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ABSTRACT
User Relevance Feedback (URF) is a class of interactive learning
methods that rely on the interaction between a human user and
a system to analyze a media collection. To improve URF system
evaluation and design better systems, it is important to understand
the impact that different interaction strategies can have. Based
on the literature and observations from real user sessions from
the Lifelog Search Challenge and Video Browser Showdown, we
analyze interaction strategies related to (a) labeling positive and
negative examples, and (b) applying filters based on users’ domain
knowledge. Experiments show that there is no single optimal la-
beling strategy, as the best strategy depends on both the collection
and the task. In particular, our results refute the common assump-
tion that providing more training examples is always beneficial:
strategies with a smaller number of prototypical examples lead to
better results in some cases. We further observe that while expert
filtering is unsurprisingly beneficial, aggressive filtering, especially
by novice users, can hinder the completion of tasks. Finally, we
observe that combining URF with filters leads to better results than
using filters alone.
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Figure 1: Our proposal for an automated evaluation process
to understand the impact of user interaction strategies: We
create artificial users that label suggestions from the collec-
tions using different strategies and apply metadata filters
based on different levels of domain knowledge.

1 INTRODUCTION
Interactive Learning (IL) is a multimedia retrieval approach, where
a user and system work together to build a model in order to satisfy
a user information need [8, 9, 16, 19, 36, 37]. The system presents
users with media items from a collection that they label as positive
or negative, only positive [25], or only negative [31]. The labeled
items are then used to train a classifier that is deployed to retrieve
new suggestions. Some IL systems provide additional features, such
as: filters to focus on subcollections; text search to find positive
examples; or advanced browsing features, such as an event timeline.
IL is a continuous process that stops when the user considers the
task to be complete. User Relevance Feedback (URF) is a variation
of IL that focuses on quick convergence of the user’s information
need by providing the most relevant items from the system’s model
in each interaction round. Active Learning, another variation of
IL, suggests items from the collection that are most valuable to
improve the model, rather than the most relevant ones [12]. Since
we are focusing on scenarios where the user is seeking relevant
items, we focus on URF.

Traditionally, evaluation of URF focuses on measuring the clas-
sification performance of the model used to retrieve items [11, 29,
34, 35]. Recently, automated evaluation protocols have been used
to evaluate URF systems with a focus on artificial users [16, 23, 36]
for large multimedia collections. However, these are based on one
interaction strategy where the artificial user labels relevant items
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as positives and the system labels everything else as negatives. In-
tuitively, when using URF systems, a common assumption is that
more positive examples build a better model.

We conjecture that for many tasks it may be beneficial to have
a smaller set of stronger positive examples. Understanding when
to prefer one interaction strategy over another can greatly reduce
the time of convergence for an information need. To garner this
understanding, the first thought might be to conduct user studies.
However, user studies are expensive and allow users too much
freedom which makes them impractical for fine-tuning models and
analyzing the impact of specific interaction strategy. To evaluate
URF systems with an emphasis on understanding the impact of
interaction strategies, an automated approach is necessary.

This paper uses such an automated approach to analyze the im-
pact of different interaction strategies for URF systems. First, we
define several strategies for labeling positive and negative examples
and study their impact on result quality. Second, we explore the
impact of 4 classes of artificial users applying filters based on their
level of domain knowledge. To evaluate the interaction strategies,
we define automated evaluation protocols based on three multime-
dia collections, two from the interactive search challenges Lifelog
Search Challenge [10] and Video Browser Showdown [28], and one
for VOPE-8hr [39], a domain-specific forensic research collection.
Figure 1 outlines the proposed evaluation process, where artificial
users use the strategies to guide the relevance feedback process.

The knowledge gained from analyzing these interaction strate-
gies can benefit the training of new users of URF systems, as well
as help experienced users improve their performance on specific
tasks. It could also be incorporated into systems as a feature to auto-
matically suggest suitable interaction strategies for different tasks.
Specifically, this paper contributes three best practice guidelines:

(1) Labeling strategies impact results significantly, in particular,
strategies with more examples are not always better.

(2) Adding URF is always as good or better than just using filters.
(3) While filtering is often beneficial, overly aggressive filtering

can adversely affect the ability to complete tasks.

2 RELATEDWORK
User Relevance Feedback has been used since the 1960s to im-
prove queries for information retrieval [24] and saw a boom in the
1990s and 2000s for multimedia retrieval [11, 12, 29, 33–35]. Later,
it started fading as hash based approaches [20], product quantiza-
tion [13], and deep learning models [7, 32, 40] were proven more
efficient for retrieval on large-scale collections. However, in recent
years the issue of scalability has largely been resolved and the
state-of-the-art URF systems for large scale multimedia retrieval
are competitive with other approaches and require fewer examples
to train their models than the supervised approaches [16, 18, 36].

