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Abstract. In this paper, we present an integrated solution to memory-
efficient environment modeling by an autonomous mobile robot equipped
with a laser range-finder.

Majority of nowadays approaches to autonomous environment modelling,
called exploration, employs occupancy grids as environment representa-
tion where the working space is divided into small cells each storing
information about the corresponding piece of the environment in the
form of a probabilistic estimate of its state. In contrast, the presented
approach uses a polygonal representation of the explored environment
which consumes much less memory, enables fast planning and decision-
making algorithms and it is thus reliable for large-scale environments.
Simultaneous localization and mapping (SLAM) has been integrated into
the presented framework to correct odometry errors and to provide ac-
curate position estimates. This involves also refinement of the already
generated environment model in case of loop closure, i.e. when the robot
detects that it revisited an already explored place.

The framework has been implemented in Robot Operating System (ROS)
and tested with a real robot in various environments. The experiments
show that the polygonal representation with SLAM integrated can be
used in the real world as it is fast, memory efficient and accurate. More-
over, the refinement can be executed in real-time during the exploration
process.

Keywords: autonomous systems, exploration, SLAM, loop closing

1 Introduction

Knowledge of a model of the working area of an autonomous system is a neces-
sary condition to make qualified decisions about current and future actions. The
more accurate the model is, the better decisions can be made and thus increase
performance of the system. Unfortunately, a priori knowledge of the environ-
ment is not available in many applications and has to be acquired from scratch.
Exploration — the process of autonomous environment modelling is generally
defined as an iterative procedure consisting of several steps. Actual sensory in-
formation is read first and the model of the environment is updated after some
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data processing and noise filtering. A new goal for the robot is then determined,
the shortest path to it is found along which the robot is navigated. These steps
are repeated until no unexplored area remains.

In this paper, several assumption are made in order to simplify the problem
and to focus on representation of the actual knowledge about the environment
in which the robot operates. We particularly assume that the robot is equipped
with a laser range finder and it operates in 2D.

The most popular approach to exploration is frontier-based exploration intro-
duced by Yamauchi [25] and further extended by many researchers [242/TITTIT4].
The approach is based on occupancy grids where the working space is divided
into small cells and each cell stores information about the corresponding piece
of the environment in the form of a probabilistic estimate of its state.

Several authors do not build an exact metric map. Instead, they incrementally
create topological information about the space in the form of a graph. Frontier-
based modification of Sensor-based Random Tree, a probabilistic strategy, which
represents a roadmap of the explored area with an associated safe region is
presented in [6]. The approach has been generalized in [5], where Sensor-based
Random Graph is constructed. Feature-based map is used in [I7]. Moreover, a
free space is represented by a set of so-called markers, which are connected based
on visibility constrain.

Combination of metric (in the form of occupancy grid) and topological maps
is presented in [I8/12]. The metric map is built first, while a hierarchical struc-
ture is created over it leading to topological map construction. The opposite
approach (Spatial Semantic Hierarchy) defines distinctive places and paths in
order to build a topological description, while geometric knowledge is assimi-
lated onto the elements of this description [I5]. Another combination of metric
and topological maps is introduced in [26], where a generalized Voronoi Graph
built from preprocessed raw laser measurement is employed as a topological map
for path planning, goal selection, and SLAM. Finally, a flux-based skeletoniza-
tion algorithm on the latest occupancy grid is employed for on-line construction
of a topological map for exploration in [20].

Shen et al. [21] propose a stochastic differential equation-based algorithm.
They use a system of particles with Newtonian dynamics to determine regions
for further exploration in 3D for unmanned aerial vehicle.

Also, exploration based on a polygonal representation is not new, although
it is used for a single robot only. Gonzalez-Bafios and Latombe [7] introduce
a concept of a Safe Region, the largest region guaranteed to be obstacle-free
given the history of sensor readings. A map is iteratively built by executing
union operations over successive safe regions. Dakulovié et al. [3] extend Ekman’s
approach [4]. For each scan, a polygon is created using line-fitting on scan points,
then Vatti’s algorithm [23] is used to compose particular polygons. However,
quantitative evaluation and performance comparison are missing in these papers,
they present only few pictures with obtained polygonal maps.

