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Abstract—In order to ensure efficient flow of goods in an
automated warehouse and to guarantee its continuous distribu-
tion to/from picking stations in an effective way, decisions about
which goods will be delivered to which particular picking station
by which robot and by which path and in which time have
to be made based on the current state of the warehouse. This
task involves solution of two suproblems: (1) task allocation in
which an assignment of robots to goods they have to deliver
at a particular time is found and (2) planning of collision-free
trajectories for particular robots (given their actual and goal
positions).

The trajectory planning problem is addressed in this paper
taking into account specifics of automated warehouses. First,
assignments of all robots are not known in advance, they
are instead presented to the algorithm gradually one by one.
Moreover, we do not optimize a makespan, but a throughput –
the sum of individual robot plan costs.

We introduce a novel approach to this problem which is
based on the context-aware route planning algorithm [1]. The
performed experimental results show that the proposed approach
has a lower fail rate and produces results of higher quality than
the original algorithm. This is redeemed by higher computa-
tional complexity which is nevertheless low enough for real-time
planning.

Index Terms—intelligent logistics, planning, coordination

I. INTRODUCTION

The European market for e-commerce is growing rapidly,
with more than 16% just in the year 2014 [2] and so is
the same for the world market. With the growing markets,
the need for larger warehouses and distribution centers and
their automation increases [3]. In such facilities goods for
the end-users or products in the business-to-business sector
are stored, commissioned and shipped. To manage the supply
chains, many new warehouses have been erected, and more
will follow (see Fig. 1 for an example of such automated
warehouse). Reliable figures are hard to come by, but for
instance, a company such as DHL alone operates more than
2000 warehouses. With the growing markets, the need for
larger warehouses and their automation increases. Therefore
the robotic and automation companies should be able to
provide appropriate solutions, making scalable systems and
scalable software mandatory.

Fig. 1. An automated warehouse: G-COM system by Grenzebach
(https://www.grenzebach.com) in a costumer application.

One of the fundamental problems related to automated
warehouses is trajectory planning and motion coordination
for a fleet of robots distributing goods in a warehouse which
has been theoretically studied from many perspectives since
the 1980s, see [4] for a nice overview. The problem (also
formulated as the warehouseman’s problem) has been proven
to be PSPACE-complete [5]. The complexity of the problem
can be reduced for the case where robots move on a predefined
graph, nevertheless, it is still NP-hard [6], which means that
optimal solutions cannot generally be found in a reasonable
time for non-trivial instances (e.g., for a number of robots in
order of tens).

Solutions to the problem consider either coupled or decou-
pled approaches. Coupled (also called centralized) approaches
consider a fleet of robots as a single multi-robot body with
the number of degrees of freedom (DoFs) equal to the sum
of DoFs of individual robots. Classical single-robot plan-
ning approaches can then be applied to plan motion of this
multi-robot body in composite configuration space. Because
these algorithms are typically based on classical complete
and optimal algorithms, their main advantage is that they
warrant to find a solution if it exists and report its non-



existence if it does not exist [7], [8], [9]. This, however,
leads to the main disadvantage of these algorithms which is
the exponential computational time in the dimension of the
composite configuration space. The appropriate use cases for
this type of algorithms are thus problems that consist of a
small number of robots.

On the other hand, algorithms that use the decoupled
approach typically provide solutions much faster than coupled
planners for the price of the solutions being sub-optimal.
In addition to this, decoupled algorithms generally do not
guarantee the completeness and may suffer from deadlocks.
These approaches can be typically split into two categories -
path coordination and prioritized planning. Path coordination
tunes velocities of individual robots along precomputed trajec-
tories to avoid collisions of these robots [10], [11]. Prioritized
planning assigns each agent a priority according to which
an ordering is made for the agents. The planning algorithm
then plans trajectories for individual robots according to this
ordering, while considering already planned robots as moving
obstacles that have to be avoided. [12], [13], [14].

[1] presents a similar idea, but codes information about
trajectories of robots with higher priorities into the planning
graph rather than into the planning algorithm itself. It does
so by constructing a resource graph, where each resource can
be for example a node of the original graph or intersection
graph edges. Every such resource holds information about
time intervals in which it is not occupied by already planned
robots. An adaptation of the A* algorithm is used on this
graph to find the shortest path through these intervals (called
free time windows) to obtain a path that avoids all already
planned robots.