Since users are central to URF systems, it is important that the
evaluation methods of these systems account for their behavior.
Early evaluation efforts for relevance feedback utilized collections
that had relevance judgement mappings between queries and asso-
ciated documents [1, 2]. This allows for automating the evaluation
process with the simulated “user” judging items based on the rele-
vance judgement mappings. This form of evaluation with optimal
users that have knowledge about the ground truth has remained

the most common form for URF systems to date. Some evalua-
tion protocols use this for labeling the suggestions as positive or
negative [6, 29]. Other evaluation protocols, especially those that
work with large-scale collections, also add additional arbitrary neg-
atives [16, 23, 25, 36]. Analytic Quality uses artificial actors which
solve an analytic task derived from an existing benchmark/user
task, measuring precision and recall over time and estimating the
user’s insight gain [38].

While the plethora of work on automated evaluations contributes
to show the effectiveness of URF systems in various fields, the
evaluation methodology only captures the behavior of a specific
interaction strategy which may not be a strategy a real user will
resort to. Aside from this there has also been work that has focused
on evaluating systems with real users [23, 26, 29, 39]. URF systems
typically showcase up to 30 images in each round and depending
on the restrictions they can label as many items as they want [29],
be limited to label a few examples [26], or only label examples as
positive [25]. These evaluations give greater insight towards user
behaviour, but they rarely generalize the interaction strategies due
to the inherently limited set of users (tens at most).

With real users, it is also important to study the impact of users
with different levels of knowledge. Dividing the users into users
with relevant or no domain knowledge, it is possible to show that
the performance of labeling examples or applying filters can be
greatly affected [10, 27, 28].

From the related work, we identify a gap between artificial users
and real users and to the best of our knowledge no work has focused
on the impact this can have when evaluating URF systems. Hence
there is a need for considering various labeling strategies that are
inspired by real users, as well as establishing different levels of
domain knowledge when applying filters.

3 USER INTERACTION STRATEGIES
To evaluate URF systems in an automated way, we need artificial
users, software agents that simulate user behaviour. Their task is to
find one or more relevant item(s) from a collection C, based on a
textual description of an information need. To achieve this, they
follow a certain strategy for labeling examples. Additionally the
users apply filters based on different levels of domain knowledge.
In the remainder of this section we propose a variety of labeling
and filtering strategies to better understand the impact the different
strategies can have on the performance of a URF system.

3.1 Labeling Strategies
The common labelling strategy of marking ground truth items
as positives and everything else as negatives [4, 14, 16, 36] may
result in a near empty set of positives and a vast set of negatives,
where some negatives might feature relevant content. Furthermore,
the task objective can involve finding all items in the relevant set,
finding as many relevant items in r rounds as possible, or stopping
once the first relevant item is encountered. To support evaluation
for the different task objectives we must define strategies that use
the ground truth items to rank suggestions and select the best
suggestions as positives.

All strategies in this paper are based on observations of URF
systems used in live interactive search challenges, in particular the



Lifelog Search Challenge and the Video Browser Showdown [10,
15, 17, 19, 21, 28]. We assume that the collections are comprised of
images or videos represented with semantic feature vectors that can
be compared using a distance metric. Each strategy uses a distance
function with two feature vectors with semantic concepts extracted
using neural networks as input; 𝑑 (v𝑥 , v𝑚𝑎𝑥 ). The first vector is the
item from the suggestion set S𝑟 of the current interaction round 𝑟 .
The second is the max-pooled feature vector of the relevant items.
We use the Euclidean distance: it is simple, efficient, well-researched,
and works well with using a compressed representation [36].1

We have identified three major categories of labeling strategies,
Accumulative Sets, Fixed Positive Sets and Arbitrary Negative Sets,
that we now describe in detail.

3.1.1 Accumulative Sets. Continuously adding items to the positive
and negative set is a typical behavior of users that are attempting
to gradually improve the model. This leads to the first strategy.

±AccAdd — Accumulative Sets with Additions: Label the p
nearest items to v𝑚𝑎𝑥 in S𝑟 as positive, adding them to P𝑟 , the set
of positives for round 𝑟 , and label n furthest items from v𝑚𝑎𝑥 in S𝑟
as negative, adding them to N𝑟 , the set of negatives for round 𝑟 .

