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Abstract

In this work we address the problem of finding reliable

pixel-level correspondences under difficult imaging condi-

tions. We propose an approach where a single convolu-

tional neural network plays a dual role: It is simultane-

ously a dense feature descriptor and a feature detector.

By postponing the detection to a later stage, the obtained

keypoints are more stable than their traditional counter-

parts based on early detection of low-level structures. We

show that this model can be trained using pixel correspon-

dences extracted from readily available large-scale SfM re-

constructions, without any further annotations. The pro-

posed method obtains state-of-the-art performance on both

the difficult Aachen Day-Night localization dataset and the

InLoc indoor localization benchmark, as well as competi-

tive performance on other benchmarks for image matching

and 3D reconstruction.

1. Introduction

Establishing pixel-level correspondences between im-

ages is one of the fundamental computer vision problems,

with applications in 3D computer vision, video compres-

sion, tracking, image retrieval, and visual localization.

Sparse local features [6–8, 13, 14, 19, 29, 31–33, 49, 54,

55,59,64] are a popular approach to correspondence estima-

tion. These methods follow a detect-then-describe approach

that first applies a feature detector [7,13,19,29,31,33,49,64]

to identify a set of keypoints or interest points. The detec-

tor then provides image patches extracted around the key-

points to the following feature description stage [6–8, 14,

29, 32, 54, 55, 59, 64]. The output of this stage is a compact

representation for each patch. Sparse local features offer

a set of advantages: Correspondences can be matched effi-
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Figure 1: Examples of matches obtained by the D2-Net

method. The proposed method can find image correspondences

even under significant appearance differences caused by strong

changes in illumination such as day-to-night, changes in depiction

style or under image degradation caused by motion blur.

ciently via (approximate) nearest neighbor search [36] and

the Euclidean distance. Sparse features offer a memory ef-

ficient representation and thus enable approaches such as

Structure-from-Motion (SfM) [20,52] or visual localization

[25, 46, 57] to scale. The keypoint detector typically con-

siders low-level image information such as corners [19] or

blob-like structures [29, 31]. As such, local features can
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often be accurately localized in an image, which is an im-

portant property for 3D reconstruction [17, 52].

Sparse local features have been applied successfully un-

der a wide range of imaging conditions. However, they typ-

ically perform poorly under extreme appearance changes,

e.g., between day and night [69] or seasons [45], or in

weakly textured scenes [58]. Recent results indicate that

a major reason for this observed drop in performance is the

lack of repeatability in the keypoint detector: While local

descriptors consider larger patches and potentially encode

higher-level structures, the keypoint detector only consid-

ers small image regions. As a result, the detections are

unstable under strong appearance changes. This is due to

the fact that the low-level information used by the detec-

tors is often significantly more affected by changes in low-

level image statistics such as pixel intensities. Neverthe-

less, it has been observed that local descriptors can still be

matched successfully even if keypoints cannot be detected

reliably [45, 58, 61, 69]. Thus, approaches that forego the

detection stage and instead densely extract descriptors per-

form much better in challenging conditions. Yet, this gain

in robustness comes at the price of higher matching times

and memory consumption.

In this paper, we aim at obtaining the best of both worlds,

i.e., a sparse set of features that are robust under challenging

conditions and efficient to match and to store. To this end,

we propose a describe-and-detect approach to sparse local

feature detection and description: Rather than performing

feature detection early on based on low-level information,

we propose to postpone the detection stage. We first com-

pute a set of feature maps via a Deep Convolutional Neural

Network (CNN). These feature maps are then used to com-

pute the descriptors (as slices through all maps at a specific

pixel position) and to detect keypoints (as local maxima of

the feature maps). As a result, the feature detector is tightly

coupled with the feature descriptor. Detections thereby

correspond to pixels with locally distinct descriptors that

should be well-suited for matching. At the same time, us-

ing feature maps from deeper layers of a CNN enables us to

base both feature detection and description on higher-level

information [67]. Experiments show that our approach re-

quires significantly less memory than dense methods. At

the same time, it performs comparably well or even better

under challenging conditions (c.f . Fig. 1) such as day-night

illumination changes [45] and weakly textured scenes [58].

Our approach already achieves state-of-the-art performance

without any training. It can be improved further by fine-

tuning on a large dataset of landmark scenes [26].

