
On Randomized Searching for Multi-Robot
Coordination

Jakub Hvězda1,2, Miroslav Kulich1, and Libor Přeučil1

1 Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in
Prague, Prague, Czech Republic

2 Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in
Prague, Czech Republic

hvezdjak@fel.cvut.cz, kulich@cvut.cz, preucil@cvut.cz
WWW home page: http://imr.ciirc.cvut.cz

Abstract. In this chapter, we propose a novel approach for solving the coordi-
nation of a fleet of mobile robots, which consists of finding a set of collision-free
trajectories for individual robots in the fleet. This problem is studied for sev-
eral decades, and many approaches have been introduced. However, only a small
minority is applicable in practice because of their properties - small computa-
tional requirement, producing solutions near-optimum, and completeness. The
approach we present is based on a multi-robot variant of Rapidly Exploring Ran-
dom Tree algorithm (RRT) for discrete environments and significantly improves
its performance. Although the solutions generated by the approach are slightly
worse than one of the best state-of-the-art algorithms presented in [23], it solves
problems where ter Morses algorithm fails.

1 Introduction

Due to the increased deployment of robotic systems in many industrial applications as
well as the recent advances in mobile robotics the interest in the research of multi-robot
systems has increased. A major problem in this area is the coordination of trajectories
of a fleet of robots/agents in these systems. The goal of this problem is to find a set
of paths for each robot/agent in the fleet that does not collide with obstacles in the
environment as well as other robots/agents, given the starting and goal locations, while
also minimizing global cost function. Among such cost functions we can consider for
example the time it takes for the last robot to reach its destination or sum of all path
lengths.

A typical example of multi-robot path planning application are automated ware-
houses, see Fig.1, which are using autonomous robots that deliver ordered items from/to
given locations. Another example of industry field that faces higher increase in traffic
than the actual capacity are the airports, where it is necessary to guide the incoming and
outgoing planes towards their destination quickly and safely. This leads to increased
reliance on path optimization algorithms that are able to increase their throughput.

Multi-robot path planning and motion coordination has been studied since the 1980s,
and many techniques have been developed during this period, see surveys [25, 8] for
overview. This problem (formulated as the warehouseman’s problem) was proved to

2 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

Fig. 1: Automated warehouse: G-COM system by Grenzebach (https://www.
grenzebach.com) in a costumer application.

be PSPACE-complete [12]. For the case where robots move on a predefined graph,
complexity of the problem can be reduced, nevertheless, it is still NP-hard [11], which
means that optimal solutions cannot generally be found in a reasonable time for non-
trivial instances (e.g., for a number of robots in order of tens).

Solutions to the problem consider either coupled or decoupled approaches. Cen-
tralized (coupled) approaches consider the multi-robot team as a multi-body robot for
which classical single-robot path planning can be applied in composite configuration
space. Traditional centralized methods are based on complete (i.e., the algorithm finds
a solution if it exists or reports that no solution exists otherwise) and optimal classi-
cal algorithms and provide optimal solutions [17], [19], [27]. For example, a solution
which assumes a multi-robot team as a multi-boty robot by building a Cartesian product
of particular robots’ configurations and finding a trajectory in the constructed space is
presented in [19]. However, these approaches require computational time exponential in
the dimension of the composite configuration space, so they are appropriate for small-
sized problems only. This drawback leads to the development of methods that prune
the search space. For instance, Berg et al. [3] decompose any instance of the problem
into a sequence of sub-problems where each subproblem can be solved independently
from the others. The Biased Cost Pathfinding [10] employs generalized central decision
maker that resolves collision points on paths that were pre-computed independently per
unit, by replanning colliding units around the highest priority unit. Another approach
is to design an algorithm based on a specific topology describing the environment. [26]
present a multi-phase approach with linear time complexity based on searching a min-
imum spanning tree of the graph. The main idea of the algorithm is to find vertices
for agents to move to while maintaining such a state of the graph that does not block
other agents. The paths between these vertices are then found using standard one-agent
planning algorithms such as A* while looking at other agents as obstacles.

On Randomized Searching for Multi-Robot Coordination 3

Flow Annotation Replanning, an approach for grid-like environments is introduced
in [34]. A flow-annotated search graph inspired by two-way roads is built to avoid
head-to-head collisions and to reduce the branching factor in an A* search. A heuristics
is furthermore used to solve deadlocks locally instead of resorting to a more expensive
replanning step. Nevertheless, the computational complexity is still high (e.g., [3] solves
a problem with 40 robots in 12 minutes, [34] needs approx. 30 seconds for 400 robots).

On the contrary, decoupled methods present a coordination phase separated from the
path planning phase. These approaches provide solutions typically in orders of magni-
tude faster times than coupled planners, but these solutions are sub-optimal. Moreover,
the decoupled methods are often not complete as they may suffer from deadlocks. These
approaches are divided into two categories: path coordination techniques and prioritized
planning. Path coordination considers tuning the velocities of robots along the precom-
puted trajectories to avoid collisions like in [18]. Similarly, a resolution-complete al-
gorithm is presented in [30], which is consists of exploring a so-called coordination
diagram (CD). CD was firstly introduced in [24] and it describes conflicts of robots in a
joint space where each dimension represents and individual robot’s position on its path.