P𝑟 = P𝑟−1 ∪ argminp
𝑥 ∈S𝑟

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (1)

N𝑟 = N𝑟−1 ∪ argmaxn
𝑥 ∈S𝑟

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (2)

As users keep adding to the sets, examples from earlier interac-
tion rounds may become less important or even bad for the model.
Therefore, users may start replacing items to improve the model;
this behavior is typically observed from more experienced users.

±AccRep — Accumulative Set with Replacements: The user is
allowed to replace items from the positive or negative sets if better
representatives exist in the suggestion set S𝑟 , or in the labeled sets
P𝑟−1 and N𝑟−1. The positive and negative sets at round 𝑟 have the
size 𝑝𝑟 and 𝑛𝑟 respectively.

P𝑟 = argminp𝑟
𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (3)

N𝑟 = argmaxn𝑟
𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (4)

An example of a positive example moving to the negative set
is when an early positive example becomes a negative example
as the model evolves. By replacing items, the chances of building
a stronger model is enhanced. ±AccRep is a strategy that a user
may utilize early on in a session but as the size of the positive and
negative sets increases, the task of replacing items will become too
time consuming. Therefore, even if this strategy works well, it may
not be an optimal strategy during long sessions.

Enforcing an accumulative strategy increases the chances for
overfitting the model towards certain features, which can be espe-
cially bad if erroneous items, e.g., incorrectly labeled, are added.

3.1.2 Fixed Positive Sets. Limiting the positive and negative sets
to a fixed size, where the user can only replace items after the
first round, avoids overwhelming the user with trying to replace
from large sets. Instead, such strategies solely rely on the user’s
ability to replace bad examples when better ones are encountered.
These strategies tend to be more dynamic, and are suitable for tasks
1We also experimented with Mahalanobis distance but found it to be less effective.

where the user looks for strong archetypes to model the categories
of relevance. However, limiting the sets can hurt the classification
model for tasks where more items are required.

±FixRep — Fixed Set with Replacements: Restricts the size of
both sets to p and n respectively.

P𝑟 = argminp
𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (5)

N𝑟 = argmaxn
𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (6)
Next is a hybrid strategy that users might use for extremely

descriptive tasks, where good positive examples are rare, and where
the limitation on negatives cannot train the model well enough to
find the good positive examples. By restricting the positive set to
only the strongest positives, but continuously adding to the negative
set, the model can potentially be steered towards the relevant items.
This strategy can be linked closely to negative relevance feedback
as it is mainly guided by its negative set in the initial rounds [31].

+FixRep-AccAdd—Fixed Positive Set, Accumulative Neg. Set:
Fixed positive set (Eq. 5) and accumulative negative set (Eq. 2).

3.1.3 Arbitrary Negative Sets. There is work that suggests that
spending time on labeling negatives may not be as important as
labeling positives [16, 38]. It is therefore crucial to investigate the
impact of arbitrarily choosing negatives from either the suggested
item set or the overall collection. Both use 𝑎𝑟𝑏 (X, n), a function
which selects n arbitrary elements from a media item set X. We
define two strategies, whose positive strategies follow Eq. 1.

+AccAdd-ArbLoc —Arbitrary Negative Set (Local): Label 𝑛 neg-
atives arbitrarily from S𝑟 and add them to N𝑟−1.

N𝑟 = N𝑟−1 ∪ 𝑎𝑟𝑏 (S𝑟 \ P𝑟 , n) (7)

+AccAdd-ArbGlo — Arbitrary Negative Set (Global): Label 𝑛
negatives from the entire collection C and add them to N𝑟−1.

N𝑟 = N𝑟−1 ∪ 𝑎𝑟𝑏 (C \ P𝑟 \ N𝑟−1, n) (8)

3.2 Filtering Strategies
Another aspect of interactive retrieval sessions is applying filters
to reduce the scope of the analysis. Typically, filters are set based
on metadata or features extracted from the items, and they can be
added or removed at any point during a session. The reasoning
behind the chosen filters can vary between users and the quality
of filters can often depend on the level of domain knowledge they
have. We define 4 types of users based on their expertise; No Filter,
Novice, Expert and Data Author.

No Filters: To act as a baseline, this user type only utilizes the
interactive learning system by labeling the retrieved suggestions,
without applying any filters.

