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Abstract—The success of mobile robots, and particularly these
coexisting with humans, relies on the ability to understand human
environments. Representing the world and analysing spaces in
a similar way to humans will enhance their comprehension
and enable higher abstraction capabilities and interactions. The
purpose of this work is to develop a localization framework that
takes into account the different scenes common in a human
environment and a hierarchical model of the environment.
A probabilistic model for recognizing scenes is employed to
determine the scene in which the robot is located. To allow that,
the information about the objects and the relationships between
them are considered. Besides that, a hierarchical model formed
by different topological representations according to different
levels of abstraction is proposed. Localization is performed at
different levels to improve the localization accuracy. In this work,
scene information is used to improve the localization of a mobile
robot in a hierarchical model using hidden Markov models. The
experiments of our framework working in real environments
uphold the usefulness of the inclusion of the understanding and
abstraction of the environment in localization.

Index Terms—Semantic localization, robot localization, scene
recognition, hierarchical modelling.

I. INTRODUCTION

Robot localization depends greatly on the quality of the
data collected and its comprehension of the environment. In
order to localize properly, the gathered data has to be trustful
and accurate. A more precise and rich understanding of the
environment will lead to a better localization for the robot. The
main motivation of this work is to localize a mobile robot in
an indoor area using the understanding of its surroundings: a
hierarchical model of the environment and scene recognition.

When we talk about a robot localizing itself in human
environments, we are implicitly assuming the robot knows the
same information as humans do: the place where it is, the
things that are in that place and their positions. The detection
of certain types of objects in a place can determine the scene
type (e.g. a living room, a bathroom or an office, among others)
and this can affect the localization process.
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In the same way, the importance of modelling the environ-
ment lies in representing the world in an intelligent way so
the maximum amount of information is included but the model
is understandable for robots and humans. Hierarchical models
represent the environment in an organized and intuitive way at
different levels. Each level includes the required information,
serves different purposes and is internally related to the other
levels of the model. With regards to localization, knowing
where the robot is located at every level of the model decreases
the localization uncertainty and helps to solve situations where
the robot may get lost. We show how abstraction of a hierarchi-
cal model using probabilistic techniques improves localization.
The main contributions of this work are:

• The development of a probabilistic interpretation of the
abstraction in a hierarchical model to localize a robot at
different levels of the model.

• The inclusion of semantic scene and object information
in order to improve the localization of a mobile robot.

• The evaluation of the semantic localization on a real-
world experiments with a mobile robot.

The paper is organized as follows. Related work in hi-
erarchical models and scene recognition for localization is
presented in Section II. Section III and IV describe the envi-
ronment and scene recognition models. Section V explains the
inclusion of semantic information in the localization process.
Finally, Section VI and VII present the experimental results,
conclusions and future work.

II. RELATED WORK

Although localization has been widely studied by the
robotics community, not many authors focused on the improve-
ment of localization processes using semantic information.
Many approaches, as [1], [2], use landmarks or objects for
localization. However, they do not normally consider their se-
mantic meaning. In [3], authors use the semantical information
gathered from object detection for global localization but they
do not consider adding the scene information.

During the last decades, vision approaches have emerged for
robot localization thanks to the technological improvements
and the vast amount of useful information that a camera can
provide. Many approaches have incorporated object informa-
tion for the localization task, while more recent works try
to solve the problem by adding more contextual information
through scene recognition. In [4], the authors presented a
localization method combining semantic and geometric under-
standing of the 3D world. They proposed a generative learning
model that given a part of a scene predicts the complete scene.



Through this, it was possible to estimate accurate camera poses
under challenging environmental conditions.

In [5] an approach for vehicle localization based on topolo-
gical maps and scene recognition was presented. The authors
proposed a technique to detect the node information and
construct the topological map based on omni-directional image
sequences. To do this, they combine feature-based and content-
based image retrieval descriptors and then extract the SURF
key points for the matching phase. Other approaches such as
[6] proposed a robot localization model based on known maps
using object detection. Object heatmaps are computed by the
combination of two types of local image features, histograms
of normalized gradient energies (HOGE) and histograms of
quantized colors (HQC) to obtain the likelihood of the object
being present in the image. Using this prior information about
the objects, the 2D position and orientation is estimated apply-
ing particle-based localization. The authors in [7] developed an
indoor topological localization method using the detection of
steady objects as landmarks. They implement a convolutional
neural network to classify objects and a topological matching
algorithm based on hidden Markov model. They use semantic
information of the objects to represent locations, and their
occurrence order is used for localization through matching
against the topological map. Other works such as [8] combine
object and scene information into a topological localization
methodology for large-scale outdoor scenarios. The authors
use a deep neural network to obtain semantic observations of
the environment and a topological map to store the semantic
observations and calculate vehicle’s pose.

