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Abstract: This paper deals with the problem of autonomous navigation of a mobile robot in an unknown
2D environment to fully explore the environment as efficiently as possible. We assume a terrestrial mobile
robot equipped with a ranging sensor with a limited range and 360◦ field of view. The key part of the
exploration process is formulated as the d-Watchman Route Problem which consists of two coupled
tasks—candidate goals generation and finding an optimal path through a subset of goals—which are
solved in each exploration step. The latter has been defined as a constrained variant of the Generalized
Traveling Salesman Problem and solved using an evolutionary algorithm. An evolutionary algorithm
that uses an indirect representation and the nearest neighbor based constructive procedure was proposed
to solve this problem. Individuals evolved in this evolutionary algorithm do not directly code the
solutions to the problem. Instead, they represent sequences of instructions to construct a feasible solution.
The problems with efficiently generating feasible solutions typically arising when applying traditional
evolutionary algorithms to constrained optimization problems are eliminated this way. The proposed
exploration framework was evaluated in a simulated environment on three maps and the time needed to
explore the whole environment was compared to state-of-the-art exploration methods. Experimental
results show that our method outperforms the compared ones in environments with a low density of
obstacles by up to 12.5%, while it is slightly worse in office-like environments by 4.5% at maximum.
The framework has also been deployed on a real robot to demonstrate the applicability of the proposed
solution with real hardware.

Keywords: path planning; routing; autonomous navigation; generalized traveling salesman problem;
evolutionary algorithm

1. Introduction

Autonomous mobile robots solve complex tasks in many application areas nowadays. One of the
most challenging scenarios is search and rescue missions in disaster areas involving large urban areas after
an earthquake, a terrorist attack, or a burning house [1–3]. Other examples include humanitarian demining,
Antarctic, underwater, and space exploration [4–7], or navigation in crowded environments [8,9]. The
map of the working environment in the majority of these scenarios is not known in advance, or the
environment dynamically changes significantly so that a priori knowledge is not useful. For the robot to
behave effectively, it has to build a model of the environment from scratch during the mission, determine
its next goal, and navigate to it. This iterative process is called exploration, and it is terminated whenever
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the complete map is built. A natural condition is to optimize the effort needed to perform the exploration,
e.g., to minimize the exploration time or the length of the traveled trajectory.

A determination of a next robot goal in each exploration iteration (one exploration step) is called
an exploration strategy, which typically consists of three steps. A set of perspective goal candidates is
generated first, followed by evaluation of the candidates based on the actual robot position, the current
knowledge of the environment, and a selected optimization criterion (e.g., cost). The candidate with the
best cost is selected as the next goal finally.

A realization of the exploration strategy is the key part of the exploration process as it influences
exploration quality significantly—an inappropriate determination of the next goal to be visited may lead
to revisiting of already explored places which increases the time needed to finish exploration. Therefore,
the design of an efficient strategy that determines goals aiming to perform exploration with minimal effort
plays an important role.

The exploration problem, and particularly exploration strategies, have been intensively studied in the
last twenty years. The frontier-based strategy introduced in a seminal work of Yamauchi [10] considers
all points on the frontier, which is defined as a boundary between a free and an unexplored space and
navigates the robot to the nearest one. This approach has become very popular as it is simple to implement
and it produces reasonable trajectories [11,12]. Several improvements were suggested. Holz et al. [10]
segment an already known map, detect rooms in office-like environments and reduce the number of
multiple visits of a room by a full exploration of the room once it is entered. Direction-based selection is
presented in [13], where the leftmost candidate with respect to the robot position and orientation which is
within the current sensing region is selected. If no such candidate exists, the algorithm picks the closest one.

While the approaches mentioned above use a single objective to evaluate candidates, another combine
multiple criteria. For example, Gonzalez-Banos and Latombe in [14] mix an effort needed to reach
a candidate within an expected area potentially visible from it. Similarly, expected information gain
expressed as a change of entropy after performing the action is weighted with the distance to the candidate
(distance cost) in [15,16], while information gain measured according to the expected posterior map
uncertainty is used in [17]. Makarenko et al. [18] furthermore introduce the localization utility, which gives
preference to places where the robot position can be accurately determined. Specification of a mixture
function and its parameters is a crucial bottleneck of these approaches, and these are typically set up ad hoc.
Basilico and Amigoni [19,20] therefore introduce a multi-criteria decision-making framework reflecting
dependency on particular criteria. A technique that learns an observation model of the world by finding
paths with high information content together with several weight functions evaluating goal candidates is
introduced in [21]. An exploration framework based on the use of multiple Rapidly-exploring Random
Trees has been introduced recently [22]. The authors define a revenue of a goal as a weighted sum of the
information gained from exploring the goal and the navigation cost. Moreover, a hysteresis gain is added
to prefer goals in robot’s vicinity. A similar approach is proposed in [23], where a steering angle to the
goal is integrated into the utility.

Contrary to the strategies mentioned above, which greedily select the candidate with best immediate
cost, Tovar et al. [24] describe an approach where several exploration steps ahead are also considered. The
algorithm goes through a tree structure representing all possible paths the robot may pursue in the given
number of steps and searches for the best one employing the branch and bound algorithm. Although
the experimental methodology is not clear, the results show that a greedy approach outperforms the
proposed one. Moreover, the search state space is large and therefore there is a trade-off between the
quality of the solution found and the time complexity and choice has to be made depending on the defined
pruning depth.

An interesting research stream is a utilization of reinforcement learning. Zhu et al. [25]
introduce Reinforcement Learning supervised Bayesian Optimization based on deep neural networks.
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Similarly, Chen et al. [26] propose a learning-based approach and investigate different policy architectures,
reward functions, and training paradigms.

A more sophisticated approach to next goal determination is presented in our previous paper [27]. It
is based on the observation that the robot should pass or go nearby all the goal candidates and defines
the goal selection problem as the Traveling Salesman Problem (TSP). That is, the cost of a candidate q is
a minimal length of the path starting at the current robot position, continuing to the candidate q at first
and then to all other candidates. It was shown that the introduced cost could reduce the exploration time
significantly and leads to more feasible trajectories. The key part of this approach lies in the generation
of goal candidates guaranteeing that all frontiers will be explored after visiting all the goal candidates.
An ad hoc procedure is employed, which clusters frontier points by the k-means algorithm and generates
candidates as centers of the clusters found. As k-means considers mutual distances of candidates only
and does not take their visibility into account, it can rarely happen that frontiers are not fully covered due
to occlusions (This does not influence completeness of the algorithm as it finishes when no unexplored
area remains, and uncovered frontiers will be covered in the next exploration steps when occlusions
disappear. On the other hand, the quality of the found solution can be degraded.). Moreover, the way
how goal candidates are determined has no theoretical relation to the aim of exploration, i.e., traversing all
the candidates does not lead to the shortest possible path that explores all frontiers. A similar approach
was then used by Oßwald et al. [28], who run a TSP solver on a priori user-defined topological map.
The authors, in consensus with our results, experimentally demonstrated that this method significantly
reduces the exploration time.

