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Abstract. Novel view synthesis is a long-standing problem. In this work,
we consider a variant of the problem where we are given only a few con-
text views sparsely covering a scene or an object. The goal is to predict
novel viewpoints in the scene, which requires learning priors. The current
state of the art is based on Neural Radiance Field (NeRF), and while
achieving impressive results, the methods suffer from long training times
as they require evaluating millions of 3D point samples via a neural net-
work for each image. We propose a 2D-only method that maps multiple
context views and a query pose to a new image in a single pass of a
neural network. Our model uses a two-stage architecture consisting of a
codebook and a transformer model. The codebook is used to embed indi-
vidual images into a smaller latent space, and the transformer solves the
view synthesis task in this more compact space. To train our model effi-
ciently, we introduce a novel branching attention mechanism that allows
us to use the same model not only for neural rendering but also for cam-
era pose estimation. Experimental results on real-world scenes show that
our approach is competitive compared to NeRF-based methods while not
reasoning explicitly in 3D, and it is faster to train.
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1 Introduction

Image-based novel view synthesis, i.e., rendering a 3D scene from a novel view-
point given a set of context views (images and camera poses), is a long-standing
problem in computer graphics with applications ranging from robotics (e.g. plan-
ning to grasp objects) to augmented and virtual reality (e.g. interactive virtual
meetings). Recently, the field has gained a lot of popularity thanks to Neural
Radiance Field (NeRF) methods [2,40] that were successfully applied to the
problem and outperformed prior approaches. We distinguish between two vari-
ants of the view synthesis problem. The first variant renders a novel view from
multiple context images taken from similar viewpoints [40,69]. Only a (very)
sparse set of context images is provided in the second variant [51,72], i.e., larger
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Fig. 1. Our novel view synthesis method renders images of previously unseen objects
based on a few context images. It operates in 2D space without any explicit 3D rea-
soning (as opposed to NeRF-based approaches [51,72]). The results are shown on the
CO3D [51] (right) and InteriorNet [32] (left) datasets rendered for unseen scenes

viewpoint variations and missing observations need to be handled. The latter
task is much more difficult as it is necessary to learn suitable priors that can be
used to predict unseen scene parts. This paper focuses on the second variant.

Recently, generalizable NeRF-based approaches have been proposed to tackle
this problem by learning priors for a class of objects and scenes [51,72]. Instead
of learning a radiance field for each scene, they use context views captured
from the target scene to construct the radiance field on the fly by projecting
the image features from all context views into 3D. Highly optimized NeRF ap-
proaches [22,43,50,71] can be sped up by tuning or caching the radiance field
representation [43], although often requiring lots of images per scene. To the best
of our knowledge, these techniques do not apply to generalizable NeRF-based
methods that do not learn a scene-specific radiance field, and take thousands
of GPU-hours to train [51]. In contrast, 2D-only feed-forward networks can be
highly efficient. However, explicitly encoding 3D geometric principles in them
can be challenging. In our work, we thus pose the question: Is reasoning in
3D necessary for high-quality novel view synthesis, or can a purely image-based
method achieve a competitive performance?

Recently, Rombach et al. [54] successfully tackled single-view novel view syn-
thesis, where the model was able to predict novel views without explicit 3D
reasoning. Inspired by these findings, we tackle the more complex problem of
multi-view novel view synthesis. To answer the question, we propose a method
with no explicit 3D reasoning able to predict novel views using multiple context
images in a forward pass of a neural network. We train our model on a large
collection of diverse scenes to enable the model to learn 3D priors implicitly.
Our approach is able to render a view in a novel scene, unseen at training time,
three orders of magnitude faster than state-of-the-art (SoTA) NeRF-based ap-
proaches [51], while also being ten times faster to train. Furthermore, we are able
to train a single model to render multiple classes of scenes (see Fig. 1), whereas
the SoTA NeRF-based approaches typically train per-class models [51].
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Our model uses a two-stage architecture consisting of a Vector Quantized-
Variational Autoencoder (VQ-VAE) codebook [45] and a transformer model. The
codebook model is used to embed individual images into a smaller latent space.
The transformer solves the novel view synthesis task in this latent space before
the image is recovered via a decoder. This enables the codebook to focus on
finer details in images while the transformer operates on shorter input sequences,
reducing the quadratic memory complexity of its attention layer.