The rest of the paper is organized as follows. The problem definition is pre-
sented in Section [2] while the approach itself is introduced in Section [3| The
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integration of simultaneous localization and mapping for determination of robot
position is described in Section [d] Evaluation of the results and discussions are
presented in Section [5] Finally, Section [f]is dedicated to concluding remarks.

2 Problem definition

Exploration is the process in which a robot autonomously operates in an un-
known environment with the aim to built a map of it. The map is built incre-
mentally as actual sensor measurements are gathered and it serves as a model
of the environment for further exploration steps.

The exploration algorithm consists of several steps that are repeated until
some unexplored area remain. The process starts with reading actual sensor in-
formation by the robots. After some data processing, the existing map is updated
with this information. New goal candidates are then determined and a new goal
to be visited by the robot is determined using a defined cost function.

Having determined the goal, the shortest path from robot position to the goal
is found. Finally, the robot is navigated along the path. The whole exploration
process is summarized in Algorithm

while unexplored areas exist do
read current sensor information;
update map with the obtained data;
determine new goal candidates;
determine the new goal;
plan a path to the goal;
move the robot towards the goal;

Algorithm 1: The exploration algorithm

In this paper, we follow Yamauchi’s frontier based approach [25], which as-
sumes that the next best view (goal) lies on the border between free and unex-
plored areas (this border is called frontier).

3 Polygonal domain

In the presented approach, the information about the environment is approxi-
mated by a polygon with holes (i.e., the outer polygon representing a border of
the working area and containing obstacles — holes). This polygon P is, similarly
to [3], incrementally created as a union of polygons P; representing sensor mea-
surements (scans) taken during the mission: P = U!_,P;, where ¢ is the actual
time.

The particular polygon P; is created from a range data R; that are typically
represented as a vector of points. This is a standard task and many approaches
for polygon building from sensory data have been developed. The combination
of three algorithms is used:
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— Successive Edge Following [22] splits scan data into clusters representing
particular objects,

— Ramer—Douglas—Peucker algorithm [I0] smooths objects’ boundaries into
piecewise linear curves (polylines),

— Least Squares Fit finds parameters of lines to best fit the scan data.

Finally, the position of the sensor is added between the first and the last point
and successive polylines are connected. The resulting polygon represents a free
space as detected by the measurement. We distinguish between two types of
edges: those representing an obstacle and those that were added in the last step,
which represent frontiers.
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Fig. 1. Vatti’s representation of a polygon. The vertices A4,B,C,D form the right bound
and the vertices A,I,H,G form the left bound. The vertex A is the local minimum and
the vertex D is the local maximum.

The union of polygons obtained from different measurement poses can be
computed by Vatti clipping algorithm [QB]H The algorithm can handle large
sets of polygons, polygons with holes, and self-intersecting polygons. On the
other hand, adding information about edge type is not straightforward since
this information has to be preserved by clipping operations.

The Vatti algorithm processes both involved polygons by a sweep line starting
at the lowermost vertex and going upwards passing through all vertices of the
polygons. Bounds — sequences of consecutive edges starting at a local minimum

! In our implementation, we use the Clipper library [I3], which is an open-source
polygon clipping library based on Vatti clipping algorithm. The library performs the
boolean clipping operations - intersection, union, difference, and XOR. Moreover, it
performs polygon offsetting.



6 Miroslav Kulich, Viktor Kozak, and Libor Preucil

and ending at a local maximum — are formed during this process. Left and
right bounds are distinguished with respect to their positions to the polygon’s
interior. A polygon described with this notation is shown in Fig.

3.1 Modifications of clipping

The straightforward approach how to add and preserve information about the
edge type lies in modifications of specific parts of the Vatti algorithm. In this
case, information about the edge type is stored in vertices adjacent to it. Unfor-
tunately, this approach fails. One of the main reasons is that a relation between
output vertices and the input edges can not be determined easily. For example,
if two different bounds share their local minimum, a new vertex is added into
the output polygon. There is no guarantee which bound the algorithm takes
first. When the second bound is processed, its vertex is skipped, because it was
already added. The example situation is illustrated in Fig. [2| where v, is the
local minimum which is added to the output either in processing edges e; and
eo or ez and e4. Because the first pair of edges is a frontier, while the second one
is not, the parameters of the added vertex may be different.
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Fig. 2. Problem in a local minimum.