Regarding hierarchical models, it is a topic that has caught
the attention of many authors. This attention is due to the
need of structuring the information and maintaining different
representations for different tasks as localization or navigation.
Most of the researchers have focused on the hierarchies that
relate different representations and focus their work on geo-
metric dependencies. In [9], the model of the environment is
divided in three levels: geometrical, symbolic and topological.
Localization is performed at the geometrical level while the
others are used to group the information. Symbolic and sensor-
based representations are considered in [10] to link the spatial
and semantic information. They perform semantic localization
to infer the type of place. Other authors have focused their
hierarchy on topological representations, such as [11], where
a multi-hierarchical model is used to provide an autonomous
robotic wheelchair with an internal representation of the world
to interface with the human driver. In that work, each level
corresponds to a topological graph.

More recently, a mapping system to enable spatial under-
standing was proposed in [12]. Authors divided the model of
the environment in four layers: sensory, place, categorical and
conceptual layers. In [13], the idea is that local metric maps
are represented as nodes of a scalable topological map. In this
approach, a tree-like structure is used for sorting landmarks
from global to local.

When dealing with hierarchical models, localization is usu-
ally performed only at one level while other levels serve to

different tasks such as interaction. However, some authors
have also mentioned the need of localizing a robot at several
hierarchical levels. In [14], the authors present a hierarchical
model composed by a global adjacency graph and local metric
maps. Localization is performed on the local metric maps, but
stochastic consistency is also maintained at the upper level.

In contrast with the previously mentioned works, we use
both object and scene semantic information to improve loca-
lization at several levels of a topological hierarchical model.

III. MODEL OF THE ENVIRONMENT
In order to navigate in human indoor environments, the

robot builds a hierarchical model where knowledge is dis-
tributed at different levels. The construction of the hierar-
chical model depends on a map-building algorithm based
on autonomous exploration that is beyond the scope of this
paper. We define a hierarchical topological map as a graph
representation that includes information at different abstraction
levels. A group of nodes of a hierarchical level is abstracted to
a single node of the next higher level, which is its supernode.
In this paper, for simplicity we are just considering two hier-
archical levels in the model of the environment: Observations
adjacency graph and Topological map, as shown in Figure 1.
In order to localize the robot at both levels a stochastic
algorithm based on hidden Markov models (HMMs) is used.

Observations adjacency graph level. This level is struc-
tured as a topological graph based on movements: a graph
in which connections between nodes do not imply a strict
spatial correspondence between the real environment and
the representation, but rather a qualitatively relation based
on adjacency.. In the case of the environment used for the
experimental results (Figure 5), the associated Observations
adjacency graph is shown in Figure 1 (a). Nodes correspond
to visited objects and multiple event types can be associated to
them. In this work, an event is a detection of an object (black)
or a transition (red). Nodes of the Observations adjacency
graph are grouped at the higher level, the Topological map.

Topological map level. A node of the Topological map,
which will be referred to as a supernode in the sequel to
differentiate it from Observations adjacency graph nodes, cor-
responds to a semantical entity (e.g. a room). Each supernode
establishes spatial constrains as it is associated with all the
nodes that belong to that semantical entity. In this hierarchical
level, edges include the information of the node that enables
the transition between the supernodes. For example, in Fig-
ure 1 (b) if the robot moves from supernode 0 to supernode
2, it has to traverse door 2 (which in this case is the transition
between supernodes).

Supernodes are semantical entities, however, considering
only the model of the environment, their semantical meaning is
not clear. In this paper, we have developed a Scene recognition
system that gives meaning to the supernodes (e.g., Supernode 2
in Figure 1 could be associated to the classroom scene).