Novice: Users that tend to read a query and try to match the text
with matching filters. This reflects the behavior of new users start-
ing to work with a collection or system. However, it can also lead to
misinterpretation of the query and exclusion of relevant items. This
has indeed been observed during the novice sessions of interac-
tive search challenges [10, 28]. The reasons for misinterpretations
include time pressure, misusing the system, lack of domain knowl-
edge, and language barriers. For example, consider the following



query: “Walking on a green footpath, to my car. I remember I had
come off a flight and it was around lunch-time. I got into my car and
drove to have a meal. No, I drove to work where I had lunch” [10].
A Novice user might attempt a filter such as “work”, excluding the
relevant image in which a person was walking on a green footpath.

Expert: Represents analysts with expert domain knowledge. They
know the system, have adequate knowledge of the collection and are
able to interpret tasks beyond their description. They can connect
query information with metadata from previous acquired knowl-
edge, such as setting a location filter from a reference to a person
who was seen at that location in a prior session. Semantic filters,
such as "morning" or "evening" for hours, also fall under this.

Data Author: This type represents users with detailed knowledge,
gained from having either created the collection or maintained it
by updating or adding metadata. They are thus able to go beyond
the query and apply filters due to actual recollection of creating the
desired item in the collection. They may also use external informa-
tion for clarification, as they may recall a detail which can be found
via personal files or the internet, e.g., using a query regarding a
place they visited but forgot the name of. Note that this user type is
only applicable on collections that have a handful of contributors.

3.3 Summary
We conjecture that the labeling and filtering strategies presented
in this section have a strong impact on the performance of URF
systems. This has to date not been sufficiently captured by existing
evaluation methods. In the remainder of the paper we therefore con-
duct experiments that analyze the impact of the different labeling
and filtering strategies with a variety of collections and tasks.

4 EXPERIMENTAL SETUP
The experiments are conducted on tasks from 3 collections with
varying objectives, query details and metadata quality. The key
metric is completion time, or how many interaction rounds it takes
on average to finish a task. While observing the behavior of labeling
and filtering strategies for a handful of rounds is interesting, the
direct impact of a strategy will ultimately be reflected in the time to
finish the task. In addition, recall is also a relevant metric for tasks
with time limits, or tasks that require finding all relevant items.

An actor [38] is an artificial user that uses a particular labeling
and filtering strategy, and has a unique arbitrary starting point for
each relevant task. Each actor communicates with a URF server
using a script to perform the relevance feedback. To conduct the ex-
periments we use a URF system where 25 items are suggested each
round. The underlying classification model is linear SVM, which
has a good accuracy/speed ratio and is consistent with the state of
the art [16, 37]. During each interaction round the actor has to label
𝑝 positives and𝑛 negatives from the 25 suggestions and apply filters
depending on their labeling and filtering strategy respectively. All
the results reported in this paper are an average of 50 different
actors for each labeling and filtering strategy combination.

4.1 LifeLog Search Challenge 2019
Lifelogging is the idea of recording everything one does digitally,
such as taking 2-3 images via a body camera every minute and

logging daily routines manually and by using smart gadgets. Lifel-
oggers tend to end upwith a large collection of images andmetadata.
The Lifelog Search Challenge (LSC) is an interactive live search
challenge featuring a small curated lifelog collection [10]. The col-
lection used in LSC2019 contains 41,666 images represented as 1000
dimensional feature vectors extracted with a deep neural network
using concepts from ImageNet [5]. The collection contains metadata
such as location, day and time that are useful as filters. Additional
data, such as eating logs, fitness information, personal notes, are
excluded as they are only available for a subset of the collection.

LSC2019 featured 24 interactive tasks with corresponding ground
truths, where each task aimed to find images relevant to a textual
query describing events from the lifelogger. The descriptions are
extended through iterations, where each iteration adds some new
information. Every iteration lasts 30 seconds with a total of six
iterations. The nature of the task description is that of a memory,
where one iteration may contradict a statement made in a previous
one. The descriptions also typically contain information that can
be correlated to metadata. The objective of a task is to find any of
the relevant items; for some tasks the relevant set contains only a
handful of images, while for a few it contains 50+ items. Due to the
quality and transparency of the metadata, all types of users defined
in Section 3.2 are applicable to this collection.

4.2 Video Browser Showdown 2020
The Video Browser Showdown [28] (VBS) is a live interactive search
challenge similar to LSC. The latest edition of VBS was in 2020
and used the V3C1 collection that consists of 1000 hours of video
segments or approximately 1M keyframes, from the online video
site Vimeo [3]. We refer to this collection as VBS2020.