Our approach post-processes edges of the output polygon, compares them
with edges of the input polygons and assigns them the correct type. The com-
parison of each output edge is made by computing a penalty function for all
edges in the input polygons. The penalty value can be expressed as the sum of
all the distances depicted in Fig.

P = py + pz + |di] + |d2] (1)

The distances p1,p2 are the perpendicular distances from vertices of €rig t0 €out
and dy,ds are differences in y-axis. Notice that the distance d; is considered only



An integrated approach to autonomous environment modeling 7

Fig. 3. Comparison of edges.

if the bottom vertex of e,,; has lower y-coordinate than the bottom vertex of
eorig and the distance dy is considered only if the top vertex of e,y has higher
y-coordinate than the top vertex of e,,;q. The best input edge, i.e., the edge with
the lowest penalty, is considered as correct and the information from the found
input edge is copied into the output edge.

This process is much more computationally complex than the clipping algo-
rithm itself. From the knowledge about the clipping algorithm it is possible to do
some simplifications that speed up the matching. The clipping algorithm creates
the bounds with the edges in a bottom-up fashion starting at the local mini-
mum. The most important fact is that the edges are ordered by y-coordinate.
The bounds are also ordered by y-coordinate of their local minimum. These in-
ternal structures can be used instead of the original polygons. The edges of the
input polygons are processed based on their order in bounds while the following
rules are applied:

— The bounds with y-coordinate of its local minimum higher than y-coordinate
of the top vertex of the output edge can be completely skipped.

— If y-coordinate of the bottom vertex of the edge from the bound is higher
than the top vertex of the output edge then the rest of one bound can be
skipped.

— If the penalty value is zero then skip further comparison of the output edge.

These criteria improve the speed of the algorithm significantly. Fig. [d shows how
the simplifications affect the algorithm performance. Although the modifications
even with simplifications slow-down the clipping, the approach can be applied on
real problems. Maps containing 1000 vertices are processed in few milliseconds.

3.2 Polygon offsetting

The map created by the clipping algorithm is useful for path planning for a point-
robot only. If a robot is approximated by a disk, the map (i.e., each obstacle) has
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Fig. 4. Performance of the modified algorithm.

to be enlarged by constructing the Minkowski sum of the map with this disk.
This can be done by polygon offsetting operation. Management of the edge type
is similar to the clipping process. Notice that enlarging can lead to intersecting or
self-intersecting polygons and therefore the same post-processing as for polygon
clipping is used.

3.3 Map representation

It is possible to maintain the knowledge about the environment as the all-in-one
map, but this is not robust. Both data from a laser range finder and odometry
can be noisy, which causes that some frontiers may be generated nearby or
inside obstacles. The more robust approach is to represent the maps of a free-
space and obstacles separately. Whenever a new scan is added into the map it
is added into the free-space map as it is. The scan is next checked whether it
contains obstacles. If so, the obstacles are offset (proportionally to the map size
and noise) and added into the obstacle map.

Before the map is used for planning, both maps are temporarily combined
together into a single map. The modified clipping is performed here and the
resulting map contains the information about frontiers. If the resulting edge
comes from the free-space map it is considered as a frontier and it is marked as
an obstacle otherwise.

The created map contains a large number of vertices. Ramer—Douglas—Peucker
algorithm is thus used after each clipping or offsetting in order to reduce this
number.
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The map is used for goal candidates selection, planning, and evaluation of
the candidates in each exploration step. The selection process determines the
candidates so that they lie on frontiers, the distance of a candidate to its neigh-
bors is twice a sensor range, and all frontiers are inside the union of circles with
centers in the candidates and radius equal to the sensor range. This guaranties
that all frontiers will be explored (i.e., it will be detected whether a frontier lies
in a free space or in any obstacle) after visiting all candidates.

Planning consists of two steps: a visibility graph is computed first, followed
by several runs of Dijkstra algorithm, which computes shortest distances among
each robot and a goal candidate. The cost function for evaluation of goal candi-
dates is then simply this distance.