For training, we pass a sequence of views into the transformer and optimize
it for all context sizes at the same time, effectively utilizing all images in the
training batch, which is different from other methods [20, 21,46, 48] that train
only one query view. Unlike autoregressive models [21,46,48], we do not decode
images token-by-token but all tokens are decoded at once which is both faster
and mathematically exact (while autoregressive models rely on greedy strate-
gies). Our approach can be considered a combination of autoregressive [47, 68|
and masked [18] transformer models. With the standard attention mechanism,
the complexity would be quadratic in the number of views, because we would
have to stack different query views corresponding to different context sizes along
the batch dimension. Therefore, we propose a novel attention mechanism called
branching attention with constant overhead regardless of how many query views
we optimize. Our attention mechanism also allows us to optimize the same model
for the camera pose estimation task — predicting the query image’s camera pose
given a set of context views. Since this task can be considered an “inverse” of
the novel view synthesis task [70], we consider the ability to perform both tasks
via the same model to be an intriguing property. Even though the localization
results are not yet competitive with state-of-the-art localization pipelines, we
achieve a similar level of pose accuracy as comparable methods such as [1,60].

In summary, this paper makes the following contributions: 1) We propose
an efficient novel view synthesis approach that does not use explicit 3D reason-
ing. Our two-stage method consisting of a codebook model and a transformer
is competitive with state-of-the-art NeRF-based approaches while being more
efficient to train. Compared to similar methods that do not use explicit 3D
reasoning [15, 20, 66], our approach is not only evaluated on synthetic data but
performs well on real-world scenes. 2) Our transformer model is a combination of
an autoregressive and a masked transformer. We propose a novel attention mech-
anism called branching attention that allows us to optimize for multiple context
sizes at once with a constant memory overhead. 3) Thanks to the branching
attention, our model can both render a novel view from a given pose and pre-
dict the pose for a given image. 4) Our source code and pre-trained models are
publicly available at https://github.com/jkulhanek/viewformer.

2 Related work

Novel view synthesis has a long history [12,63]. Recently, deep learning
techniques have been applied with great success, enabling higher realism [16, 24,
38,52,53]. Some approaches use explicit reconstructed geometry to warp context
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images into the target view [16,24,52,53,65]. In our approach, we do not require
any proxy geometry and only operate on 2D images.

Neural Radiance Field methods [2,27,36,38,40,50,71] use neural networks to
represent the continuous volumetric scene function. To render a view, for each
pixel in the image plane, they project a ray into 3D space and query the radi-
ance field in 3D points along each ray. The radiance field is trained for each scene
separately. Some methods generalize to new scenes by conditioning the contin-
uous volumetric function on the context images [55,64], which allows them to
utilize trained priors and render views from scenes on which the model was not
trained, much like our approach. Other approaches remove the trainable contin-
uous volumetric scene function altogether. Instead, they reproject the context
image’s features into the 3D space and apply the NeRF-based rendering pipeline
on top of this representation [25,51,67,69,72]. Similarly to these methods, our
approach also utilizes few context views (less than 20), and it also generalizes to
unseen objects. However, we do not use the continuous volumetric function nor
the reprojection into the 3D space. A different approach, IBRNet [69], learns
to copy existing colors from context views, effectively interpolating the context
views. Unlike ours, it thus cannot be applied to the settings where the object is
not covered enough by the context views [25,51,67,72].

A different line of work directly maps 2D context images to the 2D query
image using an end-to-end neural network [15, 20, 66]. GQN-based methods
[15,20,66] apply a CNN to context images and camera poses and combine the
resulting features. While some GQN methods [15,20] do not use any explicit 3D
reasoning (same as our approach), Tobin et al. [66] uses an epipolar attention
to aggregate the features from the context views. We optimize our model on all
context images and fully utilize the training sequences, whereas GQN methods
optimize only a single query view.