Faigl and Kulich [29] formulate candidates’ generation as a variant of the Art Gallery Problem with
limited visibility, which aims to find a minimal number of locations covering all frontiers. The proposed
iterative deterministic procedure called Complete Coverage follows the idea of a generation of samples
covering free curves proposed by Gonzalez-Banos and Latombe [14] and guarantees full coverage of
frontiers. Nevertheless, candidates generation and goal selection are still independent processes, i.e.,
candidates are not generated with respect to the cost of a path visiting all the candidates.

To the best of our knowledge, the only attempt to join these two processes into a single procedure
is presented in Faigl et al. [30], where the goal selection task is formulated as the Traveling Salesmen
Problem with Neighborhoods and a two-layered competitive neural network with a variable size to solve
the problem is proposed. The presented results show that the approach is valid and it provides good
results for open-space environments and longer visibility ranges and for office-like environments and
small visibility ranges. On the other hand, the approach is very computationally demanding, which limits
its deployment in real applications.

The research presented in this paper continues in the direction outlined in our previous works
as it introduces an integrated solution to goal candidates’ generation and goal selection. Novelty and
contribution of the paper stand mainly in the following:

• We formulate the objective of the integrated approach to candidates generation and goal selection as
the d-Watchman Route Problem, which enables a theoretically sound interpretation of the integrated
approach to the goal determination problem. Our solution to the problem then leads to a definition
of the objective of a goal selection itself as a variant of the Generalized Traveling Salesman Problem
(GTSP).

• The introduced GTSP variant involves additional constraints to the original GTSP, which renders
standard GTSP solvers inapplicable here. A novel evolutionary algorithm taking into account the
added constraints is introduced. It uses an indirect representation and an extended nearest neighbor
constructive procedure which circumvent the candidate solutions feasibility issue encountered when
using traditional evolutionary algorithms with direct encodings.
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• A novel approach for generating nodes/vertices for GTSP is presented as a mixture of the techniques
for goal candidates generation mentioned above.

• The whole exploration framework is evaluated in a simulated environment and compared to the
state-of-the-art methods. Moreover, we implemented the framework on a real robot to show that the
proposed strategy is applicable in real conditions.

The fundamental single-robot exploration in a 2D environment, which is the main interest of the
paper, has several extensions. One of these is the multi-robot case in which coordination of multiple robots
is studied. Several goal selection strategies for multi-robot coordination based on different principles were
introduced by many authors. A Markov process to model exploration using the transition probabilities to
consider environment characteristics is proposed in [31], while a greedy approach is introduced in [32]
and bio-inspired goal selection using a hybrid pheromone and anti-pheromone signaling mechanism
is presented in [33]. A goal selection formulated as a multi-vehicle variant of the Travelling Salesman
Problem is presented in [34], while several exploration strategies are compared in [29].

The previously mentioned exploration approaches assume that robot position is known, either
provided by GPS or some SLAM (Simultaneous Localization and Mapping) algorithm. One of the first
attempts to deal with localization uncertainty is presented in [35]. After that, several approaches employing
Bayes filter were proposed [24,36,37]. With the increasing popularity of aerial robots and achievements in
3D sensing, exploration in three dimensions has been also studied (see [37–40]).

The rest of the paper is organized as follows. The problem definition is presented in Section 2. The
proposed exploration framework is described in Section 3. The evolutionary algorithm designed for the
constrained variant of the Generalized Traveling Salesman Problem and employed for goal determination
is introduced in Section 4 and the experimental evaluation of the method is presented in Section 5. Finally,
concluding remarks and future directions are summarized in 6.

2. Problem Definition

Assume a fully localized autonomous mobile robot equipped with a ranging sensor with a fixed,
limited range (e.g., a laser range-finder) and 360◦ field of view operating in an unknown flat environment.
Exploration is defined as the process in which the robot is navigated with the aim to build a map of
the surrounding space to collect information about this space. The map is built incrementally as sensor
measurements are gathered and it serves as a model of the environment for further exploration steps.

The whole exploration process is summarized in Figure 1. The algorithm consists of several steps
that are repeated until no unexplored area remains. We assume that the environment is bounded.
The exploration process is thus finished when there is no remaining unexplored area accessible to the robot
(step 1). Accessibility is an essential condition as interiors of obstacles are inaccessible and thus remain
unexplored.

The process starts with reading actual sensory information (step 2). The map is updated after some
data processing and noise filtering (step 3). New goal candidates are determined afterward (step 4) and a
next goal for the robot is assigned using a defined cost function (step 5). The shortest path from the robot’s
current position to the goal is found next (step 6) and the robot is navigated along the path (step 7).

While steps 2,3,6, and 7 belong to fundamental robotic tasks and many solutions to these already
exist, the key part heavily influencing efficiency of the exploration process is the next goal assignment
problem (step 5), formally defined as follows:

Given a current map M ⊂ R2, a robot position p ∈ M, and n goal candidates located at positions
G = {g1, . . . , gn} ⊂ M. The problem is to determine a goal g ∈ G that minimizes the total required time
(or the traveled distance) needed to explore the whole environment.
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Goal assignment together with the determination of goal candidates in step 4 is called exploration
strategy. More formally, exploration strategy aims to find a policy π : M ×M→ M, whereM is a set of
all possible maps and M ∈ M is a map. Given the robot position p ∈ M and the map M ∈ M, the policy
determines the next goal g∗ ∈ M so that the following cost is minimized:

π = arg min
a

Ta−1

∑
t=0

cost(pa
t , pa

t+1). (1)

Ta is the time needed to explore the whole environment and pa
t+1 is robot position at time t + 1 when

the policy a is followed. cost(x, y) is a cost of movement from x to y. Notice that, if cost(x, y) is set to
1 ∀x, y, then time is minimized, while setting cost(x, y) as the distance of a path from x to y leads to
optimization of a total travelled distance. Similarly to the exploration literature, we assume that a robot
moves with a constant velocity and thus traveled distance linearly depends on a total traveling time so
these two can be interchanged.

Figure 1. The exploration process.

Determination of the optimal policy is not possible in general because cost and Ta cannot be exactly
computed without knowledge of a structure of the unexplored environment. The aim is thus to find a
strategy that leads to an exploration of the whole environment in the shortest possible time.

The objective of the exploration strategy is illustrated in Figure 2. Goal candidates (blue points) are
generated on the border of an already explored area (white) and an unexplored space (grey) or in its
vicinity. The goal assignment then selects the candidate minimizing some predefined penalty function as
the next goal to which the robot is navigated (the red arrow points to the chosen goal). A typical penalty
function is, for example, distance, i.e., the candidate nearest to the robot is selected.
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Figure 2. Illustration of the exploration strategy objective.

Realization of the particular steps of the exploration problem, especially the proposed exploration
strategy, is detailed in Section 3.

Note that it is inefficient to invoke goal determination after the whole path is traversed and the current
goal is reached. The experimental evaluation made by Amigoni et al. [41] indicates that it is better to run
this decision-making process continuously, at some fixed frequency. The authors show that increasing
decision frequency generally increases performance, but when the frequency is too high, performance
degrades due to increased computational effort. Moreover, higher frequencies lead to oscillations of
a robot’s movement causing longer trajectories and exploration time. Best results in their paper were
achieved with the frequency of 0.6 Hz, while the authors of [42] use the frequency of 0.25 Hz.