Naturally, our approach has some drawbacks too: Com-

pared to classical sparse features, our approach is less effi-

cient due to the need to densely extract descriptors. Still,

this stage can be done at a reasonable efficiency via a single

forward pass through a CNN. Detection based on higher-

/

/

(a) detect-then-describe (b) detect-and-describe

Figure 2: Comparison between different approaches for fea-

ture detection and description. Pipeline (a) corresponds to dif-

ferent variants of the two-stage detect-then-describe approach. In

contrast, our proposed pipeline (b) uses a single CNN which ex-

tracts dense features that serve as both descriptors and detectors.

level information inherently leads to more robust but less

accurate keypoints – yet, we show that our approach is still

accurate enough for visual localization and SfM.

2. Related Work

Local features. The most common approach to sparse fea-

ture extraction – the detect-then-describe approach – first

performs feature detection [7, 19, 29, 31, 33] and then ex-

tracts a feature descriptor [7, 9, 24, 29, 44] from a patch

centered around each keypoint. The keypoint detector is

typically responsible for providing robustness or invariance

against effects such as scale, rotation, or viewpoint changes

by normalizing the patch accordingly. However, some of

these responsibilities might also be delegated to the descrip-

tor [66]. Fig. 2a illustrates the common variations of this

pipeline, from using hand-crafted detectors [7,19,29,31,33]

and descriptors [7,9,24,29,44], replacing either the descrip-

tor [6,54,55] or detector [49,68] with a learned alternative,

or learning both the detector and descriptor [38,64]. For ef-

ficiency, the feature detector often considers only small im-

age regions [64] and typically focuses on low-level struc-

tures such as corners [19] or blobs [29]. The descriptor

then captures higher level information in a larger patch

around the keypoint. In contrast, this paper proposes a sin-

gle branch describe-and-detect approach to sparse feature

extraction, as shown in Fig. 2b. As a result, our approach

is able to detect keypoints belonging to higher-level struc-

tures and locally unique descriptors. The work closest to

our approach is SuperPoint [13] as it also shares a deep rep-

resentation between detection and description. However,

they rely on different decoder branches which are trained

independently with specific losses. On the contrary, our

method shares all parameters between detection and de-

scription and uses a joint formulation that simultaneously

optimizes for both tasks. Our experiments demonstrate that

our describe-and-detect strategy performs significantly bet-
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ter under challenging conditions, e.g., when matching day-

time and night-time images, than the previous approaches.

Dense descriptor extraction and matching. An alterna-

tive to the detect-then-describe approach is to forego the

detection stage and perform the description stage densely

across the whole image [10, 15, 48, 52]. In practice, this

approach has shown to lead to better matching results

than sparse feature matching [45, 58, 69], particularly un-

der strong variations in illumination [69]. This identifies

the detection stage is a significant weakness in detect-then-

describe methods, which has motivated our approach.

Image retrieval. The task of image retrieval [3, 18, 37,

40,60,61] also deals with finding correspondences between

images in challenging situations with strong illumination or

viewpoint changes. Several of these methods start by dense

descriptor extraction [3,37,60,61] and later aggregate these

descriptors into a compact image-level descriptor for re-

trieval. Works most related to our approach are [37,60]: [37]

develops an approach similar to ours, where an attention

module is added on top of the dense description stage to

perform keypoint selection. However, their method is de-

signed to produce only a few reliable keypoints as to reduce

the false positive matching rate during retrieval. Our experi-

ments demonstrate that our approach performs significantly

better for matching and camera localization; [60] implic-

itly detects a set of keypoints as the global maxima of all

feature maps, before pooling this information into a global

image descriptor. [60] has inspired us to detect features as

local maxima of feature maps.

Object detection. The proposed describe-and-detect ap-

proach is also conceptually similar to modern approaches

used in object detection [28, 41, 42]. These methods also

start by a dense feature extraction step, which is followed

by the scoring of a set of region proposals. A non-maximal-

suppression stage is then performed to select only the most

locally-salient proposals with respect to a classification

score. Although these methods share conceptual similari-

ties, they target a very different task and cannot be applied

directly to obtain pixel-wise image correspondences.

This work builds on these previous ideas and proposes a

method to perform joint detection and descriptions of key-

points, presented next.