Unlike LSC2019, which consists of images from a single user,
these videos are from different users all over the world. The users
have free reign over the metadata, such as video categories and
tags related to the video. While categories have a fixed number of
options to select from, it is up to the user to determine which fits
the video, making it highly subjective. The tags have no real restric-
tions, allowing the user to define their own tags. The categories and
tags metadata are considered video level filters as they only refer to
entire videos. The keyframes have also been processed for number
of faces visible, making it possible to set this as a keyframe level
filter. Note that our system uses keyframes from the videos as rep-
resentatives of the segments. The representation for the keyframes
is a more detailed feature vector with 12,988 dimensions [22].

VBS2020 featured 13 known item search tasks. The tasks describe
visual events from a specific video segment. The descriptions focus
more on visual features compared to metadata information. These
tasks are presented through iterations as well, with time intervals of
60 seconds and a total of three iterations. The task objective is to find
any relevant video segment of the described event. The collection
also has more vaguely described tasks called Ad-hoc video search,
where the goal is to find as many segments as possible that match
the description. However, these tasks have been omitted since they
lack a ground truth.

Due to the metadata having no central curator it is difficult to
define a user for Data Author user strategy from Section 3.2. We
therefore focus on Novice and Expert user strategies instead.



4.3 VOPE-8hr
The VOPE-8hr [30, 39] collection is inherently different from the
previous two, both in terms of scale and objective. It consists of
8 hours of video broken into shots of 3 seconds, making it the
smallest collection with∼9600 items. VOPE-8hr is a domain-specific
collection for forensic research and the associated tasks are to
find extremist propaganda content of three types; Neo-Nazis (task
1), Islamic terrorists (task 2) and Scottish ultra-nationalism (task
3). These tasks differ from the other two collections’ tasks as the
objective is to find all relevant examples of which some are easily
identifiable and others being needles in a haystack. In addition to
this, the collection is intentionally curated to have a portion of
“red-herring” data that shares visual similarity to the relevant items
but contextually is completely irrelevant [39]. The number of items
to find for each task also differs, with tasks 1 and 3 having roughly
50 items and task 2 having 684 items. As there is no metadata
that a real user could use as filters, no metadata filtering strategy
experiments have been run for this collection.

5 EXPERIMENT 1: LABELING STRATEGIES
A baseline experiment is run with all the labeling strategies from
Section 3.1 where 𝑝 = 5 and 𝑛 = 15 with no filter options.2 Typically
in a URF setting the starting point is arbitrary. Therefore, selecting
more negatives than positives in each round can be beneficial for
directing the classifier quicker to the relevant item, as the initial
items may not contain any good positive examples.

5.1 LSC2019
Figure 2(a) shows the number of rounds required to complete tasks
for each labeling strategy on LSC2019. The two leftmost boxes show
the distribution for the two Accumulative strategies. While their
median is the same, ±AccRep is far more consistent than ±AccAdd,
indicating that replacing items from the positive and negative set
while adding items is better than just adding items. The two boxes
in the middle show the Fixed Positive strategies. The hybrid strategy
+FixRep-AccAdd is far better than the ±FixRep strategy. However, it
does have some tasks where it does extremely poorly, as indicated
by its outliers. We explore this in more detail with Figure 2(b)
below. Lastly we have the two boxes on the right for the Arbitrary
Negative results. Of the two, +AccAdd-ArbLoc is the better, meaning
that labeling arbitrary negatives from the suggestion set is better
than labeling them from the whole collection. If we compare this
strategy with its Accumulative counterpart ±AccAdd, it is nearly
identical in performance if not slightly better. Note that similar
effect is observed from using -ArbLoc with +FixRep (not shown).

Figure 2(b) shows the average rounds per run for each task from
LSC2019. The majority of tasks follow the pattern of tasks 1 and
2, which have ground truths with many near-duplicate images
in the collection: “...looking at an old clock, with flowers visible.
There was a lamp also...” (task 1), “A red car beside a white house...”
(task 2). While most strategies fare well with these tasks, ±FixRep
and +AccAdd-ArbGlo are consistently bad, but for different reasons.
For these tasks, the ±FixRep strategy can end up in a state where
it cannot improve the model as no stronger positive or negative
2We have run experiments with 𝑝 ∈ {1, 3, 5, 7} and 𝑛 ∈ {5, 10, 15, 20}. Since the
results support the conclusions in this section, we do not discuss them further.
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Figure 2: Baseline results for LSC2019. (a) shows the average
rounds it takes to complete the tasks, emphasizing the dis-
tribution for each strategy. (b) shows the average rounds per
run for each task separately.

examples can be found, and the strategy simply browses through
the model’s ranked list of suggestions. +AccAdd-ArbGlo, on the
other hand, explores the search space more sporadically as it labels
negatives from the whole collection. Since the actor must select
some positives in every round, this sporadic exploration leads to
many bad positives, resulting in a poor model for the tasks.