Prioritized planning computes trajectories sequentially for the particular robots based
on the robots’ priorities. Robots with already determined trajectories are considered as
moving obstacles to be avoided by robots with lower priorities. A simple heuristics
to assign priorities is introduced in [2] – priority of a robot is determined as the dis-
tance to its goal. Another approach, a randomized hill-climbing technique based on a
greedy local search procedure [28] to optimize the order of robots is presented in [1].
Finally, Čáp et al. [4] discuss conflicts that occur during prioritized planning and pro-
pose a revised version of prioritized planning (RPP) that tries to avoid these conflicts.
They also propose decentralized implementations of RPP (synchronous as well as asyn-
chononous) and prove that the asynchronous version is guaranteed to terminate.

Ter Morse et al. [23] present another prioritized planning scheme, but it codes in-
formation about trajectories of robots with higher priorities into a planning graph rather
than into the planning algorithm itself. It does so by constructing a resource graph,
where each resource can be for example a node of the original graph or intersection
graph edges. Every such resource holds information about time intervals in which it is
not occupied by already planned robots. An adaptation of the A* algorithm is used on
this graph to find the shortest path through these intervals (called free time windows) to
obtain a path that avoids all already planned robots.

Gawrilow et al. [9] deal with a real-life problem of routing vehicles in Container
Terminal Altenwerder in Hamburg harbor. They used a similar approach to keeping a
set of free time windows for path arcs in the graph. Their algorithm contains a prepro-
cessing of the graph for the use of specific vehicles followed by computation of paths
for individual vehicles on this preprocessed graph.

Another similar approach is presented in [35], where each robot looks for a viable
path in a 2D spatial grid map and checks for collisions with moving obstacles using
a temporal occupancy table. Zhang et al. [38] adopt a similar approach to [23] with
enhanced taxiway modeling approach to improve performance on airport graph struc-
tures. Ter Mors et al. [22] compare Context-Aware Route Planning (CARP) [23] with a
fixed-path scheduling algorithm using k shortest paths [37] and a fixed-path scheduling

4 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

algorithm using k disjoint paths [32]. The experiments show that the CARP algorithm is
superior in all measured qualities. In our recent paper [14], we propose a modification
of CARP, which generates a trajectory for an robot ak assuming that trajectories for k1
robots are already planned which can possibly lead to modification of those planned tra-
jectories. The main idea is to iteratively build a set of robots whose trajectories mostly
influence an optimal trajectory of ak. The experimental results show that the proposed
approach finds better solutions than the original CARP algorithm after several random
shuffles of the robots priorities while requiring significantly less computational time for
adding individual robots into the system.

Comparison of several heuristic approaches of assigning priority to robots in [21]
concludes that the heuristics which plans longest paths first perform best when a makespan
is to be minimized. A greedy best-first heuristics provides best results regarding joint
plan cost. However, its downside is that it calls the planning algorithm for all yet un-
planned robots in every round and it is thus very time-consuming.

Several computationally efficient heuristics have been introduced recently enabling
to solve problems for tens of robots in seconds. Chiew [5] proposes an algorithm for n2

vehicles on a n× n mesh topology of path network allowing simultaneous movement
of vehicles in a corridor in opposite directions with computational complexity O(n2).
Windowed Hierarchical Cooperative A* algorithm (WHCA*) employs heuristic search
in a space-time domain based on hierarchical A* limited to a fixed depth [29]. Wang
and Botea [33] identify classes of multi-robot path planning problems that can be solved
in polynomial time and introduce an algorithm with low polynomial upper bounds for
time, space and solution length. Luna and Bekris [20] present a complete heuristics for
general problems with at most n−2 robots in a graph with n vertices based on the com-
bination of two primitives - “push” forces robots towards a specific path, while “swap”
switches positions of two robots if they are to be colliding. An extension which divides
the graph into subgraphs within which it is possible for agents to reach any position of
the subgraph, and then uses “push”, “swap”, and “rotate” operations is presented in [6].
Finally, Wang and Wooi [36] formulate multi-robot path planning as an optimization
problem and approximate the objective function by adopting a maximum entropy func-
tion, which is minimized by a probabilistic iterative algorithm.

The approaches mentioned above have nice theoretical properties, but Context-
Aware Route Planning (CARP) [23] is probably the most practically usable algorithm
as it produces high quality solutions fast, and it finds a solution for a large number of
practical setups.

Recently, Solovey et al. present an approach for multi-robot coordination inspired
by the Rapidly-exploring random tree (RRT) algorithm [19]. The approach, MRdRRT [31]
is probabilistic and plans paths on predefined structures (graphs) for small fleets of
robots. This is further improved in [7] by employing ideas from RRT*[16], a variant of
RRT which converges towards an optimal solution.

In this paper, we present a probabilistic approach which extends and improves a
discrete version of Rapidly-Exploring Random Tree (RRT) for multiple robots [31].
Our approach focuses mainly on scalability with increasing number of agents as well
as improving the quality of solution compared to [7] that presents the optimal version
of the dRRT algorithm but keeps the number of robots relatively low. We show that

On Randomized Searching for Multi-Robot Coordination 5

the proposed extensions allow solving problems with tens of robots in times compara-
ble to CARP with a slightly worse quality of results. On the other hand, the proposed
algorithm finds solutions also for setups where CARP fails.