3. Joint Detection and Description Pipeline

Contrary to the classical detect-then-describe ap-

proaches, which use a two-stage pipeline, we propose to

perform dense feature extraction to obtain a representation

that is simultaneously a detector and a descriptor. Because

both detector and descriptor share the underlying represen-

tation, we refer to our approach as D2. Our approach is

illustrated in Fig. 3.

The first step of the method is to apply a CNN F on

the input image I to obtain a 3D tensor F = F(I), F ∈
R

h×w×n, where h×w is the spatial resolution of the feature

maps and n the number of channels.

3.1. Feature Description

As in other previous work [37,43,58], the most straight-

forward interpretation of the 3D tensor F is as a dense set

of descriptor vectors d:

dij = Fij:,d ∈ R
n , (1)

with i = 1, . . . , h and j = 1, . . . , w. These descriptor vec-

tors can be readily compared between images to establish

correspondences using the Euclidean distance. During the

training stage, these descriptors will be adjusted such that

the same points in the scene produce similar descriptors,

even when the images contain strong appearance changes.

In practice, we apply an L2 normalization on the descriptors

prior to comparing them: d̂ij = dij/‖dij‖2.

3.2. Feature Detection

A different interpretation of the 3D tensor F is as a col-

lection of 2D responses D [60]:

Dk = F::k, D
k ∈ R

h×w , (2)

where k = 1, . . . , n. In this interpretation, the feature ex-

traction function F can be thought of as n different feature

detector functions Dk, each producing a 2D response map

Dk. These detection response maps are analogous to the

Difference-of-Gaussians (DoG) response maps obtained in

Scale Invariant Feature Transform (SIFT) [29] or to the cor-

nerness score maps obtained in Harris’ corner detector [19].

In our work, these raw scores are post-processed to select

only a subset of locations as the output keypoints. This pro-

cess is described next.

Hard feature detection. In traditional feature detectors

such as DoG, the detection map would be sparsified by per-

forming a spatial non-local-maximum suppression. How-

ever, in our approach, contrary to traditional feature detec-

tors, there exist multiple detection maps Dk (k = 1, . . . , n),

and a detection can take place on any of them. Therefore,

for a point (i, j) to be detected, we require:

(i, j) is a detection ⇐⇒ Dk
ij is a local max. in Dk ,

with k = argmax
t

Dt
ij .

(3)

Intuitively, for each pixel (i, j), this corresponds to select-

ing the most preeminent detector Dk (channel selection),

and then verifying whether there is a local-maximum at po-

sition (i, j) on that particular detector’s response map Dk.

Soft feature detection. During training, the hard detection

procedure described above is softened to be amenable for
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Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:

(i) local descriptors dij are simply obtained by traversing all the n feature maps Dk at a spatial position (i, j); (ii) detections are obtained

by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during

training, keypoint detection scores sij are computed from a soft local-maximum score α and a ratio-to-maximum score per descriptor β.

back-propagation. First, we define a soft local-max. score

αk
ij =

exp
(

Dk
ij

)

∑

(i′,j′)∈N (i,j) exp
(

Dk
i′j′

) , (4)

where N (i, j) is the set of 9 neighbours of the pixel (i, j)
(including itself). Then, we define the soft channel selec-

tion, which computes a ratio-to-max. per descriptor that

emulates channel-wise non-maximum suppression:

βk
ij = Dk

ij

/

max
t

Dt
ij . (5)

Next, in order to take both criteria into account, we maxi-

mize the product of both scores across all feature maps k to

obtain a single score map:

γij = max
k

(

αk
ijβ

k
ij

)

. (6)

Finally, the soft detection score sij at a pixel (i, j) is ob-

tained by performing an image-level normalization:

sij = γij

/

∑

(i′,j′)

γi′j′ . (7)

Multiscale Detection. Although CNN descriptors have a

certain degree of scale invariance due to pre-training with

data augmentations, they are not inherently invariant to

scale changes and the matching tends to fail in cases with a

significant difference in viewpoint.

In order to obtain features that are more robust to scale

changes, we propose to use an image pyramid [2], as typi-

cally done in hand-crafted local feature detectors [27,29,31]

or even for some object detectors [16]. This is only per-

formed during test time.

Given the input image I , an image pyramid Iρ contain-

ing three different resolutions ρ = 0.5, 1, 2 (corresponding

to half resolution, input resolution, and double resolution)

is constructed and used to extract feature maps F ρ at each

resolution. Then, the larger image structures are propagated

from the lower resolution feature maps to the higher resolu-

tion ones, in the following way:

F̃ ρ = F ρ +
∑

γ<ρ

F γ . (8)

Note that the feature maps F ρ have different resolutions. To

enable the summation in (8), feature maps F γ are resized to

the resolution of F ρ using bilinear interpolation.