A recent work by Rombach et al. [54] proposed an approach for novel view
synthesis without explicit 3D modeling. They used a codebook and a transformer
model to map a single context view to a novel view from a different pose. Their
approach is limited in its scope to mostly forward-facing scenes where it is easier
to render the novel view given a single context view and the poses have to be
close to one another. It cannot be extended to more views due to the limit on the
sequence size of the transformer model. In contrast, in our approach, we focus on
using multiple context views, which we tackle through the proposed branching
attention. Furthermore, we can jointly train the same model for both the novel
view synthesis and camera pose estimation and our decoding is faster because
we decode the output at once instead of autoregressive decoding.

Visual localization. There is an enormous body of work tackling the problem
of localization, where the goal is to output the camera pose given the camera
image. Structure-based approaches use correspondences between 2D pixel posi-
tions and 3D scene coordinates for camera pose estimation [6,11,34,37,56,58,62].
Our method does not explicitly reason in 3D space, and the camera pose is in-
stead predicted by the network. Simple image retrieval (IR) approaches store
a database of all images with camera poses and for each query image they try
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to find the most similar images [9, 10,17, 26,59, 74] and use them to estimate
the pose of the query. IR methods can also be used to select relevant images for
accurate pose estimation [4,26,56, 74, 75].

Pose regression methods train a convolutional neural network (CNN) to
regress the camera pose of an input image. There are two categories: absolute
pose regression (APR) methods [5,8,14,28,30,33,41,60] and relative pose regres-
sion (RPR) methods [1,19,31,33,39]. It was shown [59] that APR is often not
(much) more accurate than IR. RPR methods do not train a CNN per scene or
a set of scenes, but instead, condition the CNN on a set of context views. While
our approach performs relative pose regression, the main focus of our method
is on the novel view synthesis. Some pose regression methods use novel view
synthesis methods [14,41, 42, 44], however, they assume there is a method that
generates images, whereas our method performs both the novel view synthesis
and camera pose regression in a single model. Iterative refinement pose regres-
sion methods [57, 70] start with an initial camera pose estimate and refine it
by an iterative process, however, our approach generates novel views and the
camera pose estimates in a single forward pass.

3 Method

In this work, we tackle the problem of image-based novel view synthesis — given
a set of context views, the algorithm has to generate the image it would most
likely observe from a query camera pose. We focus on the case where the number
of context views is small, and the views sparsely cover the 3D scene. Thus,
the algorithm must hallucinate parts of the scene in a manner consistent with
the context views. Therefore, it is necessary to learn a prior over a class of
scenes (e.g., all indoor environments) and use this prior for novel scenes. Besides
rendering novel views, our model can also perform camera pose estimation, i.e.,
the “inverse” of the view synthesis task: given a set of context views and a query
image, the model outputs the camera pose from which the image was taken.

Our framework consists of two components: a codebook model and a trans-
former model. The codebook is used to map images to a smaller discrete latent
space (code space), and back to the image space. In the code space, each image
is represented by a sequence of tokens. For the novel view synthesis task, the
transformer is given a set of context views in the code space and the query cam-
era pose, and it generates an image in the code space. The codebook then maps
the image tokens back to the image space. See Fig. 2 for an overview. For the
camera pose estimation task, the transformer is given the set of context views
and the query image in the code space, and it generates the camera pose using a
regression head attached to the output of the transformer corresponding to the
query image tokens.

Having the codebook and the transformer as separate components was in-
spired by the recent work on image generation [21,48,54]. The main motivation
is to decrease it sequence size, because the required memory grows quadrati-
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Fig. 2. Inference pipeline. The context images x; are encoded by the codebook’s en-
coder Ejy to the code representation s;. We embed all tokens in s;, and add the trans-
formed camera pose ¢;. The transformer generates the image tokens which are decoded
by the codebook’s decoder Dy

cally with it. It also allows us to separate image generation and view synthesis,
enabling us to train the transformer more efficiently in a simpler space.