4 Simultaneous localization and mapping

The presented mapping approach assumes that a precise position of the robot
is known. Unfortunately, this is not a case in many real-world applications,
so robot position has to be determined during a mission based on data from
sensors. The process of simultaneous localization and mapping (SLAM) is a
well know problem for which many algorithms have been developed in the last
decades. One of the most popular approaches is a particle filter [9JI6] which
represents probability density function of robot position by a set of particles,
each storing a single estimate of robot trajectory together with a map built
along this trajectory. More precisely, the particle filter computes an accurate
distribution of particles taking into account movement of the robot and the most
recent observation. The key idea is to estimate a posterior p(z1.¢|21.¢, uo:t) about
probable trajectories x1.; of the robot given its observations z1.; and its odometry
measurements ug.;. This posterior is further used to compute a posterior over
maps and trajectories:

p(xlzta m|2'1:t, uO:t) = p(m‘xlzta Zl:t)p($1:t|21:ta uO:t) (2)

The process of the SLAM algorithm iteratively creates a map of the envi-
ronment and updates positions of the particles. Every iteration consists of five
main steps [9]:

1. Sampling: New generation of particles a:f) is obtained from the current gen-
eration z{”| by sampling f sal distributi
+1 by sampling from a proposal distribution m(x¢|z1.¢, wo:t)-
2. Importance weighting: Each particle is assigned an individual importance

weight w(® according to:

(@)
w® = p(xy”[21:4) (3)

m(@?|21.4)

These weights account for the fact that the proposal distribution 7 is in
general not equal to the target distribution of successor states.
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3. Resampling: Particles with low weights are replaced by samples with higher
weights. Due to a limited number of particles it is important to approximate
a continuous distribution. Resampling also allows to apply a particle filter
in situations in which the true distribution differs from the proposal.

4. Map FEstimation: For each particle position xgl) is computed a correspond-
ing map estimate mgl), based on the previous trajectory and the history of

observations according to p(m(lzi\x(f%, 21:t)-

5. Output selection: The particle with the highest importance weight is de-
termined as the best particle and it’s position is published as the current
position of the robot, together with its corresponding map estimate.

4.1 Integration into the exploration framework for a polygonal
domain

A straightforward way how to integrate SLAM into realization of the exploration
process is to use an existing implementation of SLAM. While many SLAM li-
braries can be found, none of them works in a polygonal domain. We therefore
employed the GMapping library [8] which uses grids maps as a map representa-
tion.

A naive approach to SLAM integration with a polygonal map building pro-
cess is to take robot position from GMapping as a position of current sensor
readings and update a polygonal map making use of this information. Never-
theless, updating robot position only can lead to big inconsistencies in the map
especially when the robot revisits an already explored place (loop closure). In
case of loop closure, a large error in position estimation can be detected and
corrected by the SLAM algorithm. This is done by switching a best particle in
step [f] of the SLAM algorithm, which results in a new estimate of a complete
robot trajectory x1.; and thus a map.

It would be unreasonable to perform the refinement of a polygonal map every
time a new best particle is selected. The refinement would not only require
information on all previous particles and their positions, but more importantly
it would be triggered whenever a switch of the best particle occurs, resulting in
the refinement on frequent occasions even without closing the loop. Since each
change could lead to a refinement of the map a few dozens or even hundreds
iterations back, a different approach is used.

Individual polygonal maps are continuously created for each particle instead
and the map belonging to the best particle is published as the resulting map
and used for the exploration. Since polygonal maps require a small amount of
memory, keeping several dozens of them at once has little effect on the memory
requirements. During the experiments the control unit also proved to have no
issue with the increase in computational complexity caused by the processing of
multiple polygonal maps every iteration.
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5 Experiments

The presented exploration framework has been implemented int Robot Operat-
ing System (ROS) [19] and several experiments were made to evaluate function-
ality of the system. The experiments were performed making use a TurtleBot
mobile robot equipped with the SICK LMS 111-10100 laser rangefinder. All the
algorithms and computations were run on an INTEL NUC5i5RYK control unit
placed on the robot with a dual core 1.6 GHz processor, 16 GB RAM and running
the Ubuntu 14.04 operation system.

The first part of the experiments, where GMapping is used to provide pose
estimates only, was executed in indoor offices. The robot starts its movement in
one of the office rooms and explores narrow corridors and adjacent resting areas.
Fig. [f] shows a grid map created by the GMapping SLAM algorithm and the
final polygonal map created by the EAPD package, a clear correspondence with
the map from GMapping can be seen.

