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Abstract— Scene understanding represents one of the most pri-
mary problems in computer vision. It implies the full knowledge
of all the elements of the environment and the comprehension
of the relationships between them. One of the major tasks in
this process is the scene recognition, on which we focus in
this work. Scene recognition is a relevant and helpful task in
many robotic fields such as navigation, localization, manipula-
tion, among others. The knowledge of the place (e.g. “office”,
“classroom” or “kitchen’’) can improve the performance of robots
in indoor environments. This task can be difficult because of
the variability, ambiguity, illumination changes, occlusions and
scale variability present in this type of spaces. Commonly, this
problem has been approached through the development of models
based on local and global characteristics, incorporating context
information and, more recently, using deep learning techniques.
In this paper, we propose a multi-classifier model for scene
recognition considering as priors the outcomes of independent
base classifiers. We implement a weighted voting scheme based
on genetic algorithms for the combination of different classifiers
in order to improve the recognition performance. The results
have proved the validity of our approach and how the proper
combination of independent classifier models makes it possible to
find a better and more efficient solution for the scene recognition
problem.

Index Terms— Scene recognition, multi-classification, scene
understanding, mobile robots, genetic algorithms.

I. INTRODUCTION

Scene recognition is a challenging problem in computer
vision. It consists in classification of a given scene to one
of the specified categories. To achieve this, it is necessary to
analyze geometric and semantic information as well as the
relationships between the scene elements to develop robust
scene recognition models. Depending on the type of place
and the elements present in it, the classification process
can be easier or more challenging. Several conditions such
as variability, ambiguity, illumination, viewpoint and scale
changes, among others, affect the process of identifying a
scene. Due to the wide range of applications in which it
is used such as autonomous robots, intelligent robotics and
human-robot interaction, this field is of major importance in
mobile robotics. The categorization of a scene is a complex
task that implies the understanding of the content of the scene
and the relations and interactions of its content. For example,
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consider these two scene categories: a meeting room and a
dining room. Both categories contain similar objects such as
chairs and tables. In these cases, the identification of objects is
not sufficient to distinguish the scenes, as the relationships and
the arrangement of these objects are essential to obtain a better
prediction of the scene. For this reason, scene recognition is a
more challenging problem than other image recognition tasks.

Different techniques have been applied to deal with scene
recognition. Some of them consider different strategies such
as handcrafted image features [1], learning features [2], incor-
porating contextual information [3] and others are based on
more complex learning methods such as convolutional neural
networks [4]. Despite the promising results obtained so far, the
problem of scene recognition is still far from being definitively
solved.

The main motivation of this work is to profit from the
advantages that different techniques can offer and merge them
into a multi-classifier to obtain a more robust model for scene
recognition. In this paper, we present a multi-classifier model
for the task of indoor scene recognition based on weighted
voting schemes. A multi-classifier, also known as ensemble
classifier or combined classifier, makes it possible to build a
more robust model that combines the results of independent
base classifiers. We propose two weighted voting schemes, one
based on the performance rate of the independent classifiers
and another one based on genetic algorithms to compute the
weights for each base classifier to obtain a final estimation
of the place where the robot is considering what it can
perceive. Genetic algorithms calculate the optimal weights that
are assigned to individual classifiers in the multi-classifier in
order to obtain satisfactory results. Figure 1 shows the scene
recognition outputs for two scene categories, a living room
and a laboratory of a university.

The main contributions of this work are:

o The combination of different techniques for independent
base classifiers in order to improve the scene recognition
result. This way, the proposed model can adequately
merge different features as well as object information and
any other contextual information.

e A more general and scalable multi-classifier model for
scene recognition that can be adjusted to any type of
source information.

o A compensation of errors made by each base classifier
fusing them through a weighted combination of their
classification contributes to make the best estimate of the
scene perceived by the robot.

The remainder of the paper is structured as follows: Sec-

tion II presents the related research in the field of scene
recognition. Section III describes the proposed model for
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Fig. 1: Example of the results of the proposed multi-classifier
model. Two different scenes can be observed, a living room
and a laboratory. The model fuses the outcomes of the base
classifiers through a weighted voting scheme to give the final
prediction about the place that the robot perceives.

scene recognition based on weighted voting schemes. The
base classification models used in this work are presented in
Section IV. In Section V the two weighted voting schemes
are explained. Section VI describes the results and finally,
Section VII draws conclusions and outlines future work.