The exploration algorithm can be implemented in two threads: the first one communicating with the
robot hardware and containing sensor processing, map building, and robot control with high frequency
of units or tens of Hz and the decision-making process incorporating goal candidates generation, goal
selection and path planning in the second one, which is triggered with a lower frequency.

3. Exploration Framework

The proposed exploration framework described in Algorithm 1 is derived from Yamauchi’s frontier
based approach [10]. The approach employs an occupancy grid [43] for map representation, which divides
the working space into small rectangular cells. Each cell stores information about the corresponding piece
of the environment in the form of a probabilistic estimate of its state, see Figure 4. Assuming that the map
is static and individual cells are independent, a cell can be updated using a Bayes rule as described in [43]:

Bel(m[xy]
t ) = ηp(zt|m[xy]

t )Bel(m[xy]
t−1),

where η is a normalization constant ensuring that probabilities of all possible states of m[xy]
t sum to 1,

p(zt|m[xy]
t ) is a sensor model, and Bel(m[xy]

t−1) is the current believe in the state of m[xy] determined in the

previous step. No a priori information about the environment is provided, therefore, Bel(m[xy]
0 ) is set to 1

2
for all cells.

A precision of contemporary ranging sensors is in order of centimeters, which is lower than or
equal to the size of a grid cell. Therefore, a simple sensor model is used: p(zt|C) = O for the grid cell
C corresponding to the sensor measurement, while p(zt|m[xy]) = E for cells m[xy] lying on an abscissa
between the current robot position S and C, see Figure 3. For a simulated or ideal sensor, we set O = 1,
and E = 0. For real sensors, where a fusion of measurements during time suppresses an influence of
sensor noise, the values are set closer to 1

2 , e.g., O = 0.3, and E = 0.7.
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Figure 3. Sensor model. The robot (the red cell) measures an obstacle at the blue cell. The numbers in the
cells represent sensor model values.

Occupancy grid cells are consequently segmented into three categories by application of two
thresholds on their probability values: free (represented by a white color in Figure 4), occupied (black), and
unexplored (light gray). The occupied cells are inflated by Minkowski sum (the dark gray areas in Figure 4)
enabling to plan non-colliding paths for a circular-shaped robot (the robot does not collide with obstacles
if its center lies outside inflated areas). The frontier based approach detects frontier cells (represented by a
brown color in Figure 4), i.e., the reachable free grid cells that are adjacent with at least one cell that has
not been explored yet (line 2). The frontier is a continuous set of frontier cells such that each frontier cell is
a member of exactly one frontier.

Given determined frontiers, the exploration strategy determines a next goal the robot is navigated to
as detailed in Section 3.1. The shortest path to this goal is determined by application of some standard
planning algorithm like Dijkstra’, A*, Voronoi Diagram or wave-front propagation techniques like Distance
Transform [44]. Finally, navigation of the robot to the goal is realized by a local collision avoidance
algorithm, e.g., Smooth Nearness-Diagram Navigation [45].

Figure 4. An exploration step: the robot (the green circle) selects one of the goal candidates (the blue dots;
note that two different hues are used to visually distinguish overlapping dots.) as a next goal and plans a
path to it (the pink curve). The green curve represents the already traversed trajectory.
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3.1. Proposed Exploration Strategy

While Yamauchi [10] greedily selects the frontier cell nearest to the current robot position, the proposed
approach is more sophisticated as depicted in Algorithm 1. The idea behind it is motivated by the fact that
it is not necessary to visit a frontier to explore a new area surrounding it. Instead, visiting places from
which all frontier cells are visible is sufficient. In fact, seeing slightly “behind” frontiers is requested to get
new information. We ensure this by generating possible goals closer to frontiers than at visibility range as
will be described below.

The realization of this idea leads to the formulation of next goal determination as a variant of the
Watchman Route Problem [46]: Given a connected domain P, the Watchman Route Problem is to compute
a shortest path or tour for a mobile guard that is required to see every point of P. In our case, seeing
only all frontier cells (i.e., boundary of a domain containing all free cells) assuming limited visibility is
requested only. Nevertheless, the problem, called as d-Watchman Route Problem, remains NP-hard [47]
and therefore its solution is split into a solution of two sub-problems:

• Generation: of a set of goal candidates so that union of their visibility regions (i.e., areas visible from
the particular goal candidates) contains all frontier cells, and

• Construction of a route connecting a subset of the goal candidates, whose visibility regions cover all
frontier cells and a path traversing all of them from a current robot position is minimal.

An example of a set of goal candidates is given in Figure 4, where the candidates are represented
as blue points. The purpose of the Generation phase is to construct a huge number of goal candidates
which is then used as an input to the Construction phase and which guarantees that a feasible solution is
constructed. This huge number of candidates, which is an order of magnitude higher than in [27], gives
big flexibility to the Construction algorithm to produce good solutions of the superior d-Watchman Route
Problem as it can choose from many possible candidates. Given an optimal solver in the Construction
phase, a solution found by it converges with an increasing number of candidates to an optimal solution of
the d-Watchman Route Problem.

3.1.1. Goal Candidates Generation

A naïve approach to the Generation problem takes all frontier cells as goal candidates. This leads
to hundreds or thousands of goal candidates and high computational burden of determination of a path
connecting them. Instead, the proposed algorithm generates an order of magnitude lower number of
candidates. It starts with segmentation of an occupancy grid (Algorithm 1, line 1) and detection of all
frontier cells (line 2). A connected string of frontier cells of each particular frontier is created then (line 3).
This can be done by one of boundary tracking algorithms known from image processing for extracting
boundaries for images. Namely, Moore-neighbor tracing algorithm [48] is employed in our case.

The ordering of frontier cells helps to efficiently determine goal candidates (lines 4–20), which is done
for each frontier contour F in two stages.

In the first stage, candidates are generated uniformly. Note that the shape of a frontier is not smooth
in general due to the discretization of the world into grid cells and sensory data noise. This often causes
occlusions of frontier cells lying in a visibility range. Therefore, candidates are not generated on the
frontier, but at the distance d from F, which is a fraction of a visibility range: F is inflated by a disk with
a radius d using Minkowski sum (line 7), a contour of the inflated frontier is detected by the boundary
tracking algorithm (line 8) and every k-th frontier cell of the contour is taken as a goal candidate (line 10).
Coverage, i.e., frontier cells visible from the candidate, is computed (lines 11–12) and subtracted from the
set of uncovered frontier cells (line 13), which is initially set to F (line 6).
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It can happen that a frontier is, due to occlusions, not fully covered by visibility regions of candidates
generated uniformly. Therefore, a dual sampling scheme is utilized to cover uncovered frontier cells: a
random not yet covered cell is selected from the frontier F (line 15), a set of free cells visible from it is
determined (line 16), and a goal candidate is generated randomly from these free cells (lines 16 and 17).
Finally, the set of uncovered frontier cells in updated in the same way as in the first stage (line 20). The
dual sampling is repeated until no uncovered frontier cell remains (line 14). Candidates generated from a
single frontier F form a cluster GF .