The paper is an extended version of the paper [13] presented at the 15th Interna-
tional Conference on Informatics in Control, Automation and Robotics (ICINCO). In
comparison to the ICINCO paper, the following modifications were made:

– The state-of the art was refined and extended and new references were added.
– The section about the proposed improvements of the original MRdRRT algorithm

was extended. Namely, the proposed use of the CARP algorithm was modified with
a detailed description of CARP.

– Experiments were performed on various sizes of maps (only one map size was
considered in the ICINCO paper). Moreover, influence of two main improvements,
expansion and rewiring, on solution quality and time complexity was studied.

– All the drawings were updated and redesigned and some additional figures were
included.

The rest of the paper is organized as follows. The multi-agent path-finding problem is
presented as well as the used terms are defined in Section 2. The multi-robot discrete
RRT algorithm and the proposed improvements are described in Section 3, while per-
formed experiments, their evaluation, and discussion are presented in Section 4. Finally,
Section 5 is dedicated to concluding remarks.

2 PROBLEM DEFINITION

The problem of multi-agent pathfinding/coordination concerns itself with searching for
non-colliding paths for each agent in a set of agents that starts in agents start location
and ends in its goal location while minimizing some global cost function such as agent
travel time or global plan completion time.

For more rigorous specification, we assume:

– A set of k homogenous agents each labeled a1,a2, ...,ak.
– A graph G(V,E) where |V |= N. The vertices V of the graph are all possible agent’s

locations, while E represents a set of all possible agent’s transitions between the
locations.

– A start location si ∈V and a target location ti ∈V of each agent.

The goal is to find a set of trajectories on G(V,E) that avoid collisions with other
robots and environmental obstacles that specify all locations of each agent in each time
step such that the agents are in their initial positions at the start and in their goal posi-
tions at the end.

The key used terms and additional constraints to the generated trajectories will be
specified in the following paragraphs.

6 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

2.1 Actions

In each time point, only two action types are permitted for every agent: The first type of
action is for the agent to move into one of the neighbouring nodes and the second type
of action is that the robot waits at its current location. The cost of these actions can be
different for each algorithm, but in our case, the assumption is that staying still has zero
cost. Also, another assumption is that once agents reach their goal location, they wait
for all other agents to finish their respective plans.

2.2 Constraints

In this paper the main constraints placed upon the movement of agents are:

– No two agents a1 and a2 can occupy the same vertex v ∈V at the same time.
– Assume two agents a1, a2 located in two neighboring nodes v1,v2 ∈V respectively,

they can not travel along the same edge (v1,v2) at the same time in opposite di-
rections. In other words, two neighboring agents cannot swap positions. However,
it is possible for agents to follow one another assuming that they do not share the
same vertex or edge concurrently. For example, if the agent a1 moves from v2 ∈V
to v3 ∈V then the agent a2 can move from v1 ∈V to v2 ∈V at the same time.

2.3 Composite configuration space

The composite configuration space G = (V ,E) is a graph that can be defined in a
following manner. The vertices V are all combinations of collision-free placements
of m agents on the original graph G. These vertices can also be viewed as m agent
configurations C = (v1,v2, ...,vm), where an agent ai is located at a vertex vi ∈ G and
the agents do not collide with each other. The edges of G can be created using either
Cartesian product or Tensor product. In this paper the Tensor product is used because
is allows multiple agents to move simultaneously. Therefore, for two m agent configu-
rations C = (v1,v2, ...,vm), C′ = (v′1,v

′
2, ...,v

′
m) the edge (C,C′) exists if (vi,v′i) ∈ Ei for

every i and no two agents collide with each other during the traversal of their respective
edges.

The distance between two neighboring nodes C1 = (v11,v12, ...,v1n) and C2 = (v21,
v22, ...,v2n) in a composite roadmap is calculated as the sum of Euclidean distances d
between the corresponding nodes:

δ(C1,C2) =
n

∑
i=0

d(v1i,v2i)

3 PROPOSED ALGORITHM

3.1 Discrete RRT

A discrete multi-robot rapidly-exploring random tree (MRdRRT) [31] is a modification
of the RRT algorithm for pathfinding in an implicitly given graph embedded in a high-
dimensional Euclidean space.

On Randomized Searching for Multi-Robot Coordination 7

Similarly to RRT, the MRdRRT finds the paths for the agents in the composite con-
figuration space Rd by growing a tree T rooted in the vertex s that represents the start
locations of all agents. The tree is expanded by iterative addition of new points while
simultaneously attempting to connect the newly added points to the goal vertex t such
that no constraints are violated, e.g. not causing any collisions with the environment and
between agents. The addition of new points is handled first sampling a random point u
from the composite configuration space, followed by extending the current tree towards
the sample point u. The important thing to note here is that vertices added to the tree are
taken from G. This means that to extend the tree towards sample point it is required to
first find the node in the tree from which the extension is made - in this case the nearest
point n in the tree to the sample u is chosen, but also which neighbour of this node will
be selected as the extension. Because unlike in RRT that operates in continuous space,
it is not possible to make a step in the given direction. To choose the best neighbour
of n the MRdRRT uses a technique called oracle. Without loss of generality consider
that G is embedded in [0,1]d . For two points v,v′ ∈ [0,1]d the ρ(v,v′) denotes a ray that
begins in v and goes through v′. ∠v (v′,v′′) given three points v,v′,v′′ ∈ [0,1]d denotes
the (smaller) angle between ρ(v,v′) and ρ(v,v′′). The way the oracle is used is given
sample point u it returns the neighbor v′ of v such that the angle between rays ρ(u,v′)
and ρ(v,v′) is minimized. This can be defined as

OD (v,u) := argmin
v′∈V

{
∠v

(
u,v′

)
|
(
v,v′

)
∈ E

}
.