Detections are obtained by applying the post-processing

described above to the fused feature maps F̃ ρ. In order to

prevent re-detecting features, we use the following response

gating mechanism: Starting at the coarsest scale, we mark

the detected positions; these masks are upsampled (nearest

neighbor) to the resolutions of the next scales; detections

falling into marked regions are then ignored.

4. Jointly optimizing detection and description

This section describes the loss, the dataset used for train-

ing, and provides implementation details.

4.1. Training loss

In order to train the proposed model, which uses a single

CNN F for both detection and description, we require an

appropriate loss L that jointly optimizes the detection and

description objectives. In the case of detection, we want

keypoints to be repeatable under changes in viewpoint or

illumination. In the case of description, we want descriptors

to be distinctive, so that they are not mismatched. To this

end, we propose an extension to the triplet margin ranking

loss, which has been successfully used for descriptor learn-

ing [6, 34], to also account for the detection stage. We will

first review the triplet margin ranking loss, and then present

our extended version for joint detection and description.

Given a pair of images (I1, I2) and a correspondence

c : A ↔ B between them (where A ∈ I1, B ∈ I2),

our version of the triplet margin ranking loss seeks to mini-

mize the distance of the corresponding descriptors d̂
(1)
A and

d̂
(2)
B , while maximizing the distance to other confounding
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descriptors d̂
(1)
N1

or d̂
(2)
N2

in either image, which might ex-

ist due to similarly looking image structures. To this end,

we define the positive descriptor distance p(c) between the

corresponding descriptors as:

p(c) = ‖d̂
(1)
A − d̂

(2)
B ‖2 , (9)

The negative distance n(c), which accounts for the most

confounding descriptor for either d̂
(1)
A or d̂

(2)
B , is defined as:

n(c) = min
(

‖d̂
(1)
A − d̂

(2)
N2

‖2, ‖d̂
(1)
N1

− d̂
(2)
B ‖2

)

, (10)

where the negative samples d
(1)
N1

and d
(2)
N2

are the hardest

negatives that lie outside of a square local neighbourhood

of the correct correspondence:

N1 = argmin
P∈I1

‖d̂
(1)
P − d̂

(2)
B ‖2 s.t. ‖P −A‖∞ > K , (11)

and similarly for N2. The triplet margin ranking loss for a

margin M can be then defined as:

m(c) = max
(

0,M + p(c)2 − n(c)2
)

. (12)

Intuitively, this triplet margin ranking loss seeks to enforce

the distinctiveness of descriptors by penalizing any con-

founding descriptor that would lead to a wrong match as-

signment. In order to additionally seek for the repeatability

of detections, an detection term is added to the triplet mar-

gin ranking loss in the following way:

L(I1, I2) =
∑

c∈C

s
(1)
c s

(2)
c

∑

q∈C s
(1)
q s

(2)
q

m(p(c), n(c)) , (13)

where s
(1)
c and s

(2)
c are the soft detection scores (7) at points

A and B in I1 and I2, respectively, and C is the set of all

correspondences between I1 and I2.

The proposed loss produces a weighted average of the

margin terms m over all matches based on their detection

scores. Thus, in order for the loss to be minimized, the most

distinctive correspondences (with a lower margin term) will

get higher relative scores and vice-versa - correspondences

with higher relative scores are encouraged to have a similar

descriptors distinctive from the rest.

4.2. Training Data

To generate training data on the level of pixel-wise corre-

spondences, we used the MegaDepth dataset [26] consisting

of 196 different scenes reconstructed from 1,070,468 inter-

net photos using COLMAP [50, 53]. The authors provide

camera intrinsics / extrinsics and depth maps from Multi-

View Stereo for 102,681 images.

In order to extract the correspondences, we first consid-

ered all pairs of images with at least 50% overlap in the

sparse SfM point cloud. For each pair, all points of the sec-

ond image with depth information were projected into the

first image. A depth-check with respect to the depth map

of the first image was run to remove occluded pixels. In

the end, we obtained 327,036 image pairs. This dataset was

split in a validation dataset with 18,149 image pairs (from

78 scenes, each with less than 500 image pairs) and a train-

ing dataset from the remaining 118 scenes.