Algorithm 1: Proposed exploration strategy
Input: M – occupancy grid

δ – visibility range
r – current robot position

Output: g∗ – next goal

1

〈
M f ree, Munknown, Mempty

〉
← segmented M

2 E← frontier cells of M
3 F ← contours of E
4 foreach F ∈ F do
5 GF ← ∅ // goal generated by F

6 U ← F // uncovered frontier cells of F

7 I ← inflate F
8 T ← contours of I
9 foreach k-th g ∈ T do

10 GF ← GF ∪ {g}
11 V ← M f ree ∩ R(g), where

R(g) is a set of cells visible from g
12 gcoverage ← F ∩ R(g)
13 U ← U \ gcoverage

14 while U 6= ∅ do
15 s← random cell from U
16 V ← M f ree ∩ R(s), where

R(s) is a set of cells visible from s
17 g← random cell from V
18 GF ← GF ∪ {g}
19 gcoverage ← F ∩ R(g)
20 U ← U \ gcoverage

21 G ← G ∪GF

22 D ← distance matrix of goals in G
23 tour ← f (G, D)

24 g∗ ← second node of tour
25 return g∗

3.1.2. Route Construction

The Route construction phase starts with the computation of a distance matrix of all generated goal
candidates by running Dijkstra’s algorithm [49] on an adjacency graph of the free cells for each candidate
(line 22). Note that utilization of all-pairs shortest path algorithms (e.g., Johnson’s [50] with O(VE log V),
where V is a number of vertices and E is a number of edges) is not effective, as these compute distances
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among all free cells, while complexity of K runs of Dijkstra’s algorithm is O(KE + KV log V), where a
number of goal candidates K << N.

Finally, the determined set of clusters, each containing a set of corresponding goals with their
coverages, and the distance matrix of the goals are used to find the best candidate as the next goal to move
to in the next iteration of the exploration process (line 23–25). The problem of finding such goal involves
the solution of an optimization problem of constructing a shortest possible tour starting from the current
robot position and leading through a subset of goals subject to the constraint that all frontier cells are
covered by the selected goals (line 23). The next goal g∗ is then determined as the second node (Note that
the first node of the tour is robot’s position.) of tour (line 24), which is returned (line 25).

The optimization problem at line 23 can be formulated as a variant of the GTSP where the formulation
of the general GTSP is: Given a set G of nodes partitioned into m non-empty clusters and a matrix D of
their mutual distances, the objective is to find a subset S of G so that (a) S contains exactly one node from
each cluster and (b) a tour connecting all nodes from S is the shortest possible. The GTSP is known to be
NP-hard as it reduces to the NP-hard TSP when each cluster consists of exactly one node.

Here, we solve a constrained variant of the GTSP where the final tour contains at least one node from
each cluster and must satisfy a constraint that all frontiers are fully covered by goals visited within the tour.
To formulate the problem formally, assume

• a set of m frontiers F = {Fi}m
i=1, where each frontier Fi is a set of frontier cells Fi = { f i

j},
• a set of n goal candidates G clustered into m clusters. Each cluster Gi = {gi

j}
ni
j=1 associated to a

frontier Fi is represented by ni candidate goals,
• coverage R(gi

j) ⊂ Fi for each gi
j,

• a current position r of the robot,
• a matrix D of mutual distances between all goal candidates.

The aim is to find a tour t such that

t = arg min
T

p−1

∑
k=0

D(gik
jk

, gik+1
jk+1

), (2)

where T is a set of all tours τ =
〈

gi0
j0

, gi1
j1

, gi2
j2

, . . . , g
ip
jp

〉
satisfying

gi0
j0
= r and (3)

n⋃
k=0

R(gik
jk
) =

m⋃
i=1

Fi (4)

We call this problem Generalized Travelling Salesman Problem with Coverage and denote it GTSPC.
A lot of attention has been paid by researchers to solve the GTSP. There are approaches transforming

the GTSP to the TSP and solving the related TSP [51,52]. Other approaches formulate the GTSP as an integer
linear program (ILP) and employ exact algorithms for solving the ILP [53–55]. Due to the NP-hardness of
the GTSP problem, many heuristic, metaheuristic and hybrid approaches have been developed in the past
decade as well. For example, a metaheuristic global search based on imperialist competitive algorithm
inspired by a socio-political scheme and hybridized with a local search procedure is introduced in [56]. El
Kraki et al. [57] present a simple heuristic that clusters input cities, finds their barycenters to determine an
order of the clusters and determines the best city of each cluster. [58] provides a survey of neighborhoods
and local search algorithms for the GTSP.
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A hybrid genetic algorithm with the random-key indirect representation that enforces only feasible
solutions created by genetic operators has been proposed in [59]. A memetic algorithm with a powerful
local search procedure making use of six different local search heuristics was proposed in [60]. Various
versions of Ant Optimization Algorithms were used to solve the GTSP as well [61–63].

In this work, we assume the GTSPC where the tour can contain one or more cities from each cluster.
This is implied by the constraint imposed on the selected subset of goal candidates that they must
completely cover all frontiers. All published approaches to the GTSP consider the unconstrained case,
where the tour contains exactly one city from each cluster. These approaches thus do not provide valid
solutions for the considered GTSPC and it is not possible to adapt them straightforwardly to this problem.
We, therefore, propose an evolutionary algorithm, described in the following section, to efficiently solve
the constrained variant of the GTSP–GTSPC.

4. Proposed Approach to Solve the GTSPC

The exploration strategy aims to determine a goal to which the robot will move next, which leads to
finding a shortest possible tour through a properly selected subset of goals as discussed in Section 3.1.1
(see lines 23–24 of Algorithm 1). We defined this optimization problem as GTSPC, i.e., the next goal is
the second node of a tour starting from the current position and minimizing Equation (2) while satisfying
Equations (3) and (4).

The proposed approach to solve GTSPC is based on the evolutionary algorithm with indirect
representation and extended nearest neighbor constructive procedure (IREANN), originally proposed
for a symmetric TSP [64]. IREANN is an evolutionary algorithm particularly suited for solving routing
and sequencing problems. When searching for a good solution to the routing problem, it directly exploits
the short or low-cost links. Section 4.1 describes the main idea behind IREANN and basic components of
the algorithm on an example of the TSP. The proposed adaptation of the algorithm to the GTSPC variant
considered in this work is introduced in Section 4.2.

4.1. Original IREANN Algorithm

IREANN can be considered an extension of the nearest neighbor (NN) constructive algorithm used
for solving the routing problems such as the TSP. The main idea is to explore a larger set of candidate
solutions than the NN algorithm while making use of the shortest links as much as possible.

The standard NN algorithm starts the tour in a randomly chosen working city, s. Then, it repeatedly
connects city s with its nearest neighbor v chosen from the set of available nodes at the moment A

v← arg min
a∈A

dist(s, a) (5)

and the city v becomes the current working city s for the next iteration. The process stops when all cities
have been visited. We can generate up to N different tours, where N is the number of cities considered,
and take the best tour as the final solution. This algorithm is easy to implement, quickly yields a short
tour, but it produces suboptimal tours very often due to its greedy nature. An example of such a case is
illustrated in Figure 5 with an optimal solution (Figure 5a) and two suboptimal solutions generated by the
NN algorithm started from node B (Figure 5b) and H (Figure 5c), respectively. Note that the algorithm
initialized in either of the ten starting nodes is not able to produce the optimal solution.