As mentioned earlier the growth of the tree is not done only by adding single new
nodes, but also attempting to connect the newly added nodes to the goal vertex t. The
reason for this is that the tree may eventually expend to this vertex, but it is unlikely
for larger problems. For this reason, the local connector is necessary to ensure the
algorithm finds the paths in a reasonable amount of time. The main restriction for the
local connector is that it returns decision about finding or not finding the paths quickly
by attempting to solve only a restricted version of the problem so that it can be run
often.

3.2 Proposed improvements

The original MRdRRT is able to solve path-finding problems for several agents. How-
ever, the realisation of its particular steps is inefficient, which results in its inability to
deal with complex scenarios in which tens of robots take part of. The experimental re-
sults with up to 10 robots were presented by the authors of MRdRRT, with the mention
that their algorithm faces problems once the tasks contain a more substantial number
of robots. To improve the behaviour of the algorithm we, therefore, introduced several
modifications to the original version.

Random sample generation improvement The version of the expansion phase pro-
posed in the original paper generates random samples from the bounding box of G.
However, this is inefficient in maps with tightly spaced obstacles because it disallows
the agents to stay on their current position in the next step resulting in not being able

8 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

to find a solution for problems where this action is necessary. Also, most of the points
that were generated by the original expansion phase procedure were far from a solution
leading to a really unnecessarily large growth of the tree over the configuration space
and resulting in high computational complexity of the algorithm. Our solution to this
issue is that we find shortest path for each agent separately during preprocessing and
then create a set of all possible samples that can be generated for the particular agent
as all points for which dist(si,q)+dist(q, ti) ≤ dist(si, ti)+∆, where dist is a distance
of two points, si and ti are start and goal positions of i-th robot, and ∆ > 0 is a defined
constant threshold.

Improvements to the oracle method The main issue of the original oracle method was
the fact that it checks for collisions after a new candidate point is generated. This results
in many failed attempts and discarding several samples. The version proposed here takes
the collision possibility into account during the process of generating candidate point in
an attempt to generate new points that are collision-free and thus reducing the number
of iterations required to produce a viable new point. Just as the original version, our
version also attempts to minimize the angle (ui,vi,v′i).

Proposed use of the CARP algorithm as local connector The local connector in the
original version of the algorithm works such that it finds the shortest paths for all robots
not taking the other ones into account. It then attempts to find an order in which the
robots would move to their destinations one by one while the others stand still. If such
ordering exists, the local connector reports success.

We propose the use of the CARP algorithm [23] as a local connector along with
random shuffling of the order in which CARP attempts planning of trajectories for
individual agents. CARP algorithm models the environment as a resource graph, that
stores information about capacity and occupancy in time for each individual resource.
For this reason, the resource graph can also be called free time window graph. CARP
uses a modified A* algorithm on the time window graph to find the shortest path through
time for each robot from his starting resource to his goal resource. The found path
takes the form of a sequence of time windows and corresponding resources, which is
subsequently updated into the free time window graph to ensure the other agents can
avoid the given agent.

An example of pathfinding using the CARP algorithm can be seen in Fig. 2a. Tra-
jectories of two agents need to be found in this example problem. One agent wants to
go from the node A to the node B while the second one wants to go from the node C
to the node D. Because the time window graph is empty at the start and all windows
are thus free, the first agent finds its path as a straight route towards its goal. This can
be seen in Fig. 2b along with occupied time windows on the resource graph that were
reserved by the first agent. When the second agent plans its path, it is apparent that
it cannot go straight towards its goal without pausing. If it chooses to go through the
upper path using the node A, it would take four time units to reach the node. It can not
use the lower path because the node B is taken from time 2 indefinitely. However if the
agent waits for one time unit at its starting node C and then move straight towards its

On Randomized Searching for Multi-Robot Coordination 9

(a) CARP example problem

A

C E D

B

2 2

1

1

1

2

1

2 t

A
B
C
D
E

(b) CARP example: path of first robot

A

C E D

B

<0,1)

<1,2)

<2,∞)

t

A
B
C
D
E

0 1 2

(c) CARP example: path of second robot

A

C E D

B

<0,2)

<2,3) <3,∞)

t

A
B
C
D
E

0 1 2 3

Fig. 2: Example problem of CARP algorithm.

goal, the path is free. This resulting plan, as well as the resulting time occupancy for all
nodes, can be seen in Fig. 2c.

Algorithm 1 Improved MRdRRT algorithm [13]

1: T .init (s)
2: loop
3: EXPAND(T)
4: REWIRE (T ,v′)
5: P ←CONNECT TO TARGET (T , t)
6: if not empty(P) then return RET RIEV E PAT H (T ,P)

Proposed new steps of the algorithm RRT* algorithm [15] introduced new steps
to the original RRT algorithm that enabled it to be asymptotically optimal. Our last
modifications to the MRdRRT algorithm take inspiration from RRT* to implement the
improved expansion step and rewiring step (see Alg. 1) in order to increase the quality
of the obtained plans.