A. Managing the Uncertainty of the Model for Localization
The robot uses a discrete localization algorithm based on

HMMs presented in our previous work [15]. It calculates the



Fig. 1: Graph representations of the environment. (a) shows the Observations adjacency graph where each dot corresponds
to a node of the graph and lines establish the edges between nodes. Black dots represent variable events (corresponding to
detection of objects) and red dots represent invariable events (corresponding to detection of doors). (b) shows the Topological
Map where each supernode is represented with a bubble, in this environment there are three supernodes.

probability of being in each node of the Observations adja-
cency graph using the prior information about the environment
and the observations received while navigating. States of the
HMM are related to nodes of the Observations adjacency
graph. Observations for the HMM (which do not necessa-
rily coincide with the nodes of the Observations adjacency
graph) are the objects perceived while the robot moves. The
calculation to define the current state of the robot is shown
in Equation 1. State probabilities P (si|b) are calculated as
the probability of being at state i given the observation b at
each time step; s denotes the possible individual states and a
are the transition probabilities between the nodes. In order to
reduce the localization uncertainty, the Geometric Uncertainty
Coefficient (GUC) was included. GUC offers a correlation
between the expected orientation to see an object and the real
orientation where the object is seen. It is extensively explained
in our previous work [15].

P (si|b) =
(
∑N
j=0 P

′(sj |b′) ∗ aj,i ∗GUCj,i) ∗ P (b|si)∑N
j=0 P (sj |b)

, (1)

where b′ refers to the observation in the previous time step
and P ′(sj |b′) to the corresponding probability. For simplicity,
we denote the probabilities P (si|b) as P (si) in the sequel.

As supernodes are groups of nodes from the Observations
adjacency graph, the probability of each supernode P (Si)
can be abstracted as the sum of the probabilities of the
nodes, P (si), that belong to each supernode. The supernode
probability is obtained using Equation 2.

P (Si) =

ni∑
j=0

P (sj ∈ Si) (2)

S and s refer to the possible supernodes and nodes, and ni
to the number of nodes in supernode i. Supernode estimator is
calculated using maximum posterior criteria as the maximum
value among all supernode probabilities max(P (Si)).

Equations 1 and 2 define the probabilistic localization of
the robot in two layers of the hierarchical model, taking into

account the observations and the relations between the layers.
In the following sections, the inclusion of semantic scene
information in the localization process is explained.

IV. SCENE RECOGNITION

Scene recognition can be defined as the process of identify-
ing a place taking into account objects, actions and interactions
between the environment, humans and robots. The objects
in a given scene are bound by certain relationships, some
actions can be performed and it can lead to certain interactions
between them. Scene recognition detects the generic type of
a place, if the environment consists in several places of the
same scene type the scene recognition system by its own will
not be able to distinguish in which one the robot is.

In our case, we use a Probabilistic Scene Recognition Model
presented in our previous work [16] in order to acquire the
information about the environment. This model (Figure 2)
includes the information of the objects in the scene as prior
knowledge to generate the final estimate of being in a certain
place.

Fig. 2: General representation of the scene recognition model.
The model takes the information of the object recognition sys-
tem as prior information to update the outcomes of the scene
recognition model. This information represents the inputs for
the model of the environment (supernodes).

Simultaneously, the scene recognition model interacts with
an object recognition system. This system has been developed



in [17] and it is based on machine learning using SVMs as a
classification algorithm. The idea is to identify some objects
in a typical scene in a real everyday environment. Also, the
model incorporates the information about the probability of
the detected objects. Figure 3 (a) shows the main outputs of
the model that represent the data used for scene recognition.

The final information about the objects is encapsulated into
a message that contains the information of the class of the
object, its probability and its position related to the camera.

The scene recognition model incorporates uncertainty in-
formation considering the errors generated in the sensor mea-
surements. The calculation of uncertainty is essential for the
evaluation of the accuracy of the system. The scene model
has been developed using support vector machines (SVM) as
a classification method in three stages:
• Training module: this is an offline process that involves

building the dataset, selecting the parameters to adjust
the classifier and generating the model of each scene.
Training is performed using the Kyushu University Indoor
Semantic Place Dataset [18].

• Initial prediction module: this stage is carried out online
and involves the initial decision of the place where the
robot is. The classification process is based on supervised
learning and uses local features of the scene to predict
the place where the robot can be.

• Reclassification module: in this real-time stage the infor-
mation of the objects and their relationships is taken into
account to update the probabilities of each scene.