Codebook model is a VQ-VAE [45,49], which is a variational autoencoder with
a categorical distribution over the latent space. The model consists of two parts:
the encoder Ey and decoder Dy. The encoder first reduces the dimension of the
input image from 128 x 128 pixels to 8 x 8 tokens by several strided convolution
layers. The convolutional part is followed by a quantization layer, which maps
the resulting feature map to a discrete space. The quantization layer stores mn;q;
embedding vectors of the same dimension as the feature vectors returned by the
convolutional part of the encoder. It encodes each point of the feature map by
returning the index of the closest embedding vector. The output of the encoder
at position (7, j) for image x is:

. enc emb
arg min (57 (2))i.5 = W™l (M

where W(€mb) ¢ RmatXdiar i the embedding matrix with rows Wéemb) of length
diae and f (en) 45 the convolutional part of the encoder. The decoder then per-
forms an inverse operation by first encoding the indices back to the embedding
vectors by using W (™) followed by several convolutional layers combined with
upscaling to increase the spatial dimension back to the original image size.

Since the operation in Eq. (1) is not differentiable, we approximate the gradi-
ent with a straight-through estimator [3] and copy the gradients from the decoder
input to the encoder output. The final loss for the codebook is a weighted sum of
three parts: the pixel-wise mean absolute error (MAE) between the input image
and the reconstructed image, the perceptual loss between the input and recon-
structed image [21], and the commitment loss [45,49] L., which encourages the
output of the encoder to stay close to the chosen embedding vector to prevent
it from fluctuating too frequently from one vector to another:

. enc emb
Lo =min ||f5" (@)s; —ss(WL3 ()
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Fig. 3. Branching attention mechanism: the nodes represent parts of the processed
sequence. Starting in any node and tracing the arrows backwards gives the sequence
over which the attention is computed, e.g., node s7, @ attends to si1,c1, s2,c2, ..., s7, 9.
Blue and red nodes in the last transformer block are used in the loss computation
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where sg is the stop-gradient operation [45]. We use the exponential moving aver-
age updates for the codebook [45]. See [45,49] for more details on the codebook,
and the supp. mat. for the architecture details.

Transformer. We first describe the case of image generation and extend the
approach to camera pose estimation later. We optimize the transformer for mul-
tiple context sizes and multiple query views in the batch at the same time. This
has two benefits: it will allow the trained model to handle different context sizes,
and the model will fully utilize the training batch (multiple images will be targets
in the loss function). Each training batch consists of a set of n views. Let (z;)7,
be the sequence of images under a random ordering and (¢;)_; be the sequence
of the associated camera poses. Let us also define the sequence of images trans-
formed by the encoder Ey parametrized by 6 as s; = Fg(x;), i = 1,...,n. Note
that each s; is itself a sequence of tokens. With this formulation, we generate
the next image in the sequence given all the previous views, effectively opti-
mizing all different context sizes at once. Therefore, we model the probability
p(8i|s<i, c<i). Note that we do not optimize the first nmyi, views (called the pure
context), because they usually do not provide enough information for the task.

In practice, we need to replace the tokens corresponding to each query view
with mask tokens to allow the transformer to decode them in a single forward
pass. For the image generation task, the tokens of the last image in the sequence
are replaced with special mask tokens A, and, for the localization task, the tokens
of the last image do not include the camera pose (denoted as &). However, if
we replaced the tokens in the training batch, the next query image would not
be able to perceive the original tokens. Therefore, we have to process both the
original and the masked tokens. For the i-th query image, we need the sequence
of i — 1 context views ending with masked tokens at the i-th position. We can
represent the sequences as a tree (see Fig. 3) where different endings branch
off the shared trunk. By following a leaf node back to the root of the tree, we
recover the original sequence corresponding to the particular query view.

For localization, we train the model to output the camera pose ¢; given s<;
and c.;. For image generation, this leads to n — nyi, sequences. We attach a
regression head to the hidden representation of all tokens of the last image in



8 J. Kulhédnek et al.

the sequence. The query image tokens form the input, and we mask the camera
poses by replacing the camera pose representation with a single trainable vector.