4.3. Implementation details

The VGG16 architecture [56], pretrained on Ima-

geNet [12] and truncated after the conv4 3 layer, was used

to initialize the feature extraction network F .

Training. The last layer of the dense feature extractor

(conv4 3) was fine-tuned for 50 epochs using Adam [23]

with an initial learning rate of 10−3, which was further di-

vided by 2 every 10 epochs. A fixed number (100) of ran-

dom image pairs from each scene are used for training at

every epoch in order to compensate the scene imbalance

present in the dataset. For each pair, we selected a ran-

dom 256 × 256 crop centered around one correspondence.

We use a batch size of 1 and make sure that the training

pairs present at least 128 correspondences in order to obtain

meaningful gradients.

Testing. At test time, in order to increase the resolution

of the feature maps, the last pooling layer (pool3) from F
with a stride of 2 is replaced by an average pooling layer

with a stride of 1. Then, the subsequent convolutional lay-

ers (conv4 1 to conv4 3) are replaced with dilated con-

volutions [21] with a rate of 2, so that their receptive field

remains unchanged. With these modifications, the obtained

feature maps have a resolution of one fourth of the input

resolution, which allows for more tentative keypoints and a

better localization. The position of the detected keypoints is

improved using a local refinement at feature map level fol-

lowing the approach used in SIFT [29]. The descriptors are

then bilinearly interpolated at the refined positions.

Our implementation will be available at https://

github.com/mihaidusmanu/d2-net.

5. Experimental Evaluation

The main motivation behind our work was to develop a

local features approach that is able to better handle chal-

lenging conditions. Firstly, we evaluate our method on a

standard image matching task based on sequences with il-

lumination or viewpoint changes. Then, we present the

results of our method in two more complex computer vi-

sion pipelines: 3D reconstruction and visual localization.

In particular, the visual localization task is evaluated under

extremely challenging conditions such as registering night-

time images against 3D models generated from day-time
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Viewpoint Method # Features # Matches

Hes. det. + RootSIFT 6.7K 2.8K

HAN + HN++ [34, 35] 3.9K 2.0K

LF-Net [38] 0.5K 0.2K

SuperPoint [13] 1.7K 0.9K

DELF [37] 4.6K 1.9K

D2 SS (ours) 3.0K 1.2K

D2 MS (ours) 4.9K 1.7K

D2 SS Trained (ours) 6.0K 2.5K

D2 MS Trained (ours) 8.3K 2.8K

Figure 4: Evaluation on HPatches [5] image pairs. For each method, the mean matching accuracy (MMA) as a function of the matching

threshold (in pixels) is shown. We also report the mean number of detected features and the mean number of mutual nearest neighbor

matches. Our approach achieves the best overall performance after a threshold of 6.5px, both using a single (SS) and multiple (MS) scales.

imagery [45, 47] and localizing images in challenging in-

door scenes [58] dominated by weakly textured surfaces and

repetitive structures. Qualitative examples of the results of

our method are presented in Fig. 1. Please see the supple-

mentary material for additional qualitative examples.

5.1. Image Matching

In a first experiment, we consider a standard image

matching scenario where given two images we would like

to extract and match features between them. For this exper-

iment, we use the sequences of full images provided by the

HPatches dataset [5]. Out of the 116 available sequences

collected from various datasets [1, 5, 11, 22, 32, 62, 65], we

selected 108.1 Each sequence consists of 6 images of pro-

gressively larger illumination (52 sequences without view-

point changes) or viewpoint changes (56 sequences without

illumination changes). For each sequence, we match the

first against all other images, resulting in 540 pairs.

Evaluation protocol. For each image pair, we match the

features extracted by each method using nearest neighbor

search, accepting only mutual nearest neighbors. A match is

considered correct if its reprojection error, estimated using

the homographies provided by the dataset, is below a given

matching threshold. We vary the threshold and record the

mean matching accuracy (MMA) [32] over all pairs, i.e., the

average percentage of correct matches per image pair.

As baselines for the classical detect-then-describe strat-

egy, we use RootSIFT [4, 29] with the Hessian Affine key-

point detector [31], a variant using a learned shape estimator

(HesAffNet [35] - HAN) and descriptor (HardNet++ [34] -

HN++2), and an end-to-end trainable variant (LF-Net [38]).