The core of the scene recognition model is the reclassifica-
tion module in which the relationship between the detected
objects and a specific type of a scene are established. A
strategy of reclassification has been implemented, with the
idea of readjusting the probability values both in objects and
scenes. This strategy is based on a model of rules based on
learning to determine the frequency of occurrence of an object
in a specific scene. To do that, we calculate the co-occurrence
probabilities using the SUN397 dataset [19]. Reclassification
allows the definition of a relation that improves the probabilis-
tic results of the detected scenes.

This relation has been established through the Bayes’
theorem by which the conditional probability is calculated.
Equation 3 shows the probability to be in a scene ξk given an
object O of class s in this scene.

P (ξk|Os) =
P (Os|ξk) ∗ P (ξk)

P (Os)
(3)

P (Os|ξk) represents the probability of finding an object Os
in a scene ξk, which can be looked up in the co-occurrence
matrices. P (ξk) is the prior probability of being in a scene
of class k obtained from the initial prediction module. And
finally, P (Os) is the probability of finding an object Os in
any scene, which can be calculated using Equation 4.

P (Os) =
∑
ξk

P (Os|ξk) ∗ P (ξk) (4)

Figure 3 (b) shows the results of the scene recognition
model after the reclassification process.

Fig. 3: Scene recognition outputs. (a) Object recognition
including the information of the object class and its position.
(b) Output of the scene recognition system in the classroom
environment. The system gives the information of the most
probable scene considering the objects present in the scene.

The information of scene and object estimates and uncer-
tainties is used to improve the localization system, giving the
robot the ability to understand the environment.

V. SEMANTIC LOCALIZATION
Using a hierarchical model, we are localizing a robot

according to its position in the Observations adjacency graph
and the Topological map. For example, we can determine
that a robot is at node 11 in supernode 2, but what does
supernode 2 mean? Integrating the information from the Scene
recognition system, we can conclude that it is at node 11 in
supernode 2, which is a classroom. This connection between
the understanding of the robot and the understanding of
humans adds extra information to the localization decisions.

Each supernode of the Topological map is assigned a scene
type the first time it is visited. Ten measurements of scene
probability are used to calculate their joint probability and
select the maximum as the most probable scene. Afterwards,
when moving through the environment, the probability of
being in one supernode is calculated according to Equation
2. In the meantime, the most probable scene is continuously
calculated by the scene recognition model considering the
detected objects and features in the environment, as shown in
Equation 3. Combining the localization result for supernodes
with the scene estimation, semantic information is included in
the localization of the robot. Figure 4 shows this integration.

The semantically improved supernode estimation is shown
in Equation 5. P (SGi ) refers to the global supernode pro-
bability (including scene information); P (Si) refers to ini-
tial supernode probability, as calculated in Equation 2; and
P (ξk|Os ∈ Si) refers to the probability of the scene type
corresponding to supernode i, as calculated in Equation 3.
Finally, M refers to the number of supernodes.

P (SGi ) =
P (Si) ∗ P (ξk|Os ∈ Si)∑M

j=0(P (Sj) ∗ P (ξk|Os ∈ Sj))
(5)



Fig. 4: Integration of semantic information to the localization
process. Scene and object probabilities combined with nodes
and supernodes probabilities improve localization results.

Using the semantically improved supernode probability we
can improve the fine-grained node localization. A propagation
between initial supernode probability and global supernode
probability is proposed. Propagation maintains the probability
distribution between nodes of the same supernode but strength-
ens the nodes that belong to the most probable supernode.
The calculation of the semantically improved node probability,
P (sGi ), is included in Equation 6.

P (sGi ) =
P (si) ∗ P (SGi )

P (Si)
(6)

Adding the understanding of the environment through scene
recognition and hierarchical models improves the final locali-
zation result. In the experimental results, qualitative compari-
son between localization without semantic information (base-
line) and localization with semantic information is presented.

VI. EXPERIMENTAL RESULTS

The proposed algorithm operates in real-time on MOB-E.
MOB-E is a differential robot equipped with an Asus Xtion
camera for recognition tasks. Localization and recognition run
in ROS and are developed using C++ and OpenCV libraries.

In order to evaluate the proposed method, real-world exper-
iments were conducted at the University Carlos III of Madrid.
In Figure 5, the scenes in the environment (captured by the
robot) are shown. The hierarchical model for this environment
is shown in Figure 1. Localization and scene recognition run
autonomously while the robot is teleoperated.