There are a few tasks that show a different pattern. First, tasks
14 and 22 are cases where the description leads to many positive
examples: “I was in my office taking a skype call... large image of
a man’s face on the screen...” (task 14). There is an abundance of
computer, laptop, tablet, smartphone and tv related screens in this
collection, and for this task the screen relates to a laptop/notebook
screen which is seen in roughly one-third of the images in the
collection. This can be bad for +FixRep-AccAdd, as the -AccAdd
part will add many of these screens to its negative set. The other
strategies counter this by adding screens also to the positive set.
±FixRep is a good option here, because of the exact same reason it
is bad in the other tasks: few or none of these near-duplicates end
up in the negative set, resulting in a better model. This scenario
refutes the assumption that more examples are always better.

Second, task 8 has ground truthwith visual features that are amix
of common and distinctive features, where the common features
can lead the model away from the distinctive features: “Walking
on a green footpath, to my car...” (task 8). Here, the ground truth
item consists of a parking lot with several cars. While the collection
consists of many different types of cars, some are abundant in the
collection, while others are rarer. For this particular task, one of the
abundant types is “minivan” which has approximately 3,000 related
items, while one of the rarer types is “sports car” with roughly



50 items. +FixRep-AccAdd is the best strategy in this case, as it
limits the positive set to the strongest examples. While suggestions
with the common “minivan” feature will continuously appear, some
of them will be labelled negative, which in effect will allow the
distinctive “sports car” feature to dominate the model.

5.2 VBS2020
Figure 3(a) shows the average rounds per run to complete the tasks.
As this collection is roughly 20 times larger than LSC2019, we
restrict the number of rounds a session can take to 500. Since some
tasks cannot be completed within this limit, we also report the
average recall distribution for each strategy in Figure 3(b).

Again, the two leftmost boxes in both figures represent the results
for the Accumulative strategies. Here, ±AccAdd fares better than
±AccRep. With ±AccRep replacing items in growing positive and
negative sets, the model can jump to many different directions,
including back to areas already explored. This can occur when weak
examples are repeatedly replaced with different weak examples.
As the variety of content is much larger in the VBS2020 collection
than LSC2019, this is more likely to happen.

The middle two boxes show the results for the Fixed Positive
strategies. For VBS2020, +FixRep-AccAdd is the best strategy for ma-
jority of the tasks in terms of rounds and recall. ±FixRep also shows
great improvement over the other strategies, and has a more consis-
tent distribution than +FixRep-AccAdd in terms of recall. The reason
why these strategies do not fall into the same trap as ±AccRep, is
because the positive set is limited, which allows for better control
over the model’s direction. Even with ±FixRep replacing negatives,
eventually only strong negative examples will remain.

The two rightmost boxes show the Arbitrary Negative strategies
where the performance resembles that of LSC2019. +AccAdd-ArbLoc
is again close to the performance of ±AccAdd as shown in the
figure, and when tested with the +FixRep strategy (not shown)
it resembles the performance of +FixRep-AccAdd. Based on these
finding there is definitely some merit to letting the system choose
arbitrary negatives from the suggestion set.

The objective of each task is to find any segment related to an
event in a video, and as mentioned in Section 4.2 the task descrip-
tions emphasize visual features of the ground truth items. The
majority of the VBS2020 tasks have ground truth with a mixture of
common and distinct visual features, similar to the outlier task 8 for
LSC2019. As described above, many positives hurt the classification
model with such tasks, as the positive set includes many items
with strong common features, which drive the model away from
the ground truth items with distinctive features. Policies with few
positive examples are better candidates in this case. The prevalence
of this type of tasks is the main reason for the strong performance
of the ±FixRep and +FixRep-AccAdd strategies for VBS2020.

5.3 VOPE-8hr
The results are significantly different for the VOPE-8hr collection,
as the focus of tasks is to find all relevant items. Figure 4(a) shows
the number of average rounds with each labeling strategy for each
task. The bottom points of each line depict the average round when
the first relevant item was encountered and the upper point is the
average rounds it took find all relevant items and complete the task.
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Figure 3: Baseline results for VBS2020. (a) shows the number
of avg. rounds it takes to complete the tasks for each labeling
strategy and (b) shows the average recall of them.