II. RELATED WORK

Scene recognition is one of the fundamental problems
in robotics which has been investigated for decades. This
task is one of the most important for scene understanding.
The information about the scene, its elements and the rela-
tionships between them can improve the comprehension of
the environment where the robot operates and also directly
influences the performance of the robot in human-robot and
robot-environment interaction tasks. Great efforts have been
made to develop accurate models for scene recognition. Some
approaches are based on handcrafted image features. In [1] the
authors proposed to use generic and specific characteristics to
address the problem of scene classification. Different features
are considered: geometric features, size and shape, pixel depth,
geocentric pose and the appearance of superpixels. In [5]
SIFT features for all the images (grayscale and color) using
dense extraction methods are obtained. Then, a bag of features
approach is used in order to generate a training model. In [6]
sparse codes of SIFT features as local appearance descriptors
are used to implement a variation of the spatial pyramid
matching method for scene classification.

Other works use the information of the objects to improve
the scene recognition rate. In [3] scene and object information
are combined through convolutional neural networks. A single
CNN is used as feature extractor. They trained the network
with different datasets with images of scenes and objects with
different scale ranges. In [7] common objects are associated
with a class of scene considering contextual information. To do
that, a search strategy to find meaningful objects in the scene
is implemented. Then, the found objects are combined through
a Naive Bayes approximation to predict the scene class.

More recent works are focused on convolutional neural
networks (CNN) that are trained on large image datasets to

solve the scene recognition problem. In [§] RGB and depth
features are combined in a multi-modal fusion framework for
scene recognition. Authors in [4] proposed a CNN based on
3D information to obtain a representation of the environment.
The training set consists of 3D scenes templates that include
the furniture arrangement. In this way, it is possible to include
the context information in the model.

Single-classifier approaches have lead to decent and accu-
rate results in some situations, however, it is still far from
having a classifier that succeeds in every environment and sit-
uation. For this reason, our approach is to use a combination of
classifiers where limitations are overcome by taking advantage
of the strengths of individual classifier models. Multi-classifier
models, also known in the literature as combined classifiers or
ensemble classifiers, involve the combination of heterogeneous
or homogeneous classifiers to generate a final decision [9].
The combination of classifiers has been extensively used to
improve the classification results in face recognition [10],
[11], emotion identification [12], texture recognition [13] and
object detection [14]. This is not the case of scene recognition
where few approaches including multi-classifiers have been
presented.

In [15], authors propose SVM ensembles to address the clas-
sification of rare scenes. Rare scenes are those whose negative
class is much larger than the positive class in standard datasets.
A hierarchical SVM strategy is presented in this work. Each
SVM is trained independently and the results are aggregated
with another SVM. An approach for scene classification by
creating an ensemble of parallel deep rule-based classifiers is
proposed in [16]. Each classifier is trained separately using
the features obtained from a pre-trained DCNN. The decision
layer is designed as a ‘winner-takes-all’ that considers the
result for each classifier and the confidence scores. In [17]
a single CNN classifier is used. Classification is performed
independently based on the features for different layers of the
CNN. Outputs of different layers are combined to perform
scene categorization. A soft combination of the ensemble of
layers of the classifier is proposed that uses static and dynamic
weights computed with genetic algorithms. Similarly, in [18],
a CNN with a Local Convolutional Supervision (LCS) layer is
used. LCS keeps the importance of fine-grained and detailed
information in the image improving the final result for scene
recognition. Important local information is encoded in a Fisher
Convolutional Vector (FCV), which compensates the high-
level FC-features for scene classification.

Unlike the approaches mentioned above, in this work in-
dependent base classifier models that extract different features
from the images are combined to give a prediction of the scene
where the robot is located. The classification outputs are fused
using dynamic weighted voting schemes through two strate-
gies, considering the performance rate of each independent
base classifier and using genetic algorithms.

III. METHOD OVERVIEW

The combination of several classifiers can lead to a mean-
ingful improvement in the recognition rate and the overall



system performance. The development of a multi-classifier
model requires several base classifiers first. Each one of
these classifiers can be designed using several techniques,
input features and different sources of information. Each base
classifier generates an output with the prediction about the
class to which a scene belongs. Then, these outputs must be
appropriately combined in order to obtain a final prediction.
In this paper, we propose a multi-classifier model for
scene recognition. The structure of the model is based on
parallel topology. Each base classifier receives RGB and depth
images. They perform the scene classification independently
according to their feature extraction methods and classification
algorithms. The outputs of the classifiers are the probabilities
of the classes to which the scene belongs. The outputs of
the classifiers are combined using a weighted voting scheme.
Figure 2 shows a general overview of the proposed model.