Branching attention. In this section, we introduce the branching attention
which computes attention over the tree shown in Fig. 3, and allows us to optimize
the transformer model for all context sizes and tasks very efficiently. Note that
we have to forward all tree nodes through all layers of the transformer. Therefore,
the memory and time complexity is proportional to the number of nodes in the
tree and thus to the number of views and tasks.

The input to the branching attention is a sequence of triplets of keys, values,
and queries: ((K®),Q®W, V( ))) for p = 2, because we train the model on two
tasks. Each element in the sequence corresponds to a single row in Fig. 3 and
i = 0 is the middle row. All K, Q® V() have the size (nk?) x d,,, where d,,, is
the dimensionality of the model and k is the size of the image in the latent space.
The output of the branching attention is a sequence (R(Z)) —o° The case of R(®)
is handled differently because it corresponds to the trunk shared for all tasks
and context sizes. Let us define a lower triangular matrix M € R™*"™ where
m;,; = 11if 4 < j. We compute the causal block attention as:

R(()) — (SOftmaX(Q((])(K(O))T) OM® lkZXk2)V(O) , (3)

where ® and ® are the Kronecker and element-wise product, respectively, and
1™*™ is a matrix of ones. Eq. (3) is similar to normal masked attention [68] with
the only difference in the causal mask. In this case, we allow the model to attend
to all previous images and all other vectors from the same image. For i > 0 we
can compute R(® as follows:

D =QWKMT (4)
Qe (K1)
C = : , (5)
Q(Z) (K(l) )T
(n—1)-k24+1:n-k? (n—1)-k241:n-k2
S = softmax([D, C]) ® [(M — I) @ 1F" %K) 1k k") (6)
Sl = S-,l:n»k2 7SN = S-,n-k2+1'(n+1) k2 (7)
S”k2 l)
) =gV 4 : : (8)
S//

n<k2+1:(n+1)~k2V k24+1:(n+1) k2

Matrix D represents the unmasked raw attention scores between i-th queries
and keys from all previous images. Matrix C' contains the raw pairwise attention
scores between i-th queries and i-th keys (the ending of each sequence). Then,
the softmax is computed to normalize the attention scores and the causal mask is
applied to the result, yielding the attention matrix S, and the respective values
are weighted by the computed scores. In particular, the scores contained in the
last k2 columns of the attention matrix are redistributed back to the associated
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i-th values. The result R(®) corresponds to the nodes in the middle row in Fig. 3,
whereas R() i > 0 are the other nodes.

Transformer input and training. To build the input for the transformer,
we first embed all image tokens into trainable vector embeddings of length d,,.
Before passing camera poses to the network, we express all camera poses relative
to the first context camera pose in the sequence. We represent camera poses
by concatenating the 3D position with the normalized orientation quaternion (a
unit quaternion with a positive real part). Finally, we transform the camera poses
with a trainable feed-forward neural network in order to increase the dimension
to the same size as image token embeddings d,,, in order to be able to sum them.

Similarly to [47], we also add the positional embeddings by summing the
input sequence with a sequence of trainable vectors. However, our positional
embeddings are shared for all images in the sequence, i.e., the i-th token of
every image will share the same positional embedding.

The output of the last transformer block is passed to an affine layer followed
by a softmax layer, and it is trained using the cross-entropy loss to recover the
last k2 tokens (8j,1,---,8;42). For the localization task, the output is passed
through a two-layer feed-forward neural network, and it is trained using the
mean square error to match the ground-truth camera pose of the last k% tokens.
Note that we compute the losses over position and orientation separately and
add them together without weighing.* Since we attach the pose prediction head
to the hidden representation of all tokens of the query image, we obtain multiple
pose estimates. During inference, we simply average them.