We also compare against SuperPoint [13] and DELF [37],

which are conceptually more similar to our approach.

Results. Fig. 4 shows results for illumination and view-

point changes, as well as mean accuracy over both condi-

tions. For each method, we also report the mean number

of detected features and the mean number of mutual nearest

1We left out sequences with an image resolution beyond 1200× 1600

pixels as not all methods were able to handle this resolution.
2HardNet++ was trained on the HPatches dataset [5].

neighbor matches per image. As can be seen, our method

achieves the best overall performance for matching thresh-

olds of 6.5 pixels or more.

DELF does not refine its keypoint positions - thus, de-

tecting the same pixel positions at feature map level yields

perfect accuracy for strict thresholds. Even though power-

ful for the illumination sequences, the downsides of their

method when used as a local feature extractor can be seen

in the viewpoint sequences. For LF-Net, increasing the

number of keypoints to more than the default value (500)

worsened the results. However, [38] does not enforce that

matches are mutual nearest neighbors and we suspect that

their method is not suited for this type of matching.

As can be expected, our method performs worse

than detect-then-describe approaches for stricter matching

thresholds: The latter use detectors firing at low-level blob-

like structures, which are inherently better localized than

the higher-level features used by our approach. At the same

time, our features are also detected at the lower resolution

of the CNN features.

We suspect that the inferior performance for the se-

quences with viewpoint changes is due to a major bias in

our training dataset - roughly 90% of image pairs have a

change in viewpoint lower than 20◦ (measured as the angle

between the principal axes of the two cameras).

The proposed pipeline for multiscale detection improves

the viewpoint robustness of our descriptors, but it also adds

more confounding descriptors that negatively affect the ro-

bustness to illumination changes.

5.2. 3D Reconstruction

In a second experiment, we evaluate the performance of

our proposed describe-and-detect approach in the context

of 3D reconstruction. This task requires well-localized fea-

tures and might thus be challenging for our method.

For evaluation, we use three medium-scale internet-

collected datasets with a significant number of different

cameras and conditions (Madrid Metropolis, Gendarmen-

markt and Tower of London [63]) from a recent local fea-

ture evaluation benchmark [51]. All three datasets are small

enough to allow exhaustive image matching, thus avoiding
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the need for using image retrieval.

Evaluation protocol. We follow the protocol defined

by [51] and first run SfM [50], followed by Multi-View

Stereo (MVS) [53]. For the SfM models, we report the

number of images and 3D points, the mean track lengths

of the 3D points, and the mean reprojection error. For the

MVS models, we report the number of dense points. Except

for the reprojection error, larger numbers are better. We use

RootSIFT [4, 29] (the best perfoming method according to

the benchmark’s website) and GeoDesc [30], a state-of-the-

art trained descriptor3 as baselines. Both follow the detect-

then-describe approach to local features.

Results. Tab. 1 shows the results of our experiment. Over-

all, the results show that our approach performs on par

with state-of-the-art local features on this task. This shows

that, even though our features are less accurately localized

compared to detect-then-describe approaches, they are suf-

ficiently accurate for the task of SfM as our approach is still

able to register a comparable number of images.

Our method reconstructs fewer 3D points due to the

strong ratio test filtering [29] of the matches that is per-

formed in the 3D reconstruction pipeline. While this fil-

tering is extremely important to remove incorrect matches

and prevent incorrect registrations, we noticed that for our

method it also removes an important number of correct

matches (20%–25%)4, as the loss used for training our

method does not take this type of filtering into account.

5.3. Localization under Challenging Conditions

The previous experiments showed that our approach per-

forms comparable with the state-of-the-art in standard ap-

plications. In a final experiment, we show that our approach

sets the state-of-the-art for sparse features under two very

challenging conditions: Localizing images under severe il-

lumination changes and in complex indoor scenes.

Day-Night Visual Localization. We evaluate our approach

on the Aachen Day-Night dataset [45, 47] in a local recon-

struction task [45]: For each of the 98 night-time images

contained in the dataset, up to 20 relevant day-time im-

ages with known camera poses are given. After exhaustive

feature matching between the day-time images in each set,

their known poses are used to triangulate the 3D structure

of the scenes. Finally, these resulting 3D models are used

to localize the night-time query images. This task was pro-

posed in [45] to evaluate the perfomance of local features in

the context of long-term localization without the need for a

specific localization pipeline.