Scene images

[

Decision classifier 1
—

h"”??:‘ -

W-»

Real-time scene

Base classifier 1

Final
decision

(scene category
& score value)

s Decision classifier 2
Base classifier 2 | Decision classifier2 |

Weighted voting scheme

Decision classifier n

» Base classifier n

Fig. 2: General overview of the proposed multi-classifier
model for scene recognition. The final decision of the com-
bination of the outputs of the base classifiers is based on
weighted voting schemes.

The proposed model is capable of working with an arbitrary
number of base classifiers. As an example, for this work,
two base classifiers are used. The first base classifier model
consists of a scene recognition system based on machine learn-
ing that generates as output the score values for each scene
category. On the other hand, a probabilistic scene recognition
model that incorporates the information about the objects is
used as another base classifier. This second model, developed
in [19] gives as final result the class and the probability of the
scene perceived by the robot. Each base classifier generates a
ranked list of the classes with their likelihood values.

To ensure an adequate combination of the results of the
base classifiers we have decided to implement two weighted
voting schemes. In the first voting scheme, the weights are as-
signed to each classification output considering the individual
performance of each scene recognition model. The accuracy
of each model is used to determine the final result about the
scene perceived by the robot. The second scheme makes use
of genetic algorithms to determine the optimal weights that
have to be applied to the output of each base classifier model.
Finally both voting schemes are compared to determine the
best solution for the scene recognition problem.

I'V. BASE SCENE RECOGNITION MODELS

To build a multi-classifier model, several base classifiers
are necessary. In this work, we use two models as base

classifiers. First, a scene recognition system based on machine
learning is employed. The model makes use of images of
different indoor environments to generate a training model.
Color and grayscale images are used as input data. The model
is divided in two stages, training stage and classification
stage. For feature extraction, the technique of Bag of Features
(BoF) combined with SURF descriptors are employed. A
classification method based on Multilayer Perceptron is used.
When deployed in a real environment the robot identifies the
current scene according to the trained model and the result is
a list of the trained classes with their respective score values.
Figure 3 shows a general diagram of the first base classifier.
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Fig. 3: A general representation of the scene recognition
model based on BoF and SURF descriptors. The model uses
Multilayer perceptron as classification method.

As a second base classifier, a probabilistic scene recognition
model that considers multiple objects in the scene as prior
information is used. The model developed in [19] employs
support vector machine (SVM) as a classification method
and considers the relationship between the objects in the
scene to determine the final result about the class of the
scene that is perceived. Figure 4 shows a representation of
the second base classifier model. For the training process,
two available datasets have been used, the SUN397 scene
recognition benchmark [20] and the Kyushu University Indoor
Semantic Place Dataset [21].
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Fig. 4: Probabilistic Scene Recognition Model consisting of
two stages: offline and online. The reclassification process con-
siders scene and object relations to refine the final probability.

To include the influence of several objects in the prediction



process, we have implemented the Bayes Extended Theorem
that allows to combine multiple conditions with independent
ancestors. We incorporate the information about not only one
object at a time but several objects at the same time. The
probability of being in a scene & given several objects at the
same time N;O; is shown in Equation 1.

P(Ns05|&k) * P(&x)
P(Ns0s)

P(&|Ns O5) = (1)
where the probability of detecting several object in a scene,
P(Ns0;|&k), is defined as shown in Equation 2.

P(N;0s¢r) HP (Osléx) )

These probabilities were obtained through co-occurrence
matrices that indicate how often the objects appear in a specific
scene. P(&;) corresponds to the initial probability of being in
a scene. Finally, P(N;0;) is the probability to find several
specific objects in any scene category.

V. WEIGHTED VOTING SCHEMES

The selection of appropriate weights is crucial to have a
robust multi-classifier model. In this section, two weighted
voting scheme strategies are studied.

A. Weighted Voting Scheme by Accuracy

In this type of voting scheme a weight is assigned to each
base classifier model. The weights are based on the assumption
that classifier models with high recognition performance are
more reliable than classifiers with lower performance rate. For
this work, the weight of each base classifier is represented
by the accuracy of each model. The accuracy is a measure
to evaluate the performance of a classification model that
represents the proportion of the correct predictions that is
determined using the Equation 3.