The NN algorithm can be extended so that in each step of the tour construction process multiple
choices will be considered for selecting the current working city, s. In particular, one city out of the set
of not yet fully connected cities is chosen to be linked within the developed solution using the nearest
neighbor heuristic. By the term fully connected node, we mean the node that already has two edges—the
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incoming and outgoing one—assigned. This way, multiple subtours can be developed simultaneously,
which are gradually connected together resulting in the final single tour. The order in which cities are
processed by such an extended nearest neighbor constructive procedure (ENN) determines the tour
generated. When the cities are presented to (ENN) procedure in the right order, an optimal solution can be
produced. This is illustrated in Figure 6 where the optimal solution is produced by processing cities in the
order AJCEIFBHGD.

(a) (b) (c)

Figure 5. Illustration of an ineffectiveness of the standard nearest neighbor constructive procedure on a
simple instance of the TSP. (a) shows an optimal solution; (b) shows a solution constructed by the nearest
neighbor when started from node B; (c) shows a solution constructed when the procedure starts from
node H.

(a) (b) (c)

Figure 6. Extended nearest neighbor constructive procedure applied to cities in the following order
AJCEIFBHGD. (a,b) show a partial solution after processing nodes {A, J} and {A, J, C, E, I, F}, respectively.
(c) shows the final solution. The last two nodes linked into the solution in the given stage of the construction
process are shown in blue.



Sensors 2019, 19, 1400 13 of 27

IREANN is an ordinary evolutionary algorithm using a fixed-length linear representation that exploits
the idea of the ENN procedure in the following way. Individuals evolved in the population do not represent
tours directly as particular sequences of cities. Instead, each individual represents an input sequence to
the ENN procedure called priority list that determines the order or priorities with which the cities will
be processed by the ENN procedure. An important aspect related to this indirect representation is that a
single tour can be represented by many different priority lists. This means there are multiple attractors to
which the evolutionary algorithm can converge. On the other hand, some tours, including the optimal
one, might get unreachable with the indirect representation. Nevertheless, any solution reachable by the
standard NN procedure is reachable with the ENN procedure as well.

IREANN algorithm. The pseudo-code of IREANN is shown in Algorithm 2. It starts with a random
initialization of the population of candidate priority lists (line 1). Then, each individual is evaluated (line 2),
i.e., a tour is constructed using the ENN procedure applied to its priority list (described in Algorithm 3)
and its length is used as the individual’s fitness value. After the population has been evaluated, the counter
of fitness function evaluations is set to the population size (line 3). Then, the algorithm runs until the
number of calculated fitness evaluations reaches the maximum number of fitness evaluations (lines 4–16).
The first parental individual is selected in each iteration using a tournament selection (line 5) and a new
individual is created using either crossover (lines 7–10) or mutation (lines 12–13) operator. When the
crossover operator is chosen with the crossover rate PC, the second parental individual is selected (line 3)
and the offspring produced undergoes the mutation operation (lines 9–10). The newly created individual
is evaluated and the worst individual in the population is replaced by it (line 16).

Algorithm 2: Evolutionary algorithm for the optimal tour generation problem.
Input: POPSIZE – population size

MAXEVALS – maximum number of fitness function evaluations
PC – crossover rate
PM – mutation rate

Output: tour – the shortest tour found

1 init(population)
2 evaluate(population)
3 evaluations← POPSIZE
4 while evaluations < MAXEVALS do
5 par1← select(population)
6 if rand < PC then
7 par2← select(population)
8 o f f spring← crossover(par1, par2)
9 if rand() < PM then

10 mutate(o f f spring)

11 else
12 o f f spring← par1
13 mutate(o f f spring)

14 evaluate(o f f spring)
15 replace(population, o f f spring)
16 evaluations← evaluations +1

17 tour ← getBest(population)
18 return tour
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In the end, the tour generated by the best-fit individual in the population is returned (line 18). Note
that the ultimate output of the algorithm, when used to solve the GTSPC, is the candidate goal to which
the robot is going to move in the next step of the environment exploration. Thus, just the first goal in the
tour of the best fit individual will be returned in the end.

IREANN evolutionary operators. The evolutionary algorithm uses the order-based crossover defined
in [65] and a simple point mutation. The crossover works so that a set of goals randomly chosen from the
priority list of the first parent are copied to the offspring into the same positions as they appear in the first
parent. Remaining positions are filled in with goals taken in the same order as they appear in the priority
list of the second parent.

The crossover is illustrated in Figure 7, where two priority lists parent1 = [7, 6, 8, 2, 1, 3, 5, 4] and
parent2 = [5, 4, 1, 3, 2, 8, 7, 6] are crossed over. First, a group of goals {6, 2, 3, 5} is inherited from parent1.
Then, the remaining positions of the offspring are filled in with goals {4, 1, 8, 7} while respecting their
relative order in parent2.

IREANN uses a simple point mutation operator that randomly chooses one city in the priority list
and moves it to an arbitrary position.

Figure 7. Order-based crossover operator.

4.2. IREANN Adaptation for GTSPC

This section describes modifications related to adaptation of the IREANN algorithm to the GTSPC,
namely the representation and the tour construction procedure making use of the ENN procedure and
taking into account the constraint that all frontiers are fully covered.

Representation. A candidate solution is a tour through a subset of candidate goals G′ ⊆ G such that
the union of visibility regions of goals g ∈ G′ covers all frontier cells. Generally, there might be multiple
subsets of goals that produce a feasible solution. Thus, the representation should cover all the possibilities.
Therefore, the representation used in this work is a priority list, i.e. the permutation, overall candidate goals
in the original set G. Note that, even though the priority list contains all candidate goals, the resulting tour
can be composed of just a subset of these goals, as described in the following paragraphs.

Tour construction procedure. For the sake of efficiency, the set of frontiers F is split into two sets—a
set FN of K frontiers nearest to the current position of the robot and a set FD of remaining distant
frontiers—which are treated differently. For each frontier in the set FD , a tour component C is constructed
using the standard nearest neighbor algorithm such that C consists of a minimal set of goals completely
covering the given frontier. The set of disjoint tour components, C, constitutes a so-called embryo, which is
created once before the evolutionary optimization starts. The tour components are immutable, only their
connection within the whole tour is subject to further optimization.

The embryo plus individual goals belonging to frontiers from FN are passed as the input to the
construction of the whole tour using the ENN procedure described in the next paragraph. Using the
embryo leads to the search space reduction and possibly increased efficiency of the evolutionary algorithm.

The idea behind this two-step construction strategy is that the optimal configuration of goals (i.e.,
their selection and interconnection) covering the frontiers close to the current robot position is crucial for
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the selection of the proper goal to move to in the next iteration of the exploration process. On the other
hand, sub-optimally connected goals belonging to frontiers far from the starting robot position have a
small impact on the next goal decision-making.