[15] deals with a real-life problem of routing vehicles
in Container Terminal Altenwerder in Hamburg harbor. They
used a similar approach to keeping a set of free time win-
dows for path arcs in the graph. Their algorithm contains a
preprocessing of the graph for the use of specific vehicles
followed by computation of paths for individual vehicles on
this preprocessed graph.

Another similar approach is presented in [16], where each
robot looks for a viable path in a 2D spatial grid map and
checks for collisions with moving obstacles using a temporal
occupancy table. [17] adopted a similar approach to [1] with
enhanced taxiway modeling approach to improve performance
on airport graph structures. [18] compares Context-Aware
Route Planning (CARP) [1] with a fixed-path scheduling algo-
rithm using k shortest paths [19] and a fixed-path scheduling
algorithm using k disjoint paths [20]. The experiments show
that the CARP algorithm is superior in all measured qualities.

[21] compares several heuristic approaches of assigning
priority to robots and concludes that the heuristics which plans
longest paths first perform best when a makespan is to be
minimized. A greedy best-first heuristics provides best results
regarding joint plan cost. However, its downside is that it calls
the planning algorithm for all yet unplanned robots in every
round and it is thus very time-consuming.

In this paper, we consider the planning problem from the

perspective of usability in automated warehouses (AWs). The
key difference in AWs is that the assignments are not known
all at once at the time of planning, but they instead come in
time sequentially as requests for goods to be delivered are
being received. This emphasizes a quick time to compute a
plan for newly requested robots while minimizing the sum of
time it takes for all robots in the system to complete their
plans. We present a novel approach that can calculate paths
for newly added robots to the system while maximizing its
throughput.

The rest of the paper is organized as follows. The multi-
robot path-finding problem for automated warehouses is pre-
sented as well as the used terms are defined in Section II.
The proposed planning algorithm is described in Section III,
while performed experiments, their evaluation, and discussion
are presented in Section IV. Finally, Section V is dedicated to
concluding remarks and future work.

II. THE PROBLEM

Assume a finite weighted connected graph G(V,E) and a
set A = (a1, a2, ..., ak−1) of robots each of which has already
planned a trajectory in G without collisions. The aim is to find
a non-colliding trajectory for a robot ak from its start position
to the given target position while optimizing a global cost
function, possibly without replanning all robots.

We employ the CARP algorithm [1] for the planning of
individual robots, so we use its assumptions on the graph
structure as follows. The infrastructure the robots plan on is
modeled as a resource graph GR = (R,ER) where resources
R can be the original nodes, edges, intersections of edges,
etc. The path the robot can follow is restricted to edges ER
which limit transitions of robots such that a robot can move
from a resource r1 to a resource r2 only if r2 is a neighbour
of r1 in the graph GR, i.e. the edge (r1, r2) ∈ ER. Each
resource also has two main attributes associated with it. These
are capacity c(r) which corresponds to the maximum number
of robots that can occupy the resource r at the same time and
duration d(r) > 0 that represents the minimal time it takes the
robot to traverse the given resource r. Plans for every robot
then contain not only a sequence of resources on its path but
also time intervals during which the robot visits them. The
idea is that if the infrastructure is modeled this way, collision
avoidance is shifted into deciding which resources at what time
the robots can visit, rather than finding paths without collision
in space and time, which is PSPACE-complete [5].

III. ALGORITHM

As mentioned, the proposed algorithm employs CARP [1].
It was chosen because of its ability to plan sequentially one
robot at a time while keeping the information about movement
of other robots in a compact and easy to update manner.
More specifically, CARP uses the infrastructure described
above to find paths in a resource graph, where each node
of the infrastructure keeps information about its capacity and
occupancy in given time windows. This allows it to use a
modified A* algorithm that finds a free time window in the



start resource corresponding to a start node and attempts to
find a path through these time windows to a free time window
in the resource that corresponds to the goal node.

The proposed algorithm aims to generate a trajectory for
an robot ak assuming that trajectories for k − 1 robots are
already planned which can possibly lead to modification of
those planned trajectories. The main idea is to iteratively build
a set of robots whose trajectories mostly influence an optimal
trajectory of ak, see Algorithm 1. The algorithm maintains
two structures:

• N – a set of robots in the neighborhood of ak which is
initially set to contain ak (line 3), and

• A – a sequence of robots not in N . This sequence
initially stores the order in which trajectories of the robots
a1 . . . ak−1 were generated (line 1).

Moreover, cost of the best solution that has been found so far
is set to a high number.