A N°of correct predictedimages 3)
ceuracy =
4 Total number of images

The process consists of multiplying each scene class proba-
bility obtained from each base classifier model by its respective
weight. Next, the weights of the classifiers are added for each
class of scene. Then, the final prediction is the scene class with
the highest sum of weights. Equation 4 shows the formulation
of this voting scheme:

y = argmaz Z w; Pij G))
? ]:1

where ¢ represents the final result after the combination
process, w; is the weight of each base classifier j associated
to the accuracy of the model and finally, P;; is the prediction
result of the base classifier j for the scene class 1.

B. Weighted Voting Scheme through Genetic Algorithms

In this section, a second voting scheme for the combination
of base classifiers is proposed. This voting scheme can be
considered more general than the voting scheme based on
the performance of the system. First, a set of weights as
free parameters are considered. Then, the idea is to find a
combination of values that generates the best result for the
whole system. There are many optimization methods that can
be applied. In this work, we have decided to use genetic
algorithms because of the robustness and good performance
demonstrated in many other complex problems [22].

Genetic Algorithms (GAs) [23] are a subset of the computer
science branch called Evolutionary Computation. GAs are
search-based algorithms inspired by the processes of natu-
ral and genetic selection. The process begins with a group
or population of possible solutions to a given optimization
problem. Each candidate solution is called a chromosome and
initially each of them is created randomly. It is necessary
to define a fitness function to evaluate the quality of the
solution. Each chromosome is assigned a fitness value, and
only the most fit individuals, that is, the chromosomes that
constitute a better solution to the optimization problem, are
allowed to ‘reproduce’. During reproduction, new individuals
are created from the random changes (mutation) and fusion of
two chromosomes (crossover). This way, better individuals or
solutions are obtained over the generations (evolving), until a
stop criterion is reached.

The phases of a GA are: initialization, fitness function
definition, selection, crossover and mutation. The details of
each phase with respect to our method are described below.

1) Initialization: Each chromosome is represented by an
array of weights that are real numbers between 0 and 1. The
number of elements of the array is equal to the number of base
classifier models (m). All the values of the chromosomes are
generated randomly. For this work, the population size (N) is
set to 50.

2) Fitness Function: The fitness function or objective func-
tion F,p;(7) is defined as the accuracy of each base classifier
model (A,) combined with the weights (w,,) corresponding
to each chromosome 7. Through this function, shown in
Equation 5 a fitness score for each chromosome is calculated
to determine if an individual is able to compete with others.

Fo(i _\ZA *wy) — 1 (5)

3) Selection: In this step the idea is to select the fittest
individuals. The fitness of each chromosome is calculated
according to Equation 6.

1

obj

(6)

The selection probability is calculated considering the fit-
ness score of each chromosome (Equation 7). Lower values



of Fitness(i) lead to lower selection probabilities.
_ Fitness(i)
Zle Fitness(i)

4) Crossover: This is the most important step in a genetic
algorithm. During the crossover, for each pair of parents that
must be mated, a random crossover point is chosen within
the genes. This way, new population is created by fusing the
information in the chromosomes.

5) Mutation: This step involves replacing a gene in a
random position with a new value. This process guarantees
the diversity of the population and avoids early convergence.
Once the mutation process is done, the iteration of the GA has
finished, yielding a new generation. With this, the objective
function is evaluated. If the result of the objective function
decreases, it means that a better solution was found compared
with the previous chromosome. Finally, the best chromosome
represents the final result of the weights that will be applied
for the fusion of the base classifiers.

(7

Pselection(i)

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

The proposed multi-classifier model for indoor scene recog-
nition has been designed to run on a real mobile robot. For
the experiments, we have used a Turtlebot 2 robotic platform
equipped with an RGB-D sensor for the recognition of objects
and scenes. To demonstrate the usefulness of our approach in
real scenes, two environments have been selected: a building
of a university and a typical house. In all the experiments
the robot was teleoperated and the different modules of the
proposed multi-classifier model operated autonomously.