4 Experiments

To answer the question of whether explicit 3D reasoning is really needed for novel
view synthesis, we designed a series of experiments evaluating the proposed ap-
proach. First, we evaluate the codebook, whose performance is the upper bound
on what we can achieve with the full pipeline. We next compare our method to
GQN-based methods [14,20,66] that also do not use continuous volumetric scene
representations. We continue by evaluating our approach on other synthetic data.
Then, we compare our approach to state-of-the-art NeRF-based approaches on
a real-world dataset. Finally, we show our model’s localization performance.
We evaluate our approach on both real and synthetic datasets: a) Shepard-
Metzler-7-Parts (SMT) [20,61] is a synthetic dataset, where objects composed
of 7 cubes of different colors are rotated in space. b) ShapeNet [13] is a syn-
thetic dataset of simple objects. We use 128 x 128 pixel images rendered by [64]
containing two categories: cars and chairs. ¢) InteriorNet [32] is a collection
of interior environments designed by 1,100 professional designers. We used the
publicly available part of the dataset (20k scenes with 20 images each). While
the dataset is synthetic, the renderings are similar to real-world environments.
The first 600 environments serve as our test set. d) Common Objects in

* We tried dynamic weighting as described in [29], but it performed worse.
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(a) InteriorNet [32] (b) CO3D [51] (c) 7-Scenes [23]

Fig. 4. Codebook evaluation on multiple datasets comparing the ground truth (GT)
with the reconstructed image. For the 7-Scenes dataset, we compare the model fine-
tuned and not-finetuned on the 7-Scenes dataset

context images

Fig. 5. Results on the SM7 dataset. We compare against GQN [20] and STR-GQN [15]

3D (CO3D) [51] is a real-world dataset containing 1.5 million images show-
ing almost 19k objects from 51 MS-COCO [35] categories (e.g., apple, donut,
vase, etc.). The capture of the dataset was crowd-sourced. e) 7-Scenes [23] is
a real-world dataset depicting 7 indoor scenes as captured by a Kinect RGB-D
camera. The dataset consists of 44 sequences of 500-1,000 frames each and it is
a standard benchmark for visual localization [1,8,30,31,39].

Codebook evaluation. First, we evaluate the quality of our codebooks by
measuring the quality of the images generated by the encoder-decoder architec-
ture without the transformer. We trained codebooks of size 1,024 using the same
hyperparameters for all experiments using an architecture very similar to [21].
The training took roughly 480 GPU-hours. A detailed description of the model
and the hyperparameters is given in supp. mat. as well as in the published code.

Examples of reconstructed images are shown in Fig. 4. As can be seen, al-
though losing some details and image sharpness, the codebooks can recover the
overall shape well. The results show that using the codebook leads to good re-
sults, even though we use only 8 X 8 codes to represent an image. In some images,
there are noticeable artifacts. In our analysis, we pinpointed the perceptual loss
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Fig. 6. Evaluation of our method on the InteriorNet dataset with the context size 19

to be the cause, but removing the perceptual loss led to more blurry images.
Further analysis of the codebooks is included in the supp. mat.

Full method evaluation. The transformer is trained using only the tokens
generated by the codebook. Having verified that our codebooks work as intended,
we evaluate our complete approach in the context of image synthesis. The archi-
tecture of our transformer model is based on GPT2 [47]. We give more details
on the architecture, the motivation, and the hyperparameters in the supp. mat.
The SMT dataset was used to compare our approach to other methods that
only operate in 2D image space [15,20,66]. Our method achieved the best mean
absolute error (MAE) of 1.61, followed by E-GQN [66] with 2.14, STR-GQN [14]
with 3.11 and the original GQN [20] method with MAE 3.13. The results were
averaged over 1,000 scenes (context size was 3) and computed on images with
size 64 x 64 pixels. A qualitative comparison is shown in Fig. 5.

We use the InteriorNet dataset because of its large size and realistic appear-
ance. The models pre-trained on it are also used in other experiments. Since each
scene provides 20 images, we use 19 context views. Fig. 6 shows images generated
by the model trained for both the localization and novel view synthesis tasks.

ShapeNet evaluation. We used the InteriorNet pre-trained model and we fine-
tuned it on the ShapeNet dataset. We trained a single model for both categories
(cars and chairs) using 3 context views. The training details and additional
results are given in supp. mat. We show the qualitative comparison with Pixel-
NeRF [72] in Fig. 7. PixelNeRF trained a different model for each category.
The results show that our method achieves good visual quality overall, es-
pecially on the cars dataset. However, the geometry is slightly distorted on the
chairs. Compared to PixelNeRF, it prefers to hallucinate a part of the scene
instead of rendering a blurry image. This can cause some neighboring views to
have a different color or shape in places where the scene is less covered by context
views. However, this problem can be reduced by simply adding the previously
generated view to the set of context views. See the video in the supp. mat.