The tree is initialized with a single node that represents the starting positions of
agents (line 1). The start of the main loop of the algorithm starts consists of the modified
expansion phase (line 3). Once a new node is added to the tree, the rewiring step is
called (line 4) which attempts to revise the structure of the tree to improve the length
of the path from the added point to the tree root. The following step is the call to the

10 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

local connector that checks whether it is possible to connect the newly added point to
the goal configuration. If the local connector is successful, the algorithm terminates and
returns the found path as a result.

The main change to the expansion phase, Alg. 2, is that after the random sample
u is generated (line 1), a set of N nearest neighbours of u in the tree T is selected. A
new candidate point v′ is then generated from each nearest neighbour (lines 6-11) using
oracle OD, but is not added to the tree. Each candidate point v′ is then checked for the
distance travelled from the root of the tree T and only the node that minimizes this
distance is connected to the tree to its corresponding predecessor.

This step is the equivalent of similar step in the RRT* algorithm where the algorithm
generates new point and then checks all points in a given radius around this point for the
best predecessor, meaning a predecessor that minimizes distance through the tree to the
root of the tree. In the multi-agent discrete scenario, it was necessary to adjust this step
(Alg. 2) because the computational requirements would be much higher as the points in
given radius would not be able to be connected directly to the new point, because they
might not be direct neighbours in the composite configuration space. This issue would
result in the need to use the local connector on each point in the radius.

Algorithm 2 Improved MRdRRT EXPAND(T ,r) [13]

1: u← RANDOM SAMPLE ()
2: NNs← getNearestNeighbours(u)
3: v′pred =−1
4: dbest = ∞

5: v′best = /0

6: for c ∈ NNs do
7: v′← OD (c,u)
8: if lT (c)+δ(c,v′)< dbest then
9: dbest = lT (c)+δ(c,v′)

10: v′pred = c
11: v′best = v′

12: T .add vertex
(
v′best

)
13: T .add edge

(
v′pred ,v

′
best

)

The last step inspired by RRT* that was added to the algorithm is the step called
rewiring, which locally revises the structure of T by checking if nodes that are within
certain radius r of newly added point would have the path travelled to them from the root
of the tree shorter if they had the newly added point v′ as their predecessor. To avoid the
search for all points in a given radius, this step was modified for the multi-agent discrete
scenario (Alg. 3) by employing N nearest neighbours search of v′ to obtain the neigh-
bouring points c. Because it is highly unlikely that two neighbouring configurations in
the tree are direct neighbours in the composite configuration space, it was necessary to
use the local connector to obtain paths that connect configurations v′ and c (line 3). In a
case the local connector fails to find connecting paths between the two configurations,

On Randomized Searching for Multi-Robot Coordination 11

the considered point is automatically skipped (lines 4-5). However, if the local connec-
tor succeeds in finding a path p between v′ and c, it is checked whether the length of
the path from the root to v′ concatenated with the path p and the node c is shorter than
the distance travelled through T from the root to c(lines 5-7). If it is shorter, then all
nodes of p are added to T . The first node of p is connected as the successor of v′ and
the last node of p is chosen as a new predecessor of c. An example of the rewiring step
is displayed in Fig. 3.

Algorithm 3 REWIRE(T ,v′) [13]

1: NNs← getNearestNeighbours(v′)
2: for c ∈ NNs do
3: p← LOCAL CONNECTOR(v′,c)
4: if p← /0 then
5: Continue
6: n← LastNode(p)
7: if lT (v′)+ l (p)+δ(n,c)< lT (c) then
8: T .add(p)
9: c.predecessor = n

4 Experiments

To show the performance of the proposed algorithm we chose to compare it with the
CARP algorithm [23]. Because the CARP algorithm is heavily dependent on the or-
dering in which the agents are planned we have used several variants that differ in the
maximal number of allowed shuffles of the ordering. Once CARP finds solution with a
given ordering, we consider it succeeded and returned its result. We used 4 such variants
with 1, 10, 100 and 1000 maximum possible shuffles of the ordering.

The comparison was done in two separate experiments, each of which contained its
own set of maps and assignments. The primary goal was to evaluate the reliability of
the algorithm as well as its runtime. To achieve this, we have recorded metrics based
on which we have made the comparison of the tested algorithms. These metrics are the
following: success rate, length of the resulting plan, sum of individual agent plans in the
given plan, runtime of the algorithm and the number of iterations the algorithm needed
to find a solution.

The first experiment was performed with the aim to evaluate how the algorithm per-
forms on maps with various densities, e.g. with a sequence of maps with an increasing
number of edges given the same set of nodes. The set was created by initially generating
grid maps with preset a number of nodes. More precisely, we have generated three such
grids with 20× 20, 30× 30 and 40× 40 nodes. In the next step, a minimum spanning
tree for each grid was determined, which created the base map. Once the minimum
spanning trees have been created, 9 more maps have been created for each spanning
tree by iteratively adding a fixed number of edges from the original grid. This proce-

12 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

dure resulted in 30 different maps, 10 for each grid. An example of these maps can be
seen in Fig. 7.

Furthermore, for each of the grids 100 different assignments were generated assum-
ing a fleet of 100 robots. These assignments were created by randomly sampling pairs
of nodes from the the given grid.

In addition, our algorithm was tested in 4 different variants that differ by either
enabling or disabling two main new components – improved expansion and rewiring.