The red lines show the Accumulative strategies, where there are
no significant differences between them. The black lines depict the
Fixed Positive strategies, which for these tasks perform the worst. As
the intention of the tasks is to find all relevant items, the number of
examples in the positive set may be too small to define a satisfactory
model. The blue lines show the Arbitrary Negative strategies. Here,
we observe that +AccAdd-ArbGlo does surprisingly well for all 3
tasks. This is due to the presence of "red-herring" data along with
noise in the collection, making it difficult to select good negatives
from the local suggestion set. Task 2 takes the longest, as it has 14
times as many relevant items as the other two tasks.

If the objective was to find the first relevant item, all strategies are
efficient. This is more clear when looking at the recall over rounds
for each task, depicted in Figures 4(b)-(d) for each task respectively.
For task 1, all strategies find more than 80% of the relevant items in
fewer than 50 rounds but struggle with the remaining 20%. While
most strategies follow a similar pattern for tasks 2 and 3, the Fixed
Positive strategies finds the majority at a slower rate but complete
the task at the same time as the others. This behavior can be related
to the "red herring" data as the other strategies add far more of
those into their positive set which leads their models quicker to the
relevant search space. Ultimately, it is worth considering that when
such a scenario occurs where the user goes many rounds without
discovering a relevant item, it could indicate to the system that it
should guide the user to switching strategies.

5.4 Analysis of Replacements
Since some strategies allow replacements, it is interesting to know
when those replacements occur. Figure 5(a) shows the replacement
occurrences for±AccRep,±FixRep and +FixRep-AccAdd for LSC2019.
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Figure 4: Results frombaseline labeling strategy experiments for VOPE-8hr. (a) shows the number of avg. rounds for each label-
ing strategies and task. The bottom point indicates the avg. round the first relevant item was discovered, while the top depicts
the avg. rounds it took to complete the task. (b), (c) and (d) shows the average recall over rounds for each task respectively.
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Figure 5: Occurence of replacements in the positive set.

The y-axis shows the average replacement occurrences as percent-
age and the x-axis shows the rounds as percentage. For the Fixed
Positive strategies, many replacements occur early in the session.
This is expected, as the model is starting to form and every round
will have different suggestions. As the model becomes better, how-
ever, replacements become rare as many of the suggestions are
similar and not necessarily better. For ±AccRep the occurrence of
replacements is more balanced; as the positive set keeps increasing,
the chance of replacements occurring remains similar.

The replacement patterns are similar across all collections. The
replacement pattern for VBS2020 (not shown) is nearly identical
to LSC2019. Figure 5(b) shows the replacement occurrences for
VOPE-8hr which has a similar pattern but the trend of the fixed
strategies is far more apparent, where both strategies stop replacing
items after roughly 20% into the session. This is because the “red-
herring” data in the collection is visually similar to the relevant
items, helping the system to rapidly find optimal positive examples.

5.5 Summary
From the labeling strategy experiments we learn that different
strategies can be beneficial depending on the collections content
and size, and the nature of the tasks. This is a clear indication
that the current evaluation methods that use strategies resembling
+AccAdd-ArbGlo are not good enough to indicate the quality of
URF systems. In addition to this revelation, the results contradict
the assumption that more positive/negative labeled examples each
round always lead to faster convergence.
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Figure 6: Average scope of the tasks from LSC2019 when
their filters are applied, shown with percentage (left axis)
and maximum number of interaction rounds (right axis)
when the number of suggestions per round is 25.

6 EXPERIMENT 2: FILTERING STRATEGIES
We have observed how different labeling strategies can impact the
number of rounds it takes to solve tasks for the different datasets.
On average the VBS2020 and VOPE-8hr take roughly 230 rounds
to complete a task, which tranlates to 75 minutes assuming the
user spends an average of 20 seconds judging examples per in-
teraction round. LSC2019 tasks fare better with average tasks for
the strongest strategies taking fewer than 75 rounds (25 minutes).
However, considering the actual time to complete the tasks in the
live search challenges is 5-7 minutes, this is too long. In this experi-
ment we run the best labeling strategies with the different filtering
strategies described in Section 3.2 on LSC2019 and VBS2020. As
previously mentioned VOPE-8hr does not contain metadata that
can act as filters and therefore experiments for it have been omitted.

6.1 LSC2019
We start by analyzing the potential impact of filters. Figure 6 shows
the percentage of search space when filters are applied by the
3 different user types for each iteration of the tasks in LSC2019.
Furthermore, it depicts the worst case number of rounds it will take
to find the relevant items on the right axis.