The robot had to deal with a lot of passers-by in the building. The explo-
ration algorithm had no problem with such environment and both the map and
exploration algorithm were able to recover within a short time after encountering
a temporary obstacle in the environment.
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Fig. 5. A map of the office-like environment created by the exploration algorithm. The
GMapping occupancy grid map is on the left and the created polygonal map is on the
right.

Other experiments were made in a large open space laboratory, which pro-
vides a different challenge than narrow corridors. The robot had to face the
difficulty of navigation through an open environment. Situations, where most ob-
stacles are out of the range of the laser sensor, are challenging for the laser-based
SLAM algorithm and the robot has an increased need for a precise odometry
information. Fig. [6] presents the created maps.
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The functionality of the system is apparent, as the exploration was fully
autonomous and the robot was able to create a model of the environment in
both buildings.

Fig. 6. A map of the laboratory created by the exploration algorithm. The GMapping
occupancy grid map is on the left and the created polygonal map is on the right.

Section [4] presents the closer integration of GMapping with the polygonal
exploration. The GMapping package was modified to publish specific information
on all particles allowing the polygonal map building process to synchronize with
the SLAM algorithm. This synchronization allows the adaptation to the changes
in the best particle. Description of experiments testing this functionality follows.

Although the SLAM algorithm proved functional during the previous ex-
periments, its connection with the exploration package was limited only to the
estimates of the current position. This resulted in the inability of the exploration
algorithm to properly react to the changes made by the GMapping SLAM during
a switch between particles. Fig. [7] presents a situation shortly before and after
the switch in the best particle. The image on the left presents the state prior to
the particle switch, while the image on the right shows an inconsistency in maps
produced by the algorithms, caused by a change in the best particle.

The GMapping algorithm processes all particles during the process, it has
already assimilated a full path of the particle leading to the current position and
only switched between the particles and their map representations. However the
polygonal mapping has been following a different particle up to the point where
the switch occurred and received only the resulting change in position at the
time of the switch, therefore the map created prior to the switch occurrence
follows a different path than the path of the current best particle.

The modifications made in section [4] were initially proposed to integrate
GMapping loop closure functionality, but since the functionality in GMapping
projects itself in the selection of the best particle, the approach had to be changed
and the exploration framework had to be extended to support switches between
the particles. Experiments testing the new functionality were performed and are
focused on the proper functionality during a particle switch.
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Fig. 7. An overlay of the polygonal map and the grid map, before(left) and after(right)
a switch in the best particle in the GMapping SLAM algorithm. The situation occurred
during the experiments testing the slam functionality, connected with the creation of
the map in Fig.

Fig. |8] presents the situation shortly before and after the switch in the best
particle. As can be seen in the figure, the structure of both maps shifted in
reaction to the switch. The maps are fully aligned after the shift, which proves
the correct functionality of the implementation.

6 Conclusion

The paper introduces a polygonal approach for autonomous environment mod-
elling. The mapping process is based on a standard library for polygon clipping,
so it is robust and fast. This enables to perform exploration in larger experi-
ments, with higher number of robots, and make re-planning faster than possible
in a grid-based approach. The most challenging task was to modify the clipping
library in order to work with the frontiers. After several unsuccessful attempts
to change the clipping algorithm a compromise solution was found in the edge
matching.

SLAM functionality providing precise robot position was integrated into the
exploration framework. Specifically, the GMapping library was extended to store
a polygonal map in each particle, which removes negative impact of jumps in the
estimated position caused by a switch of the best particle in the SLAM algorithm,
improving the precision of the created polygonal map. The method also supports
the innate loop closure functionality of the GMapping library. The downside is
that the new implementation has higher computational requirements than the
original mapping process. Nevertheless, the performed experiments with a real
robot show that the map refinement can be executed in real-time during the
exploration on moderately large segments of the map.
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Fig.8. An overlay of the polygonal map and the grid map, before(top) and af-
ter(bottom) a switch in the best particle in the GMapping SLAM algorithm. A green
grid has been added to emphasize the shift in the structure of the maps.
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A big disadvantage of the current solution is that GMapping internally uses
memory inefficient occupancy grids as a map representation which also leads to
higher computational burden. The future work will thus focus on full removal of
occupancy grids from GMapping and their substitution with polygonal maps.
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