New robots are iteratively added to the neighborhood in the
loop starting at line 5. The robot ab ∈ A which minimizes
the distance to the neighborhood is found at each iteration
first, where the distance of a robot to a set is defined as
the distance of the robot to the closest robot in the set. The
distance between two robots is then determined as the average
Euclidean distance of robots’ positions at discrete time steps:

d(ai, aj) =

∑τG
τ=τS

∣∣∣ti(τ), tj(τ)
∣∣∣

τG − τS
,

where ti(τ) is a position of ai at time τ if it follows the
trajectory ti, tj(τ) is a position of aj at time τ if it follows
the trajectory tj , and 〈τS , τG〉 is a time interval when ai or
aj moves. Note that trajectories of robots in A are initially
taken from the input set T while an initial trajectory of ak
is determined as the shortest path between its start and goal
positions on G making use of the A* algorithm (line 2). These
initial trajectories are updated as soon as new plans are found
at the next steps of the algorithm.

The found closest robot ab is then removed from the
sequence A (line 7), added to a set of neighbors N (line 7) and
new trajectories for A are computed by the CARP algorithm
from the scratch (line 9) as demonstrated in Fig. 2.

Fig. 2. Adding an robot into a set of neighbors.

All possible permutations of robots inN are considered next
(line 10). A set of trajectories P is determined by the CARP
algorithm taking into account trajectories C for each such
permutation (line 11). This is realized by running CARP for
N on a resource graph with free windows generated by CARP
when computing C at line 9. The set P is then added to C, and
the cost of this solution is computed (line 12) and compared
with the best solution found till now (line 13). If the new
solution is better than the currently best, it is stored together
with its cost (lines 14 and 15). The best-found solution is
finally reported at line 16.

Algorithm 1: Plan update
Input: G = (V,E) – a graph

T = {ti}k−1i=1 – already planned trajectories
VS – start position
VG – goal position
M – size of a neighborhood

Output: T new = {ti}ki=1 – updated set of trajectories

1 A ← 〈a1, ak−1〉
2 tk ← shortest path from VS to VG in G
3 N ← {ak}
4 best←∞
5 M − 1 times do
6 ab = argminai∈A d(ai,N )
7 A ← A \ {ab}
8 N ← N ∪ {ab}
9 C ← CARP (G,A)

10 foreach π ∈ Π(N ) do
11 P ← CARP (G, π,C)
12 c← cost(C ∪ P)
13 if c < best then
14 best← c
15 T new ← C ∪ P

16 return T new

Calculation of computational complexity of the proposed
algorithm is based on the fact that CARP for n robots
comprises n calls of A*. We call CARP M−1 times at line 9
gradually for k − 2, k − 3, . . . k −M − 1 robots which leads
to M

2 (2k −M − 3) calls of A*. Similarly, CARP at line 11
is called

∑M
N=2N ! times which leads to

∑M
N=2NN ! calls of

A*.
The total number of A* calls can be significantly reduced in

two ways. Firstly, when calling CARP at line 9 after removal
of ab not all trajectories have to be recomputed. We can instead
preserve trajectories of robots which were in A before ab
as they are not influenced by ab. Only trajectories of robots
behind ab in A have to be recomputed which leads to a
reduction of A* calls by 50% in average.

The second reduction is similar. If the permutations are gen-
erated in a lexicographic order at line 10 then two consecutive
permutations have typically a big joint head as depicted in



Fig. 3. Plans of robots in that head can be preserved while
recomputation has to be done only for the rest. Assuming
neighborhood size |N | = 4, instead of calling A* 4× 4! = 96
times, only 64 calls is performed which is 67%. The reduction
is even greater for |N | = 5: 325 calls instead of 600 which
is 54%, while only 45% (1956 instead of 4320) A* calls are
needed for |N | = 5.

Fig. 3. First permutations of five elements in the lexicographic order. The
yellow plans can preserved.

IV. EXPERIMENTS

The experiments were performed on a computer equipped
with Intel Xeon E5-2690. The maps the experiments were
performed on were created to show how the proposed algo-
rithm performs depending on the density of the given graph,
specifically the number of edges. The set of 21 maps was
generated by creating a minimum spanning tree of a 20× 20
grid map and then iteratively adding a given number of original
edges to it until the original grid was recreated. Furthermore,
500 different random assignments were generated for a fleet
of 100 robots by randomly sampling start and goal nodes for
each robot. Each of these assignments was tested on all 21
maps.