We use the code and evaluation protocol from [45] and

report the percentage of night-time queries localized within

3In contrast to [30], we use the ratio test for matching with the threshold

suggested by the authors - 0.89.
4Please see the supplementary material for additional details.

#Reg. # Sparse. Track Reproj. # Dense

Dataset Method Images Points Length Error Points

Madrid RootSIFT [4, 29] 500 116K 6.32 0.60px 1.82M

Metropolis GeoDesc [30] 495 144K 5.97 0.65px 1.56M

1344 images D2 MS (ours) 501 84K 6.33 1.28px 1.46M

D2 MS trained (ours) 495 144K 6.39 1.35px 1.46M

Gendarmen- RootSIFT [4, 29] 1035 338K 5.52 0.69px 4.23M

markt GeoDesc [30] 1004 441K 5.14 0.73px 3.88M

1463 images D2 MS (ours) 1053 250K 5.08 1.19px 3.49M

D2 MS trained (ours) 965 310K 5.55 1.28px 3.15M

Tower of RootSIFT [4, 29] 804 239K 7.76 0.61px 3.05M

London GeoDesc [30] 776 341K 6.71 0.63px 2.73M

1576 images D2 MS (ours) 785 180K 5.32 1.24px 2.73M

D2 MS trained (ours) 708 287K 5.20 1.34px 2.86M

Table 1: Evaluation on the Local Feature Evaluation Bench-

mark [51]. Each method is used for the 3D reconstruction of each

scene and different statistics are reported. Overall, our method

obtains a comparable performance with respect to SIFT and its

trainable counterparts, despite using less well-localized keypoints.

a given error bound on the estimated camera position and

orientation. We compare against upright RootSIFT descrip-

tors extracted from DoG keypoints [29], HardNet++ de-

scriptors with HesAffNet features [34, 35], DELF [37], Su-

perPoint [13] and DenseSfM [45]. DenseSfM densely ex-

tracts CNN features using VGG16, followed by dense hier-

archical matching (conv4 then conv3).

For all methods with a threshold controlling the num-

ber of detected features (i.e. HAN + HN++, DELF, and

SuperPoint), we employed the following tuning methodol-

ogy: Starting from the default value, we increased and de-

creased the threshold gradually stopping as soon as the re-

sults started declining. Stricter localization thresholds were

considered more important than looser ones. We reported

the best results each method was able to achieve.

As can be seen from Fig. 5, our approach performs better

than all baselines, especially for strict accuracy thresholds

for the estimated pose. Our sparse feature approach even

outperforms DenseSfM, even though the later is using sig-

nificantly more features (and thus time and memory). The

results clearly validate our describe-and-detect approach as

it significantly outperforms detect-then-describe methods in

this highly challenging scenario. The results also show that

the lower keypoint accuracy of our approach does not pre-

vent it from being used for applications aiming at estimating

accurate camera poses.

Indoor Visual Localization. We also evaluate our ap-

proach on the InLoc dataset [58], a recently proposed

benchmark dataset for large-scale indoor localization. The

dataset is challenging due to its sheer size (∼10k database

images covering two buildings), strong differences in view-

point and / or illumination between the database and query

images, and changes in the scene over time.

For this experiment, we integrated our features into two

variants of the pipeline proposed in [58], using the code re-

leased by the authors. The first variant, Direct Pose Es-
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Method # Features 0.5m, 2◦ 1.0m, 5◦ 5.0m, 10◦ 10m, 25◦

Upright RootSIFT [29] 11.3K 36.7 54.1 72.5 81.6

DenseSfM [45] 7.5K / 30K 39.8 60.2 84.7 99.0

HAN + HN++ [34, 35] 11.5K 39.8 61.2 77.6 88.8

SuperPoint [13] 6.6K 42.8 57.1 75.5 86.7

DELF [37] 11K 38.8 62.2 85.7 98.0

D2 SS (ours) 7K 41.8 66.3 85.7 98.0

D2 MS (ours) 11.4K 43.9 67.3 87.8 99.0

D2 SS Trained (ours) 14.5K 44.9 66.3 88.8 100

D2 MS Trained (ours) 19.3K 44.9 64.3 88.8 100

Figure 5: Evaluation on the Aachen Day-Night dataset [45, 47]. We report the percentage of images registered within given error

thresholds. Our approach improves upon state-of-the art methods by a significant margin under strict pose thresholds.