As the algorithms could fail, the results from failed planning attempts were handled
such that if any of the 100 assignments was successful, all failed attempts were set as
2 times the worst result. In case none of the 100 assignments was planned successfully,
all failed attempts were set to arbitrary high value, in our case 100000. The graphs then
show median value over the 100 assignments for each map of each grid. In the case
of runtime measurements, the time was measured from the start of the algorithm until
result was returned, even if the result was a failure. Moreover, the proposed algorithm
was given 500000 maximum iterations to find a plan, otherwise the attempt was con-
sidered failed in which case the 500000 was reported as the number of iterations. For
the CARP algorithm, if a failure to plan was detected, the number of iterations was set
to the given maximum limit of shuffles. For example, if CARP with the limit of 1000
shuffles failed, it reported the number of iterations was 1000.

The results of the experiment can be seen in Figs. 4, 5, and 6. Note that results for
the first two maps are not shown in the graphs, because none of the algorithms was
able to find a solution for any assignment. The first thing to notice is that the proposed
approach shows much higher success rate in all its variants than all CARP variants in
Figs. 4a, 5a and 6a. Note that the two versions with the improved expansion turned on
provided a higher success rate on the map created from 20×20 grid with less edges than
the two versions with this component turned off. Upon inspecting the length on the plan
in the Figs. 4b, 5b, and 6b it can be seen that our approach provides comparable results
with CARP variants in all versions with the versions where the improved expansion
was turned on providing better results on more sparse maps while also requiring less
computational time to obtain the result. The worst results are provided on the more
sparse maps created from the 20×20 grid as can be seen for example in Fig. 4c where
the variants of the proposed algorithm were not able to find a solution in more than half
the assignments for the maps with 960 and 1038 edges, and thus the median number of
iterations was set to the preset limit of 500000.

The second set of maps was created specifically together with assignments so that
the problems would be impossible to solve for the CARP algorithm. The maps and
assignments were randomly generated by the following process:

1. Create a basic problem that is impossible to solve for the CARP algorithm depicted
in Fig. 8a. Arrows indicate the starting and goal positions of robots A and B on
the graph. CARP fails because the agents need to swap their positions while hav-
ing the same distance to the only node they can use to avoid each other. Because
CARP plans agents sequentially one by one while ignoring the subsequent agents,
no ordering of these agents can solve this issue.

2. Pick random node that has only one edge associated with it.

On Randomized Searching for Multi-Robot Coordination 13

3. Either add 2 nodes A and B to either side of this node if possible along with corre-
sponding assignment of 2 agents – The first agent going from A to B and the second
one from B to A. The example of this step can be seen in Fig. 8b. The alternative
method to expand the map is to connect the same structure to it as in the Step 1
together with the same type of assignment, the example of which can be seen in
Fig. 8c.

4. Repeat Steps 2 and 3 until the map of a required size is generated.

The example of a fully generated map following the previous steps can be seen in
Fig. 9.

The second set of experiments was carried out on the second set of maps with the
aim to illustrate the behavior of the proposed algorithm on assignments that CARP al-
gorithm can not solve. The total of 400 different combinations of a map and assignment
were generated: 100 each for 10, 20, 30 and 40 agents. The results of this experiment
can be seen in Fig. 10. The setup numbers 1 to 4 correspond to the number of agents 10
to 40 respectively.

For up to 30 agents the success rate is 100% while it is decreased to 95% for 40
robots. Regarding the computational time results, the algorithm takes approximately 1
second to calculate the paths for each agent in assignments that are impossible to solve
for CARP algorithm for up to 30 agents even with relatively complicated assignments.

14 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

(a) Initial state of the tree. The root node is coloured red, while the newly added node v′ is
coloured blue.

(b) The path through the newly added node v′(blue) to one of its nearest neighbors (green) is
shorter than the current path to this node (red).

(c) The tree is revised.

Fig. 3: Example of the rewiring procedure.

On Randomized Searching for Multi-Robot Coordination 15

(a) Success rate

1000 1100 1200 1300 1400 1500
Number of edges in graph

0

20

40

60

80

100
%

 o
f s

uc
ce

ss
fu

l a
ss

ig
nm

en
ts

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(b) Median number of plan steps

1000 1100 1200 1300 1400 1500
Number of edges in graph

50

100

150

200

250

300

Nu
m
be
r o
f p
la
n
st
ep
s

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(c) Median iterations

1000 1100 1200 1300 1400 1500
Number of edges in graph

0

5000

10000

15000

20000

25000

30000

35000

40000

Ite
ra
tio

ns

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(d) Median time to plan

1000 1100 1200 1300 1400 1500
Number of edges in graph

0

1000

2000

3000

4000

5000

t[s
]

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

Fig. 4: Results of the first experiment for the maps from 20×20 grid

(a) Success rate

2200 2400 2600 2800 3000 3200 3400
Number of edges in graph

0

20

40

60

80

100

%
 o
f s

uc
ce

ss
fu
l a

ss
ig
nm

en
ts

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(b) Median number of plan steps

2200 2400 2600 2800 3000 3200 3400
Number of edges in graph

60

80

100

120

140

160

Nu
m
be
r o

f p
la
n
st
ep
s

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(c) Median iterations

2200 2400 2600 2800 3000 3200 3400
Number of edges in graph

0

50

100

150

200

250

Ite
ra
tio

ns

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(d) Median time to plan

2200 2400 2600 2800 3000 3200 3400
Number of edges in graph

0

1

2

3

4

5

6

t[s
]