The goal of the experiments was to test how the proposed
algorithm scales with the number of edges in the graph as
robots are sequentially added to the system. For comparison
we ran the original CARP algorithm with no change to prior-
ities of the robots, i.e., priorities were set randomly. Because
this approach proved to have a high failure rate, we introduced
two variants that after each planning attempt randomly shuf-
fled the robot order 10 and 100 times (CARP10, CARP100
respectively) and tried planning again from scratch. The best
plan regarding the sum of the number actions of individual
robots was considered as the result. We also added CARP
with the longest first heuristic to determine robot priorities
as introduced in [21] to the comparison as LF. The proposed
algorithm was run in several variants that differ in the param-
eter M specifying the size of the neighborhood. For the pa-
rameters 4,5,6 (Proposed_4, Proposed_5, Proposed_6
respectively) all the permutations of the neighborhood were
considered. For the parameter 10 (Proposed_10) a 150
different neighborhood permutations were chosen randomly
to decrease computational complexity.

Orders for all 100 robots were presented sequentially to all
algorithms on all maps and assignments in the first experi-
ment. Failure rate (Fig. 4) and the number of actions of all
robots were observed (Fig. 6). In the second experiment, the
algorithms were sequentially given one robot at a time at each
iteration for all 500 assignments on a map shown in Fig. 5
with the goal of showing how much time it takes to generate
a plan for each algorithm after adding robot into the system.

The results for the failure rate of the algorithms can be seen
in Figure 4. It can be seen that the proposed algorithm has a
fail rate in between the fail rates of CARP and CARP10.

Fig. 4. Algorithms fail rate

The Figure 6 shows the average overall quality of the plan
from the first experiment measured as the total number of
actions of all robots. The graph shows that all versions of
the proposed algorithm perform similarly to each other with
Proposed_10 having the best results. Compared to the
basic CARP algorithm the proposed algorithm has up to 65
less number of total actions performed across all robots in
Proposed_6 variant (on the 10th map) and up to 35 fewer
actions for Proposed_6 and Proposed_10 on the original
grid map. Moreover, all variants of the proposed algorithm
outperform CARP10 and are at least comparable to CARP100
which is much more time-consuming. It can also be noticed
that LF generates worst results. It is not much surprising as it
was designed to optimize a makespan.

The results of the second experiment are presented in Fig. 7
which shows the required time to find a trajectory for k-th
robot considering trajectories of robots 1 . . . k− 1 are already
planned. It is evident that CARP100 is the slowest of all tested
algorithms with Proposed_6 as the second slowest. It is
worth noticing that for Proposed_6 the time of testing all
permutations of the neighborhood took longer than replanning
of the rest of the robots. The table I shows the actual times to



TABLE I
TIMES OF ADDITION FOR 50th AND 100th ROBOT

Algorithm
Time for kth robot [ms]

50th robot 100th robot

Proposed 4 3.23 7.6

Proposed 5 10.86 19.48

Proposed 6 50.58 75.81

Proposed 10 43.84 54.10

CARP 0.63 1.60

CARP10 5.29 12.15

CARP100 52.08 126.57

LF 0.85 2.59

plan 50th and 100th robot in this experiment.
From the results as a whole we can see that Proposed_4

and Proposed_5 show the best ratio between the quality
of the found plan and the time required to compute it.
Additionally, if the time requirements for planning are not
as tight, it is possible to run a more demanding version of the
algorithm to increase the quality of the solution. To increase
the overall success rate of the algorithm, it is possible to
combine the proposed algorithm with a version that has a
higher success rate, such as CARP100 or even higher in case
the proposed algorithm does not find a solution.

Fig. 5. Example of an experimental map

V. CONCLUSION

In this paper, we present a novel algorithm for planning
in automated warehouses that consider specific requirements
in these environments for sequential addition of robots into
the system while optimizing the total number of actions
all robots must perform. The proposed algorithm employs
the standard CARP algorithm for the planning of individual
robots, which is one of the best practical algorithms nowadays.
The experimental results show that the proposed approach
finds better solutions than the original CARP algorithm after
several random shuffles of the robots’ priorities while requiring
significantly less computational time for adding individual

Fig. 6. Sum of actions performed by all robots

Fig. 7. Time to plan kth robot

robots into the system. Moreover, it is much faster than
CARP100 which produces similar results.

The only drawback of the algorithm is the success rate of
finding the solution, and thus the future work should focus
on its improvement. One approach could be the use of deep
learning to better determine either robot priorities or the set
of robots mostly influencing the planned robots which need
to be replanned. Another route of improvement would be to
adapt the system for the use of heterogeneous robots and more



importantly humans, who need to have the highest priority to
have their trajectories planned to minimize the time humans
spend in the warehouse to eliminate the risk of injury.
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