Common Objects in 3D. In order to show that we can transfer a model pre-
trained on synthetic data to real-world scenes, we evaluate our method on the
CO3D dataset [51]. We compare our approach with NeRF-based methods using
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context views

PixelNeRF ViewFormer

Fig. 7. ShapeNet qualitative comparison with PixelNeRF [72] using 2 context views

Table 1. Novel view synthesis results on the CO3D dataset [51] on all categories
and 10 categories from [51]. We compare ViewFormer with and without localization
(‘no-loc’) trained on all categories (‘Q all cat.”) and 10 selected categories (‘@Q 10 cat.’).
We show the PSNR and LPIPS for seen and unseen scenes (‘train’ and ‘test’) and test
PSNR with varying context size. The best value is bold; the second is underlined

avg. test avg. train PSNRT @ # ctx. size
EC Method 3D PSNRt LPIPS| PSNRt LPIPS] 9 7 5 3 1
2 ViewFormer @ all cat. X 15.3 0.23 15.6 0.22 16.1 159 15.5 15.1 13.7
'g ViewFormer no-loc @ all cat. X 154 0.23 15.8 0.22 16.2 16.0 15.6 15.2 13.8
o0
& NerFormer [51] X 15.7 0.24 16.5 0.24 16.7 16.4 16.1 15.5 13.9
S SRN+WCE X 14.2 0.27 16.3 0.25 144 14.3 14.3 14.2 135
= SRN+WCE+~y X 13.7 0.28 17.1 0.25 14.0 13.8 13.9 13.7 13.2
NeRF+WCE [25] X 11.6 0.27 12.6 0.27 11.9 11.8 11.8 11.6 10.8
ViewFormer @ 10 cat. X 15.6 0.25 16.6 0.23 16.5 16.3 15.8 15.3 14.0
ViewFormer no-loc @ 10 cat. X 15.6 0.25 17.1 0.22 16.5 16.2 15.8 15.3 14.0
. ViewFormer @ all cat. X 16.0 0.25 16.4 0.24 17.0 16.7 16.3 15.7 14.3
.q:-’ ViewFormer no-loc @ all cat. X 16.1 0.25 16.6 0.23 17.0 16.8 16.3 15.8 14.3
% NerFormer [51] v 17.6 0.27 17.9 0.26 18.9 18.6 18.1 17.1 15.1
% SRN+WCE+~y v 144 0.27 17.6 0.24 14.6 14.5 14.6 14.5 13.9
; SRN+WCE v 146 0.27 16.6 0.26 14.9 14.8 14.8 14.6 13.9
—  NeRF+WCE [25] v 138 0.27 14.3 0.27 12.6 14.5 14.4 14.2 13.8
IPC+WCE v 135 0.37 14.1 0.36  13.8 13.8 13.7 13.6 12.6
P3DMesh v 124 0.26 17.2 0.23 12.6 12.5 12.5 12.5 12.1
NV+WCE v 11.6 0.35 12.3 0.34 11.7 11.6 11.6 11.6 11.3

the results reported in [51]. Unfortunately, we tried to train the PixelNeRF [72]
on the CO3D dataset, but were not able to obtain good results. Therefore we
omit it from the comparison. While the baselines are trained separately per
category, we train two transformer models: one on the 10 categories used for
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GT generated GT generated

Fig. 8. Evaluation of our method on the CO3D dataset [51] with the context size 9

evaluation in [51] and one for all dataset categories. We fine-tune the model
trained on the InteriorNet dataset. The context size is 9. Additional details and
hyperparameters are given in supp. mat.