ENN procedure. The ENN procedure takes a priority list P and the initial set of tour components C as
input and produces a complete tour through the goals so that all frontier cells are visible from (or covered
by) at least one of the used goals. The procedure starts with the initialization of the set of uncovered
frontier cells with the set of all frontier cells of uncovered frontiers (line 1). The number of available
connections of each goal is set to 2 (line 2). The value of availConn[gi] indicates whether the goal gi is
already fully connected in the generated tour (i.e., availConn[gi] = 0) or it is partly connected with one link
and the other link is still available (i.e., availConn[gi] = 1) or it is not used in the generated tour yet (i.e.,
availConn[gi] = 2). Then, the algorithm iterates through lines 4–32 until a single tour has been constructed
that covers all frontiers’ cells. In each iteration i, the goal to be processed g is taken from the priority list P
(line 5). If g is not yet used in the partial solution and the set of frontier cells visible from g does not contain
any of the uncovered frontier cells, then it is skipped as it does not contribute to the overall coverage of
the solution (lines 7–8). Otherwise, g is used to extend the current partial solution in three possible ways:

1. The goal g is not connected in the solution yet. Its nearest available neighbor goal gnn is found, the
two goals g and gnn are connected, the set of uncovered frontier cells is updated accordingly and the
available connections of g and gnn are decremented (lines 9–14).

2. The goal g is already linked to one other goal. Its nearest available neighbor goal gnn is found, the two
goals g and gnn are connected and the available connections of g and gnn are updated (lines 15–19).
The set of uncovered frontier cells remains unchanged.

3. The goal g is already fully connected, i.e., it is linked to two other goals in one tour component Cg.
First, the nearest available neighbors startnn and endnn of the component’s boundary goals are found.
Then, the shorter link of the two possible links (start, startnn) and (end, endnn) is added to the solution
and the available connections of newly connected goals are updated (lines 20–32).

Note that the nearest available neighbor is such a goal that is either already connected within the
solution and has at least one connection available or is not used in the solution yet and can reduce the
number of uncovered frontier cells at least by one.

Figure 8 illustrates the three possible ways the partial solution can be extended. It shows a
single frontier and six candidate goals sampled for this frontier and assumes the priority list P =

[g1, g6, g4, g2, g3, g5] is used to construct a tour covering this frontier. A circle around each goal gi indicates
a visibility range of the goal and the portion of a frontier covered by the circle contains the set of frontier
cells covered by the goal R(g). Figure 8b depicts the partial solution obtained after the goals g1 and g6

have been processed by the ENN procedure. Both were added to the solution by applying lines 9–14 of
Algorithm 3. At that point, goal g4 is going to be processed by ENN procedure. It is not yet used in the
partial solution and it can still contribute to the overall coverage of the solution if added to it, so the goal
will be processed using lines 9–14 as well. Assuming that distance(g4, g5) is less than distance(g4, g2), goal
g5 is the nearest available neighbor of g4, resulting in partial solution in Figure 8c. The goal g3 was not
available since it does not contribute to the overall coverage of the constructed solution.
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Algorithm 3: Extended nearest neighbor constructive procedure for the feasible tour generation
problem.

Input: G = {g1, . . . , gn} – set of n goals
C – set of initial tour components, i.e. the embryo
FU – set of uncovered frontiers
D – n× n distance matrix
P – priority list
r – current robot position

Output: tour– tour through a subset of candidate goals

1 U← FU
2 init(availConn)
3 i← 0
4 while U 6= ∅ do
5 g← P[i]
6 i← i + 1
7 if availConn[g] = 2 and R(g) ∩U = ∅ then
8 continue

9 if availConn[g] = 2 then
10 gnn ← getNearestN(g)
11 U← U \ (R(g) ∩U)
12 connect(g, gnn)
13 decrement(availConn[g])
14 decrement(availConn[gnn ])

15 else if availConn[g] = 1 then
16 gnn ← getNearestN(g)
17 connect(g, gnn)
18 decrement(availConn[g])
19 decrement(availConn[gnn ])

20 else
21 Cg ← getComponent(g)
22 {start, end }← getBoundary(Cg)
23 startnn ← getNearestN(start)
24 endnn ← getNearestN(end)
25 if D[start, startnn ] < D[end, endnn ] then
26 connect(start, startnn)
27 decrement(availConn[start])
28 decrement(availConn[startnn ])

29 else
30 connect(end, endnn)
31 decrement(availConn[end])
32 decrement(availConn[endnn ])

33 oneopt(tour)
34 twoopt(tour)
35 return tour

The next goal in the priority list is g2, which is already partly connected in the solution.
However, it has one connection available still. Thus, its nearest available neighbor is found, i.e., goal g4,
and the two are connected resulting in the solution in Figure 8d. Theseactions correspond to lines 15–19.

The next goal in the priority list is g3. However, this goal is not in the solution yet, and it would not
contribute to the overall coverage of the constructed solution if it were added to. Thus, it is skipped.

The remaining goal, g5, is already fully connected in the solution and it will be processed according to
lines 20–32. As it cannot be connected itself to any other goal, the nearest neighbors of the boundary goals
g1 and g6 of the component Cg5 = [g1, g2, g4, g5, g6] will be found. Then, the shorter link leading from the
boundary goals will be added to the solution (not shown in Figure 8).

Figure 8e shows another way the frontier f can be covered if the priority list P = [g1, g6, g4, g2, g3, g5]

was used. This time, the goal g4 would be omitted.
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Once a single tour covering all frontier cells is constructed, the tour is further refined by one-opt and
two-opt heuristics (lines 33–34). These two refinement heuristics operate on a fixed set of goals and just
their order can be modified.

(a) (b) (c)

(d) (e)

Figure 8. An example with a single frontier, six candidate goals equally distant from the frontier and the
priority list P = [g1, g6, g4, g2, g3, g5]. (a) the scenario; (b,c) partial coverages of frontier f after applying
first two and three steps of the ENN procedure to goals g1, g6 and g4; (d) the complete coverage of frontier
f induced by processing of the goals in the order g1, g6, g4 and g2; (e) an alternative coverage of frontier
induced by processing of the goals in the order g1, g2, g6 and g5.

5. Experimental Evaluation

5.1. Simulations

Performance of the proposed evolutionary algorithm as a goal selection strategy in the exploration
framework was statistically evaluated and compared with three state-of-the-art approaches. The first one
is Yamauchi’s greedy approach (greedy) [10], probably the most popular and used strategy nowadays—see,
e.g., [66–68]. The second one is our previous strategy [27], which minimizes the cost over several steps.
As the number of steps corresponds to the number of candidates, we call the strategy Full Horizon
Planning (FHP). To the best of our knowledge, FHP is currently one of the best strategies which do not use
background knowledge. For example, although the recently published approach [28] benefits from a priori
known topological map of the environment, it produces similar results to FHP in similar environments in
comparison to greedy. The third method is an information-based strategy [22] that determines the cost of a
candidate as a weighted sum of the information gained from visiting the goal and the Euclidean distance
to the candidate. A hysteresis gain is added to prefer goals in robot’s vicinity. This method is further
referred to as UMARI.

The methods differ in the evaluation of goal candidates as well as in the generation of these. While
greedy selects the nearest cell among all frontiers cells, FHP clusters frontier cells using k-means, which
is also used in our implementation of UMARI. The proposed approach (EA) employs a two-stage sampling
process as described in Section 3.