B. Evaluation of the Weighted Voting Scheme by Accuracy

The first experiment consisted of moving the robot by
teleoperation in the two selected environments, capturing
different scenes, while the base classifiers were executed at the
same time. Each of the base classifiers yields the probability
of the scene of belonging to each of the classes for which
they were designed. The multi-classifier model receives this
information and fuses it using as weights the accuracy of
each model obtained during its respective training phase. This
accuracy values are 78.5% for the first base classifier model
and 88.4% for the second base classifier model. Table I shows
the final results of the base classifier models and the result of
the proposed multi-classifier model using a weighted voting
scheme based on accuracy. The first two columns show the
recognition rate of each base classifier model (69.98% and
76.48% respectively). The last column shows the recognition
rate of the proposed multi-classifier model (80.17%) and how
the scene recognition task improves after merging the base
classifier models considering the accuracy as weights.

C. Evaluation of the Weighted Voting Scheme through Genetic
Algorithms

The second experiment was carried out under the same
conditions as the first one. The robot moves through the

TABLE I: Evaluations of the multi-classifier model based on
accuracy. Environments: university building and typical house

’ Evaluations ‘ Recog. rate 1 ‘ Recog. rate 2 ‘ Final Recog. rate ‘

Laboratory 72.45% 79.86% 87.58%
Garage 63.97% 74.62% 78.76%
Classroom 72.01% 72.32% 74.79%

Univ. Avg 69.48% 75.60% 80.38%
Kitchen 78.77% 89.20% 91.47%
Bedroom 72.93% 78.99% 79.96%
Bathroom 63.22% 76.05% 78.90%

Living room 67.01% 65.20% 69.54%

House Avg 70.48% 77.36% 79.97%

[ TotalAvg |  69.98% 76.48% | 80.17% \

two selected environments, a university and a typical house,
classifying the scene that it perceives. The voting scheme
strategy used in this experiment is based on genetic algorithms.
Figure 5 shows the prediction results in a scene type ’kitchen’.
Table II shows the configuration of the main parameters used
in the generation of the weights through genetic algorithms.

TABLE II: Main parameters used in the implementation of
genetic algorithms for scene recognition.

’ Parameters ‘ Values ‘
Population size 50
N iterations 100
Crossover rate 0.8
Mutation rate 0.1

Fig. 5: Execution of the multi-classifier model based on
weighted voting scheme through GA in a common house. The
information of each base classifier model are considered to
obtain the final result.

After the weights are generated, they are multiplied by the
individual results of each base classifier model. In table III the
results of the application of our multi-classifier model based
on GAs are presented.

The results show that the implementation of the two
weighted voting schemes proposed in this work increases the
recognition rate in comparison with each of the base classifier
models. The voting scheme based on accuracy achieved good
results with a 80.17% of average recognition rate. However,



TABLE III: Evaluations of the multi-classifier model based on
genetic algorithms.

’ Evaluations ‘ Recog. rate 1 ‘ Recog. rate 2 ‘ Final Recog rate ‘

Laboratory 71.86% 77.86% 87.72%
Garage 69.42% 81,06% 86.36%
Classroom 70.91% 75.44% 79.52%

Univ. Avg 70.73% 78.12% 84.54%
Kitchen 82.95% 91.78% 95.94%
Bedroom 73.77% 78.15% 85.60%
Bathroom 57.38% 72.85% 75.43%

Living room 66.56% 67.88% 73.07%

House Avg 70.16% 77.66% 82.51%

| TotalAvg |  7045% [  7789% | 83.52% \

weighted voting scheme based on genetic algorithms produces
the best result for the scene recognition task with an average
recognition rate of 83.52%. The experiments show that the
proper combination of independent classifiers can compensate
for errors during the classification process and generate much
more robust recognition models.

VII. CONCLUSIONS

We proposed a multi-classifier model for scene recognition
based on weighted voting schemes. In this work, two strategies
of weighted voting schemes were considered. In the first strat-
egy, the weights assigned to each base classifier were equal to
the respective accuracy of each model. On the other hand, in
the second scheme, a genetic algorithm was implemented for
weight optimization. In this process the accuracy was used to
create the objective function.

The experiments show that the recognition rate using the
proposed multi-classifier is better than using individual classi-
fiers. In this work, we have implemented two variants of voting
schemes that achieve both good results. However, the weighted
voting scheme based on genetic algorithms works better than
the simple voting scheme by accuracy. The adequate combi-
nation of independent classifiers through genetic algorithms
allows to obtain a more robust and precise model for scene
recognition, taking advantage of the benefits of each classifier
and compensating the errors of each of them. As future work,
we plan to study other voting strategies, increase the number
of base classifiers and incorporate a new base classifier based
on deep learning techniques in order to evaluate the robustness
and performance in a multi-classifier model.
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