Overall this indicates the possibility of faster retrieval with the
scope being reduced by more than 60% when all filters are applied
for the Novice user. Additionally the relation between type of user
and scope is clear and shows that in theworst caseData Author need
much fewer rounds than the Expert, while the difference between
Expert and Novice is slightly smaller. Note that the Novice users
apply filters that exclude the relevant items for four tasks, meaning
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Figure 7: Avg. rounds to complete tasks with filters using the
best labeling strategies for LSC2019.

that the retrieval process either stops by finding the relevant item in
an iteration prior to the one where the excluding filters are applied
or they run out of items once they are applied.

Turning to the actual impact of filters, Figure 7 shows the results
for actors using the best strategy from each category of the baseline
experiments, ±AccRep, +FixRep-AccAdd and +AccAdd-ArbLoc, with
regards to average number of rounds per run to complete the task
when the different filtering strategies are applied. The leftmost
group of boxes represents the same results from Figure 2(a) where
no filters were applied. The next group is the results from running
the filters applied by the Novice which sees each strategy taking
fewer than 70 rounds in average across tasks. The results include
the four failure tasks which are shown as outliers.3 The third group
of boxes represent the results where the filters are applied by an
Expert. Again, this shows great improvement for all strategies with
average rounds being between 20-30 for all strategies. The final
group of boxes show the result for the Data Author filters, which
brings all strategies below 10 rounds. Overall the trend is expected,
as users with better domain knowledge apply better filters and
avoid exclusion issues. As a final note, we observe no change in the
relative performance between labeling strategies when filters are
applied: ±AccRep and +FixRep-AccAdd remain the strongest.

6.2 VBS2020
For VBS2020, theNovice selects most filters from tags and categories
which end up excluding the correct video segment for most tasks.
In fact there are only two tasks where it manages to not exclude
them and manages to find the desired segment in fewer than 20
rounds. For the remaining 11 tasks, however, it fails to complete
any of them with the filters applied. We therefore do not consider
the Novice user further.

Next we study the impact of actors using the filtering strategy
of an Expert user that has worked with the collection and under-
stands when and how to set frame level filters and video level filters.
Figure 8(a) highlights the results of these actors using the Fixed
Positive strategies, which were the best overall from the labeling
strategy experiments. None of the filters set by the actor exclude
any relevant items and we see a great improvement in terms of
average rounds per run for both strategies with +FixRep-AccAdd
still being the best. Figure 8(b) shows the avg. recall per run for the
actors. While both labeling strategies improve in this area as well,
the +FixRep-AccAdd is far more consistent with the average recall
3Note that ±AccRep does complete up to 11 of its 50 runs for 1 of those tasks. This
is due to the excluding filter being set later for this task than the other 3, making it
possible for the task to be completed.
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Figure 8: VBS2020 results for the Fixed strategies using Ex-
pert filters.

close to 100% for the majority of the tasks, which further solidifies
it as a preferred strategy. However, there are still tasks where some
of the runs fail to complete. This means that the model either got
derailed and exceeded the number of rounds or that even with the
filters applied the search scope is still too large.

6.3 Summary
Overall we have shown that applying filters is beneficial for all types
of users if the collection is well curated and the task descriptions re-
flect the metadata used as filters. It can have negative consequences
if the user has little domain knowledge, especially when they set
extreme filters that exclude the relevant items. However, as filters
are set over time and the excluding feature is not set at the begin-
ning, URF is occasionally fast enough to bypass the excluding filter
by finding a relevant item before that filter is set. Furthermore, our
results firmly indicate that URF with filters applied by users with
high domain knowledge is always better than just applying filters.

7 CONCLUSION
In this paper, we have analyzed the impact of interaction strategies
for labeling positives and negatives as well as applying filters based
on user’s domain knowledge for user relevance feedback systems.
By conducting experiments on three different collections of various
sizes and tasks using artificial users, we observe that the choice of
labeling strategy can have a major impact on number of interaction
rounds it takes to finish a task. There is no single optimal labeling
strategy, as the best strategy depends on both the collection and the
task. Furthermore, our results refute the common assumption of
providing more training examples is always beneficial, as strategies
with smaller set of examples lead to better results in some cases.

We observe that users with expert level or higher domain knowl-
edge unsurprisingly apply filters that are beneficial. However, ag-
gressive filtering, especially by novice users, can hinder the comple-
tion of tasks. Furthermore, URF is a powerful tool in conjunction
with filters that leads to better results than using filters alone.

These findings should be considered in future URF evaluation
efforts as more refined artificial users will lead to better benchmarks,
making it easier to quantify the performance of URF systems.
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