The comparison follows Level-0 of the methodology presented in [44], which suggests studying
theoretical behavior of methods without the influence of sensor noise, localization imprecision,
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and inaccuracies of motion control. Therefore, we employ our robotic simulator, in which the complete
exploration framework with the above-mentioned strategies integrated was implemented in C++ except
the evolutionary algorithm itself, which was done in Java.

Three maps from Motion Planning Maps Dataset [69] scaled to 20 m × 20 m representing various
types of environments were chosen for comparison. The first one (empty) is a map without obstacles
giving a robot high flexibility in motion. The potholes map represents an unstructured space with about 20
small obstacles. Finally, jari-huge is a map of an administrative building with many rooms and corridors
between them.

A sensor with 360◦ field of view with various visibility ranges ρ ∈ {1.5, 2.0, 3.0, 5.0, 10.0} (in meters)
was used, while an occupancy grid with cell size 0.05× 0.05 m was chosen to represent the working
environment. Robot size was 0.1 m, the inflation radius was, d = 0.25 m, the distance for the uniform
sampling was set to 0.25 m, and every fourth cell was considered as a goal candidate (constant k in
Algorithm 1).

The evolutionary algorithm was run with the following configuration: population size = 200, maximal
number of fitness evaluations = 3000, crossover rate = 80%, mutation rate = 25%, number of nearest
frontiers K = 5, and tournament size = 3. For the UMARI strategy, the settings recommended by the authors
is used: λ = 3, hgain = 2, hrad = sensor range (see [22] and https://github.com/hasauino/rrt_exploration).

Fifty trials were run for each combination 〈map, range, method〉, which gives 2250 trials in total.
The obtained results for greedy, FHP and EA are statistically summarized in Table 1, where avg stands for the
time needed to explore the whole environment (exploration time Texp) averaged over all 50 runs, min and
max are minimal and maximal Texp over these runs and stdev stands for the standard deviation of Texp. Rgr

expresses a ratio of the average Texp obtained with the proposed method to the average Texp obtained with
the greedy one. Similarly, RFHP is a ratio of average Texp values of EA and FHP. A value of less than 100%
indicates the proposed approach is better than the respective compared one, and vice versa. Differences
between the average Texp values of the compared algorithms were evaluated using a two-sample t-test
with the significance level α = 0.01. The null hypothesis being the two data vectors are from populations
with equal means. Results of the statistical tests are presented in the last column of the table. A sign ‘+’
means the average value obtained with the proposed algorithm is significantly better than the one of the
compared algorithm. A sign ‘-’ indicates the opposite case. A situation when the two compared means are
statistically indifferent is indicated by the ‘=’ sign.

It can be seen that FHP and EA significantly outperform the greedy approach for the empty map as they
benefit from longer planning horizon allowing them to explore the space systematically. Moreover, EA
provides better results than FHP, especially for ρ = 3.0, where the difference is more than 22%. This is
because EA directs a robot to a distance ρ from obstacles contrary to FHP, where k-means generates goals to
be visited closer to obstacles—see Figure 9a.

https://github.com/hasauino/rrt_exploration
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Table 1. Comparison of the exploration strategies.

Map ρ Greedy FHP-Based EA-Based Rgr RFHP +/−
avg min max stdev avg min max stdev avg min max stdev % %

empty

1.5 2419.70 2171.00 2701.00 111.43 2241.90 2041.00 2436.00 89.45 2118.60 1911.00 2226.00 68.67 87.56 94.50 +/+
2.0 1924.90 1741.00 2186.00 82.77 1679.90 1441.00 1816.00 86.97 1524.70 1381.00 1621.00 45.78 79.21 90.76 +/+
3.0 1330.70 1101.00 1556.00 91.78 1050.40 966.00 1196.00 64.12 918.50 881.00 966.00 18.77 69.02 87.44 +/+
5.0 739.90 621.00 856.00 65.79 585.20 571.00 621.00 9.44 542.20 516.00 566.00 10.91 73.28 92.65 +/+

10.0 428.50 341.00 471.00 39.70 305.30 286.00 326.00 7.83 294.90 271.00 361.00 13.07 68.82 96.59 +/+

potholes

1.5 2604.80 2361.00 2886.00 125.88 2391.80 2171.00 2506.00 78.33 2172.50 2021.00 2311.00 69.24 83.40 90.83 +/+
2.0 2021.40 1846.00 2321.00 105.73 1816.40 1581.00 1931.00 73.48 1724.60 1606.00 1856.00 47.20 85.32 94.95 +/+
3.0 1293.60 1271.00 1461.00 36.65 1321.00 1141.00 1451.00 75.07 1259.20 1176.00 1346.00 42.91 97.34 95.32 +/+
5.0 1032.90 1011.00 1141.00 27.86 957.40 876.00 1056.00 34.70 911.90 856.00 951.00 23.20 88.29 95.25 +/+

10.0 951.30 741.00 1026.00 94.23 684.40 631.00 771.00 32.27 696.90 641.00 796.00 29.18 73.26 101.83 +/=

jari-huge

1.5 2703.70 2511.00 2916.00 69.50 2331.40 1831.00 2391.00 77.58 2392.80 2331.00 2461.00 26.66 88.50 102.63 +/−
2.0 2022.90 1841.00 2281.00 135.65 1776.40 1711.00 1841.00 27.51 1855.70 1826.00 1896.00 21.34 91.73 104.46 +/−
3.0 1370.00 1256.00 1521.00 93.48 1194.60 1136.00 1236.00 36.20 1190.20 1146.00 1251.00 30.61 86.88 99.63 +/=
5.0 1254.70 1166.00 1331.00 70.15 1055.10 986.00 1101.00 28.51 1079.60 1041.00 1101.00 15.05 86.04 102.32 +/−

10.0 1168.50 1136.00 1201.00 14.85 952.90 896.00 1001.00 22.56 973.30 926.00 1086.00 39.80 83.29 102.14 +/−
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(a) (b)
Figure 9. The best results found by EA (red) and FHP (green) on (a) empty with ρ = 3.0 m and (b) jari-huge
with ρ = 2.0 m.

The situation is similar for potholes, where greedy is outperformed by the sophisticated approaches,
although the difference is not as big as for empty. In addition, EA gives better results than FHP in all cases
except one.

Finally, EA performs better by approx. 8–15% than greedy for jari-huge. On the other hand, it is slightly
(up to 5%) outperformed by FHP due to the same reason that it is better than FHP for empty. Here, directing
the robot far from obstacles when going between neighboring rooms is contra-productive (see in Figure 9b).
Conversely, EA is more effective in the empty area in the middle.

The results for UMARI are presented in Table 2. The meaning of the symbols is the same as in Table 1
except Rgr, which expresses a ratio of the average Texp obtained with UMARI to the average Texp obtained
with greedy. Similarly, REA is a ratio of average Texp values of UMARI and EA. It can be seen that the
performance of UMARI is the worst in all cases even in comparison to greedy.

Table 2. Experimental results for UMARI.