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

Fig. 5: Results of the first experiment for the maps from 30×30 grid

16 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

(a) Success rate

4000 4500 5000 5500 6000
Number of edges in graph

20

40

60

80

100

%
 o
f s

uc
ce

ss
fu
l a

ss
ig
nm

en
ts

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(b) Median number of plan steps

4000 4500 5000 5500 6000
Number of edges in graph

75

100

125

150

175

200

Nu
m
be
r o

f p
la
n
st
ep
s

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(c) Median iterations

4000 4500 5000 5500 6000
Number of edges in graph

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ite
ra
tio

ns

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

(d) Median time to plan

4000 4500 5000 5500 6000
Number of edges in graph

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t[s
]

CARP limit 1
CARP limit 10
CARP limit 100
CARP limit 1000
dRRT exp OFF rew OFF
dRRT exp OFF rew ON
dRRT exp ON rew OFF
dRRT exp ON rew ON

Fig. 6: Results of the first experiment for the maps from 40×40 grid

Fig. 7: Example of maps from the first experiment

On Randomized Searching for Multi-Robot Coordination 17

A B
0 1 2

3

(a) Base problem.

A B
0 1 2

34 5

C D

(b) First type of map expansion

A B
0 1 2

34 5

C D

6

7

8

9

E

F

(c) Second type of map expansion

Fig. 8: Map generation procedure.

Fig. 9: Example of a generated map.

18 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

1 2 3 4
Setup number

101

102

103

104

105
Nu

m
be

r o
f i
te
ra
tio

ns

Number of iterations

1 2 3 4
Setup number

100

101

102

103

104

105

t[m
s]

Computational time[ms]

1 2 3 4
Setup number

5

10

15

20

25

Nu
m
be

r o
f p

la
n
st
ap

s

Number of plan steps

Fig. 10: Results of the proposed approach on assignments which CARP is unable to
solve [13].

5 CONCLUSION

This chapter presents a novel approach to multi-robot coordination on a graph, which
is based on a discrete version of RRT for multiple robots (MRdRRT) and significantly
improves its performance in several steps of the algorithm. Two additional steps inspired
by RRT* were also introduced into the algorithm which improve the quality of solutions
the algorithm provides. Moreover, the results of several experiments were performed
that show the behavior of the algorithm in several various scenarios in different settings.
The results show that the proposed approach can solve problems containing tens of
robots in tens of seconds, which is a significant improvement upon the original version
of MRdRRT which was able to solve problems with up to ten robots in tens of seconds.
Moreover, the results also show that this approach is able to solve problems that are
unsolvable for the CARP algorithm which is one of the best algorithms to be used in
practice nowadays.

The future work should be focused on reducing the number of iterations the al-
gorithm requires to find a solution as well as reducing the computational complexity.
These improvements could be achieved for example by reducing the dimensionality of
the problem by first clustering the robots into groups and then planning for these groups
separately, but taking their respective solutions as obstacles.

ACKNOWLEDGEMENTS

This work has been supported by the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 688117, by the Technology Agency of
the Czech Republic under the project no. TE01020197 “Centre for Applied Cybernet-
ics”, the project Rob4Ind4.0 CZ.02.1.01/0.0/0.0/15 003/0000470 and the European Re-
gional Development Fund. The work of Jakub Hvězda was also supported by the Grant
Agency of the Czech Technical University in Prague, grant No. SGS18/206/OHK3/3T/37.

On Randomized Searching for Multi-Robot Coordination 19

References

1. Bennewitz, M., Burgard, W., Thrun, S.: Optimizing schedules for prioritized path planning
of multi-robot systems. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on. pp. 271 – 276 vol.1 (2001)

2. van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots. In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 430–435. IEEE
(2005)

3. van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for mul-
tiple robots: Optimal decoupling into sequential plans. In: Trinkle, J., Matsuoka, Y., Castel-
lanos, J.A. (eds.) Robotics: Science and Systems V, University of Washington, Seattle, USA,
June 28 - July 1, 2009. The MIT Press (2009)

4. Cap, M., Novak, P., Kleiner, A., Selecky, M., Pechoucek, M.: Prioritized Planning Algo-
rithms for Trajectory Coordination of Multiple Mobile Robots. IEEE Transactions on Au-
tomation Science and Engineering Special Is (2015)

5. Chiew, K.: Scheduling and routing of autonomous moving objects on a mesh topology. Op-
erational Research 12(3), 385–397 (Nov 2010)

6. DeWilde, B., Ter Mors, A., Witteveen, C.: Push and Rotate: A complete Multi-agent
Pathfinding algorithm. Journal of Artificial Intelligence Research 51, 443–492 (2014)

7. Dobson, A., Solovey, K., Shome, R., Halperin, D., Bekris, K.E.: Scalable asymptotically-
optimal multi-robot motion planning. In: 2017 International Symposium on Multi-Robot
and Multi-Agent Systems (MRS). pp. 120–127 (Dec 2017)

8. Doriya, R., Mishra, S., Gupta, S.: A brief survey and analysis of multi-robot communication
and coordination. In: International Conference on Computing, Communication Automation.
pp. 1014–1021 (May 2015)