Localized queries (%)

Method 0.25m 0.5m 1.0m

Direct PE - Aff. RootSIFT [4, 29, 31] 18.5 26.4 30.4

Direct PE - D2 MS (ours) 27.7 40.4 48.6

Sparse PE - Aff. RootSIFT – 5MB 21.3 32.2 44.1

Sparse PE - D2 MS (ours) – 120MB 35.0 48.6 62.6

Dense PE [58] – 350MB 35.0 46.2 58.1

Sparse PE - Aff. RootSIFT + Dense PV 29.5 42.6 54.5

Sparse PE - D2 MS + Dense PV (ours) 38.0 54.1 65.4

Dense PE + Dense PV (= InLoc) [58] 41.0 56.5 69.9

InLoc + D2 MS (ours) 43.2 61.1 74.2

Table 2: Evaluation on the InLoc dataset [58]. Our method out-

performs SIFT by a large margin in both Direct PE and Sparse PE

setups. It also outperforms the dense matching Dense PE method

when used alone, while requiring less memory during pose esti-

mation. By a combined approach of D2 and InLoc we obtained a

new state-of-the art on this dataset.

timation (PE), matches features between the query im-

age and the top-ranked database image found by image re-

trieval [3] and uses these matches for pose estimation. In the

second variant, Sparse PE, the query is matched against the

top-100 retrieved images, and a spatial verification [39] step

is used to reject outliers matches. The query camera pose

is then estimated using the database image with the largest

number of verified matches.

Tab. 2 compares our approach with baselines from [58]:

The original Direct / Sparse PE pipelines are based on

affine covariant features with RootSIFT descriptors [4, 29,

31]. Dense PE matches densely extracted CNN descrip-

tors between the images (using guided matching from the

conv5 to the conv3 layer in a VGG16 network). As

in [58], we report the percentage of query images localized

within varying thresholds on their position error, consider-

ing only images with an orientation error of 10◦ or less. We

also report the average memory usage of features per image.

As can be seen, our approach outperforms both baselines.

In addition to Dense PE, the InLoc method proposed

in [58] also verifies its estimated poses using dense informa-

tion (Dense Pose Verification (PV)): A synthetic image is

rendered from the estimated pose and then compared to the

query image using densely extracted SIFT descriptors. A

similarity score is computed based on this comparison and

used to re-rank the top-10 images after Dense PE. Only this

baseline outperforms our sparse feature approach, albeit at

a higher computational cost. Combining our approach with

Dense PV also improves performance, but not to the level

of InLoc. This is not surprising, given that InLoc is able

to leverage dense data. Still, our results show that sparse

methods can perform close to this strong baseline.

Finally, by combining our method and InLoc, we were

able to achieve a new state of the art — we employed a pose

selection algorithm using the Dense PV scores for the top

10 images of each method. In the end, 182 Dense PE poses

and 174 Sparse PE (using D2 MS) poses were selected.

6. Conclusions

We have proposed a novel approach to local feature ex-

traction using a describe-and-detect methodology. The de-

tection is not done on low-level image structures but post-

poned until more reliable information is available, and done

jointly with the image description. We have shown that our

method surpasses the state-of-the-art in camera localization

under challenging conditions such as day-night changes and

indoor scenes. Moreover, even though our features are less

well-localized compared to classical feature detectors, they

are also suitable for 3D reconstruction.

An obvious direction for future work is to increase the

accuracy at which our keypoints are detected. This could

for example be done by increasing the spatial resolution of

the CNN feature maps or by regressing more accurate pixel

positions. Integrating a ratio test-like objective into our loss

could help to improve the performance of our approach in

applications such as SfM.
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[57] Linus Svärm, Olof Enqvist, Fredrik Kahl, and Magnus Os-

karsson. City-Scale Localization for Cameras with Known

Vertical Direction. IEEE PAMI, 39(7):1455–1461, 2017. 1

[58] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea

Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-

ihiko Torii. InLoc: Indoor visual localization with dense

matching and view synthesis. In Proc. CVPR, 2018. 2, 3,

6, 7, 8

[59] Engin Tola, Vincent Lepetit, and Pascal Fua. DAISY: An

Efficient Dense Descriptor Applied to Wide-Baseline Stereo.

IEEE PAMI, 32(5):815–830, 2010. 1

[60] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular
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