Map ρ Greedy Rgr REA
avg min max stdev % %

empty

1.5 2766.21 2506.00 3066.00 132.46 114.32 130.57
2.0 2196.61 1971.00 2431.00 112.40 114.12 144.07
3.0 1596.71 1406.00 1816.00 101.32 119.99 173.84
5.0 1290.15 1136.00 1446.00 77.96 174.37 237.95

potholes

1.5 2711.93 1966.00 3026.00 268.21 104.11 124.83
2.0 2198.11 1451.00 2441.00 194.48 108.74 127.46
3.0 1495.38 436.00 2026.00 402.12 115.60 118.76
5.0 1429.27 471.00 1686.00 189.93 138.37 156.73

jari-huge

1.5 2845.89 2651.00 3061.00 91.46 105.26 118.94
2.0 2447.43 2191.00 2651.00 102.75 120.99 131.89
3.0 1738.65 1571.00 1866.00 65.00 126.91 146.08
5.0 1596.52 1511.00 1661.00 41.87 127.24 147.88
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An indirect comparison can also be done with recent (deep) learning-based strategies, as the
authors of these strategies present a comparison to the greedy approach. Chen et al. [26] show that
the greedy approach outperforms imitation learning, reinforcement techniques as well as Curiosity-based
Exploration [70] when localization error is below 3% (which is the case we are focused on). On the other
hand, their strategy performs better than greedy when localization error increases. Zhu et al. [25] present
the evaluation of their strategy based on Reinforcement Learning supervised Bayesian Optimization on
ten office plans (similar to the jari-huge map but smaller). Their method is worse than greedy in four cases
(by 41% in one case), while better in the other cases (by up to 32%). Table 1 shows that EA, on the other
hand, performs better than greedyon jari-huge in all cases by 8–17%.

5.2. Time Complexity

A set of experiments was performed to evaluate time complexity of the proposed EA algorithm on a
workstation with the Intel R© CoreTM i7-3770 CPU (Intel Corporation, Santa Clara, CA, USA) at 3.4 GHz
running Sabayon Linux with the kernel 3.19.0. Fifteen trials of full exploration were run in the most
complex setup: the jari-huge map and the visibility range ρ = 1.5 m, while the other parameters were set
to the same values as in the previous case. Figure 10a shows how the number of candidates (NoC) and
computational time (T) of EA change during a typical trial. It can be seen that approximately 500 runs of
EA were executed during the trial and that NoC grows as the robot explores new areas at the beginning,
while it starts to decrease in the middle of the process. The curve of computational time follows the one of
NoC but not so exactly as one would expect. This is caused by the fact that the complexity of the GTSPC
problem does not only depend on NoC, but also on the number of clusters and distribution of candidates
over them. The number of clusters varied up to 22 in this particular case.
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Figure 10. (a) evolution of computational time of EA and the number of goal candidates during a typical
run on jari-huge with ρ = 1.5 m; (b) dependency of computational time of EA on a number of candidates.
The dots represent measurements from 15 runs on jari-huge with ρ = 1.5 m. The red curve is a smoothed
computational time averaged over the number of candidates, while the grey area represents the confidence
interval computed for mean on a 95% confidence level.

Data from all 15 runs containing 7156 executions of EA are shown in Figure 10b in the form of
dependency of T on NoC together with the averaged times for particular NoCs and the confidence interval
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computed for the means on a 95% confidence level. In fact, the averages and the confidence intervals
are too noisy, so local polynomial fitting is applied to make the curves smooth. The maximal number
of candidates was 321, while computational time does not exceed 1.3 s. This qualifies the method to be
deployed in real time.

5.3. Real Deployment

The whole exploration framework was deployed on a real robot in the SyRoTek system [71] developed
at Czech Technical University to demonstrate the applicability of the proposed solution with real hardware.
SyRoTek is a platform for e-learning and distant experimentation in robotics and related areas consisting
of thirteen robots equipped with standard robot sensors (laser range-finders, sonars, odometry, etc.). The
SyRoTek robot is called S1R and its body consists of the main chassis and an optional sensor module [72].
The robot is based on a differential drive with the maximal velocity designed to 0.35 m/s and operating
time 8 h. The on-board computer (OBC) is the Gumstix Overo Fire module with the ARM Cortex-A8
OMAP3530 processor unit (ARM, Cambridge, UK) operating at 600 MHz and running the Linux kernel.
The connection with the control computer is provided by the integrated WiFi module of the Overo board.
The robots operate in the Arena of size 3.5× 3.8 m and are fully programmable and remotely controlled.
A HOKUYO URG-04LX laser range finder (Hokuyo Automatic Co., Ltd., Osaka, Japan) with a sensing
view 240◦ and a range limited to 0.5 m was used as a main sensor for the experiment. Resolution of the
occupancy grids was set to 2 cm. A Smooth Nearness Diagram (SND) algorithm [45] was used to control
the robot motion and to avoid obstacles. Robot position was taken from the localization system provided
by SyRoTek, which is capable of continuous and errorless operation with the precision of ±1 cm in robot
position and ±3◦ in robot orientation. Figure 11 shows several phases of the exploration with the EA as
the goal selection strategy.

(a) (b) (c) (d)

Figure 11. Experiment with a real robot in the SyRoTek system. (a) the robot during an experiment;
(b,c) phases of the exploration process; (d) the final map and the performed path.

6. Conclusions and Future Work

This article presents a new approach to the goal selection task solved within the robotic exploration
of an unknown environment. While state-of-the-art approaches generate a relatively small set of goal
candidates from which a next goal is chosen based on some evaluation function, our approach integrates
goal candidates generation with a selection of the next goal, which leads to a solution of the constrained
Generalized Traveling Salesman Problem. The proposed approach thus allows higher flexibility in the
planning of the next robot actions.

The overall exploration framework including the proposed goal selection strategy is evaluated in
a simulation environment on three different maps and compared with three state-of-the-art techniques.
The results show that the proposed method can compute results for robotic problems of a standard size
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in less than 1300 ms, which is sufficient for real-time usage. It statistically significantly outperforms the
other three strategies in empty environments and areas with low density of obstacles: exploration times
are by more than 30% lower than for the widely used greedy approach and up to 12.5% lower than for
FHP in some cases. On the other hand, the proposed method is worse than FHP in narrow corridors by up
to 4.5%, but still better than greedy by more than 10% on average. UMARI is even worse. In general, the
method exhibits the best overall performance. Thus, our approach is a good choice when the type of the
environment to be explored is not known in advance.

In future work, we want to focus on the generation of goal candidates. A density of generated
candidates can be controlled according to several criteria: distance to the robot, distance to obstacles,
a shape of the environment in the vicinity of a candidate, topology of the environment, experience from
previous runs of GTSPC, etc. Generation of candidates especially at places where it is interesting can
influence both the quality of a GTSP solution as well as computational complexity of GTSPC. We also
want to extend the method for multiple robots.

The evolutionary algorithm itself can be optimized as well. In the current implementation, when
evaluating a particular priority list, it is first translated to the corresponding tour, which is then locally
improved by 1-opt and 2-opt heuristics. However, the optimized tour is only used to assess the quality
of the priority list. The final order of goals within the tour is not stored for later use. Experience from
the field of memetic algorithms suggests that it might be beneficial for the efficiency of the evolutionary
process to keep the locally optimized solution instead of the original one. Thus, we will investigate
possibilities to keep the optimized tour along with the priority list in the individual and reuse it within the
crossover operator.
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