9. Gawrilow, E., Köhler, E., Möhring, R.H., Stenzel, B.: Dynamic Routing of Automated
Guided Vehicles in Real-time, pp. 165–177. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

10. Geramifard, A., Chubak, P., Bulitko, V.: Biased Cost Pathfinding. In: AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. pp. 112–114 (2006)

11. Goldreich, O.: Finding the Shortest Move-Sequence in the Graph-Generalized 15-Puzzle Is
NP-Hard. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on
the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad,
Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin,
Noam Nisan, Dana Ron,, Lecture Notes in Computer Science, vol. 6650, pp. 1–5. Springer
(2011)

12. Hopcroft, J., Schwartz, J., Sharir, M.: On the Complexity of Motion Planning for Multiple
Independent Objects; PSPACE- Hardness of the ”Warehouseman’s Problem”. The Interna-
tional Journal of Robotics Research 3(4), 76–88 (Dec 1984)

13. Hvězda, J., Kulich, M., Přeučil, L.: Improved discrete rrt for coordinated multi-robot plan-
ning. In: Proceedings of the 15th International Conference on Informatics in Control, Au-
tomation and Robotics, ICINCO 2018 - Volume 2. pp. 181–189 (2018)

14. Hvězda, J., Rybecký, T., Kulich, M., Přeučil, L.: Context-aware route planning for automated
warehouses. In: 21st IEEE International Conference on Intelligent Transportation Systems
(in press)

15. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion plan-
ning. CoRR abs/1005.0416 (2010)

16. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. CoRR
abs/1105.1186 (2011)

20 Jakub Hvězda, Miroslav Kulich, and Libor Přeučil

17. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, USA
(1991)

18. LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having independent
goals. IEEE Transactions on Robotics and Automation 14(6), 912–925 (1998)

19. Lavalle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical
Report (Computer Science Deptartment, Iowa State University) 11 (1998)

20. Luna, R., Bekris, K.E.: Efficient and complete centralized multi-robot path planning. In:
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3268–3275.
IEEE (Sep 2011)

21. ter Mors, A.: Evaluating heuristics for prioritizing context-aware route planning agents. In:
International Conference on Networking, Sensing and Control. pp. 127–132 (April 2011)

22. ter Mors, A., Witteveen, C., Ipema, C., de Nijs, F., Tsiourakis, T.: Empirical evaluation
of multi-agent routing approaches. In: 2012 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology. vol. 2, pp. 305–309 (Dec 2012)

23. ter Mors, A.W., Witteveen, C., Zutt, J., Kuipers, F.A.: Context-aware route planning. In:
Dix, J., Witteveen, C. (eds.) Multiagent System Technologies. pp. 138–149. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

24. O’Donnell, P.A., Lozano-Perez, T.: Deadlock-free and collision-free coordination of two
robot manipulators. In: IEEE Robotics and Automation Conference. pp. 484–489 (1989)

25. Parker, L.E.: Path Planning and Motion Coordination in Multiple Mobile Robot Teams. En-
cyclopedia of Complexity and System Science (2009)

26. Peasgood, M., Clark, C.M., McPhee, J.: A Complete and Scalable Strategy for Coordinating
Multiple Robots Within Roadmaps. Robotics, IEEE Transactions on 24(2), 283–292 (Apr
2008)

27. Ryan, M.R.: Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of Artifi-
cial Intelligence Research pp. 497–542 (2008)

28. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability prob-
lems. In: Proceedings of the Tenth National Conference on Artificial Intelligence. pp. 440–
446. AAAI’92, AAAI Press (1992)

29. Silver, D.: Cooperative Pathfinding. In: The 1st conference on Artificial Intelligence and
Interactive Digital Entertainment. pp. 117–122 (2005)

30. Simeon, T., Leroy, S., Lauumond, J.P.: Path coordination for multiple mobile robots: a
resolution-complete algorithm. IEEE Transactions on Robotics and Automation 18(1), 42–
49 (2002)

31. Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: Dis-
crete rrt for exploration of implicit roadmaps in multi-robot motion planning. Algorithmic
Foundations of Robotics XI pp. 591–607 (2014)

32. Suurballe, J.: Disjoint paths in a network 4, 125 – 145 (01 1974)
33. Wang, K.C., Botea, A.: MAPP: a Scalable Multi-Agent Path Planning Algorithm with

Tractability and Completeness Guarantees. Journal of Artificial Intelligence Research pp.
55–90 (2011)

34. Wang, K.H.C., Botea, A.: Fast and Memory-Efficient Multi-Agent Pathfinding. In: ICAPS.
pp. 380–387 (2008)

35. Wang, W., Goh, W.B.: Multi-robot path planning with the spatio-temporal A* algorithm and
its variants. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F.
(eds.) Advanced Agent Technology. pp. 313–329. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2012)

36. Wang, W., Goh, W.B.: A stochastic algorithm for makespan minimized multi-agent path
planning in discrete space. Applied Soft Computing 30, 287–304 (May 2015)

37. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Science 17(11),
712–716 (1971)

On Randomized Searching for Multi-Robot Coordination 21

38. Zhang, T., Ding, M., Wang, B., Chen, Q.: Conflict-free time-based trajectory planning for
aircraft taxi automation with refined taxiway modeling 50 (07 2015)