The testing set of each category in the CO3D dataset is split into two subsets:
‘train’ and ‘test’ containing unseen images of objects seen and unseen during
training respectively. We use the evaluation procedure provided by Reizenstein
et al. [51]. It evaluates the model on 1,000 sequences from each category with
context sizes 1, 3, 5, 7, 9. The PSNR) and the LPIPS distance [73] are reported.
Note that the PSNR is calculated only on foreground pixels. For more details on
the evaluation procedure and the details of compared methods, please see [51].

Tab. 1 shows results of the evaluation on all CO3D categories and on the 10
categories used for evaluation in [51]. Our method is competitive even though it
does not explicitly reason in 3D as other baselines, does not utilize object masks,
and even though we trained a single model for all categories while other baselines
are trained per category. Note that on the whole dataset, the top-performing
method, NerFormer [51], was trained for about 8400 GPU-hours while training
our codebook took 480 GPU-hours, training the transformer on InteriorNet took
280 GPU-hours, and fine-tuning the transformer took 90 GPU-hours, giving a
total of 850 GPU-hours. Also, note that rendering a single view takes 178s for
the NerFormer and only 93 ms for our approach.

The results show that our model has a large capacity (it is able to learn all
categories while the baselines are only trained on a single category), and it ben-
efits from more training data as can be seen when comparing models trained on
10 and all categories. We also observe that models achieve a higher performance
on 10 categories than on all categories, suggesting that the categories selected by
the authors of the dataset are easier to learn or of higher quality. All our models
outperform all baselines in terms of LPIPS, which indicates that the images can
look more realistic while possibly not matching the real images very precisely.

Fig. 1 and 8 show qualitative results. Our method is able to generalize well
to unseen object instances, although it tends to lose some details. To answer the
original question if explicit 3D reasoning is needed for novel view synthesis, based
on our results, we claim that even without explicit 3D reasoning, we can achieve
similar results, especially when the data are noisy, e.g. a real-world dataset.



14 J. Kulhédnek et al.

Evaluating localization accuracy on 7-Scenes. We compare the local-
ization part of our approach to methods from the literature on the 7-Scenes
dataset [23]. Due to space constraints, here we only summarize the results of the
comparisons. Detailed results can be found in the supp. mat.

Our approach performs similar to existing APR and RPR techniques that also
use only a single forward pass in a network [1,8,30,60], but worse than iterative
approaches such as [19] or methods that use more densely spaced synthetic
views as additional input [41]. Note that these approaches that do not use 3D
scene geometry are less accurate than state-of-the-art methods based on 2D-3D
correspondences [7,56,58]. Overall, the results show that our approach achieves a
similar level of pose accuracy as comparable methods. Furthermore, our approach
is able to perform both localization and novel view synthesis in a simple forward
pass, while other methods can only be used for localization.

5 Conclusions & future work

This paper presents a two-stage approach to novel view synthesis from a few
sparsely distributed context images. We train our model on classes of similar 3D
scenes to be able to generalize to a novel scene with only a handful of images
as opposed to NeRF and similar methods that are trained per scene. The model
consists of a VQ-VAE codebook [45] and a transformer model. To efficiently
train the transformer, we propose a novel branching attention module. Our ap-
proach, ViewFormer, can render a view from a previously unseen scene in 93 ms
without any explicit 3D reasoning and we train a single model to render mul-
tiple categories of objects, whereas NeRF-based approaches train per-category
models [51]. We show that our method is competitive with SoTA NeRF-based
approaches especially on real-world data, even without any explicit 3D reasoning.
This is an intriguing result because it implies that either current NeRF-based
methods are not utilizing the 3D priors effectively or that a 2D-only model is
able to learn it on its own without explicit 3D modeling. The experiments also
show that ViewFormer outperforms other 2D-only multi-view methods.

One limitation of our approach is the large amount of data needed, which we
tackle through pre-training on a large synthetic dataset. Also, we need to fine-
tune both the codebook and the transformer to achieve high-quality results on
new datasets, which could be resolved by utilizing a larger codebook trained on
more data. Using more tokens to represent images should increase the rendering
quality and pose accuracy. We also want to experiment with a simpler architec-
ture with no codebook and larger scenes, possibly of outdoor environments.
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