A. Combining Hierarchical Model and Scene Recognition in
a Localization Experiment

Results for localization integrating the model of the envi-
ronment and the scene recognition system are presented. Lo-
calization combines node, supernode and scene probabilities.

In Figure 6, we are presenting the evolution of the prob-
abilities while the robot moves (from left to right the pro-
bability according to time is shown). At each instant three
probabilities (corresponding to the columns of the graph)
are shown: supernode probability, P (Si); scene probability

Fig. 5: Three scenes present in the environment (laboratory,
garage and classroom) that relate to the three supernodes.

P (ξk|Os ∈ Si); and global supernode probability P (SGi ).
Vertical axis represents the estimated probabilities and the
bottom panel shows the real scene where the robot is. The
maximum estimated probability corresponds to the real scene
and an improvement is observable between global probability
and single supernode and scene probabilities. It is remarkable
that the scene classification errors are overcome, as the labora-
tory which at some instants was misclassified as a classroom.

Global node probabilities including semantic information
P (sGi ) are calculated and compared to initial node prob-
abilities using HMMs localization P (si). Single-step and
continuous improvement have been computed. In Figure 7,
single-step improvement for two time steps is shown. The first
graph shows a situation where the most probable node and the
improvement are very clear. On the contrary, in the second
graph there are two most probable nodes if the semantic
information is not considered. This tie is solved with semantic
information. In Figure 8, continuous improvement is shown.
Most probable node with and without semantic information
are compared. The average improvement of including semantic
information for the node probability is 7.72 %.

With this experiment we uphold the improvement of loca-
lization results when perceptual information is included and
the usefulness of modelling the environment hierarchically as
it offers different perspectives to link the information.

VII. CONCLUSIONS

As the localization capability of a robot depends greatly
on its comprehension of the environment, it is crucial to
set recognition and understanding among the key aspects of
a localization problem. In this work, propagation of scene
information is used to improve the final localization. Our
main contributions are the abstraction in a hierarchical model
to localize a robot at different levels and the inclusion of
semantic scene and object information in order to improve its
localization. The system proposed solves ambiguities among
localization results (as shown in the experiments) and im-
proves the performance of algorithms based on localization.

The experiments support the enhancement of the locali-
zation results and the usefulness of incorporating semantic
information. Results also show how the localization process
can be improved with the abstraction and propagation in a
hierarchical model. An average improvement of 6,18 % for
supernodes and 7,72 % for nodes was achieved. Also, it has
been shown how the relationship between objects and scenes
can influence the final probabilities of being in a place.



Fig. 6: Stacked chart of the localization result using scene information. Columns represent the estimated probabilities along
the time that correspond to the real scene. Each group of three columns corresponds to the same instant of time and each
column represents: Initial supernode probability, P (Si); scene probability P (ξk|Os ∈ Si); and global supernode probability,
P (SGi ). Different colours correspond to different scenes: green for laboratory, yellow for garage and blue for classroom.

Fig. 7: Node probability distributions at two times steps.
Values for the 20 nodes are included. Dark green columns
show single-step improvement due to semantic information.

Fig. 8: Most probable node probability along the time without
semantic information (light green) and with semantic informa-
tion (dark green).

In the future work, we want to consider the information
of several objects at the same time and to incorporate other
topological and geometric information to improve the accuracy
and robustness of the scene model. Another future line is to
extend localization to more levels of the hierarchical model.
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navigation of a robotic wheelchair using a multihierarchical model of the
environment,” Integrated Computer-Aided Engineering, vol. 11, no. 4,
pp. 309–322, 2004.

[12] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and rea-
soning with heterogeneous modalities,” in Int. Conf. on Robotics and
Automation. IEEE, 2012, pp. 3515–3522.

[13] M. Augustine, F. Ortmeier, E. Mair, D. Burschka, A. Stelzer, and
M. Suppa, “Landmark-tree map: a biologically inspired topological
map for long-distance robot navigation,” in Int. Conf. on Robotics and
Biomimetics (ROBIO). IEEE, 2012, pp. 128–135.

[14] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical slam: Real-
time accurate mapping of large environments,” IEEE Transactions on
Robotics, vol. 21, no. 4, pp. 588–596, 2005.
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