Generalized 15-Puzzle Is NP-Hard,” in Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and
Computation - In Collaboration with Lidor Avigad, Mihir Bellare,
Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid
Levin, Noam Nisan, Dana Ron,, ser. Lecture Notes in Computer
Science, O. Goldreich, Ed. Springer, 2011, vol. 6650, pp. 1–5.

[4] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[5] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” Technical Report (Computer Science Deptartment,
Iowa State University), vol. 11, 1998.

[6] M. R. Ryan, “Exploiting Subgraph Structure in Multi-Robot Path
Planning,” Journal of Artificial Intelligence Research, pp. 497–542,
2008.

[7] J. van den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” in Robotics: Science and Systems V, University of Washington,
Seattle, USA, June 28 - July 1, 2009, J. Trinkle, Y. Matsuoka, and
J. A. Castellanos, Eds. The {MIT} Press, 2009.

[8] A. Geramifard, P. Chubak, and V. Bulitko, “Biased Cost Pathfinding.”
in AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2006, pp. 112–114.

[9] M. Peasgood, C. M. Clark, and J. McPhee, “A Complete and Scal-
able Strategy for Coordinating Multiple Robots Within Roadmaps,”
Robotics, IEEE Transactions on, vol. 24, no. 2, pp. 283–292, Apr.
2008.

[10] K.-H. C. Wang and A. Botea, “Fast and Memory-Efficient Multi-Agent
Pathfinding,” in ICAPS, 2008, pp. 380–387.

[11] S. LaValle and S. Hutchinson, “Optimal motion planning for multiple
robots having independent goals,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 6, pp. 912–925, 1998.

[12] T. Simeon, S. Leroy, and J.-P. Lauumond, “Path coordination for
multiple mobile robots: a resolution-complete algorithm,” IEEE Trans-
actions on Robotics and Automation, vol. 18, no. 1, pp. 42–49, 2002.

[13] J. van den Berg and M. Overmars, “Prioritized motion planning
for multiple robots,” in 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2005, pp. 430–435.

[14] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules
for prioritized path planning of multi-robot systems,” in Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, 2001, pp. 271 – 276 vol.1.

[15] M. Cap, P. Novak, A. Kleiner, M. Selecky, and M. Pechoucek,
“Prioritized Planning Algorithms for Trajectory Coordination of Mul-
tiple Mobile Robots,” IEEE Transactions on Automation Science and
Engineering, vol. Special Is, 2015.

[16] K. Chiew, “Scheduling and routing of autonomous moving objects on
a mesh topology,” Operational Research, vol. 12, no. 3, pp. 385–397,
Nov. 2010.

[17] K. C. Wang and A. Botea, “MAPP: a Scalable Multi-Agent Path
Planning Algorithm with Tractability and Completeness Guarantees,”
Journal of Artificial Intelligence Research, pp. 55–90, 2011.

[18] D. Silver, “Cooperative Pathfinding.” in The 1st conference on Ar-
tificial Intelligence and Interactive Digital Entertainment, 2005, pp.
117–122.

[19] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-
robot path planning,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, Sep. 2011, pp. 3268–3275.

[20] K. Beevers, “Boost graph library: A* heuristic search - 1.64.0,” http:
//www.boost.org/doc/libs/1 64 0/libs/graph/doc/astar search.html, ac-
cessed: May 9, 2017.

[21] J. Siek. (2017) Dijkstra’s shortest paths. [Online]. Avail-
able: http://www.boost.org/doc/libs/1 60 0/libs/graph/doc/dijkstra

shortest paths.html


