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Abstract— Virtually all robot control methods benefit from
the availability of an accurate mathematical model of the robot.
However, obtaining a sufficient amount of informative data
for constructing dynamic models can be difficult, especially
when the models are to be learned during robot deployment.
Under such circumstances, standard data-driven model learning
techniques often yield models that do not comply with the
physics of the robot. We extend a symbolic regression algorithm
based on Single Node Genetic Programming by including the
prior model information into the model construction process.
In this way, symbolic regression automatically builds models
that compensate for theoretical or empirical model deficiencies.
We experimentally demonstrate the approach on two real-
world systems: the TurtleBot 2 mobile robot and the Parrot
Bebop 2 drone. The results show that the proposed model-
learning algorithm produces realistic models that fit well the
training data even when using small training sets. Passing the
prior model information to the algorithm significantly improves
the model accuracy while speeding up the search.

Index Terms— Model learning for control, AI-based methods,
genetic programming, prior knowledge.

I. INTRODUCTION

To guarantee long-term robot autonomy, methods are
needed to automatically build and update dynamic models
of robots and their environments. Techniques for learning
models from data samples collected during routine robot
operation inevitably have to deal with imperfections of the
measured data, such as uneven sample distribution, limited
sensor accuracy, presence of noise, etc. However, some
partial information about the robot model is often known,
such as a theoretical or empirical model.

A range of techniques can be employed to learn a non-
linear model of the robot dynamics, as presented in the
surveys [1], [2], [3]. Many of the popular methods such
as deep neural networks [4] and locally weighted learning
[5] are black-box, require a large amount of high-quality
training data, and do not allow for the use of prior knowledge
in the form of partial models or constraints. In general,
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obtaining appropriate training sets is difficult and often not
even possible [6], in particular during the robot deployment.
To this end, symbolic regression (SR) allows to naturally
incorporate the prior knowledge and it is able to learn from
very small training sets. SR evolves models in the form of
analytic expressions by combining user-defined elementary
functions. Although SR has not yet been widely adopted
by the robotics community, its potential has already been
demonstrated [7], [8], [9].

In this paper, we extend our previous work [9], [10]
by including building blocks in the form of physical or
empirical models (or their parts) into the model construction
process. The proposed method automatically finds accurate
and physically valid robot models by complementing training
data with information capturing the desired properties of the
model sought. This paper presents the following three main
contributions:

• We adapt a SR method based on Single Node Ge-
netic Programming (SNGP) by including a prior model
to efficiently construct accurate parsimonious analytic
models from small training data sets supported by the
prior information.

• The benefits of employing empirical or theoretical
models are evaluated against two other SR variants –
baseline SR that does not use prior knowledge in any
form [9], and SR using formal constraints [10].

• We illustrate on two examples of real robots that the
method efficiently compensates for deficiencies in real
data and yields models that are both accurate and
physically plausible.

The remainder of the paper is organized as follows:
Section II gives an overview of the related work. The model
construction method is described in Section III. Section IV
presents the results of the experimental evaluation and Sec-
tion V concludes the paper.

II. RELATED WORK

In its basic form, SR allows to incorporate prior knowledge
by selecting the set of elementary functions that are used
in the inner nodes of the tree-based model representations
[11]. In grammar-based approaches, prior knowledge can be
included into the grammar describing the set of available
structure elements from which the models are built. An
example of a grammar-based approach is the tree adjoining
grammar GP [12]. Some SR approaches take into account
prior knowledge in the form of formal constraints [10],
[13]. Another recent SR approach named AI Feynman [14]
exploits known properties of the function sought, such as



physical units for dimensional analysis, or symmetry with
respect to some of its variables.

Methods for incorporating prior knowledge also exist
for neural networks, such as [15], inspired by Hamiltonian
mechanics. A neural network is trained to learn and follow
the basic laws of physics. Gaussian processes [16], [17] and
Koopman operators [18], [19], [20] also allow for incorpo-
rating prior knowledge to the model construction process.
Gaussian processes are non-parametric and the Koopman
operator methods require in theory an infinitely large set
of bases, in practice orders of magnitude larger than the
number of regressors. In contrast to these methods, we aim
at constructing parsimonious non-linear models.

The literature on including partial empirical or theoretical
models in data-driven robot model construction is limited. It
has been addressed mainly in the context of local modeling
[21], [22]. However, these techniques require a human expert
to define validity regions for the individual submodels and
as such are unsuitable for automated procedures required by
the application to long-term robot autonomy.

In our previous work [10], we have shown that the model
construction process can be guided towards a physically
meaningful model through formal constraints. In this work,
we suggest another approach to incorporate known robot
properties in the form of a partial model. In most cases,
the theoretical or empirical model of the robot is known
in advance and it can be naturally plugged into the SR-
driven model construction process as a building block which
allows to find more accurate models faster. The apriori model
information can be used both in standard SR [9] as well as
in SR with formal constraints [10].

III. METHOD

In this section, we first present a brief overview of the
baseline SR and then we extend it to include prior knowl-
edge.

A. Baseline Symbolic Regression

Symbolic regression uses genetic programming to build
from data non-linear models in the following form:

y = f (ξ) , (1)

where ξ ∈ X ⊂ Rn is the model input and y ∈ Y ⊂ R is its
output. The method can be applied to both discrete-time and
continuous-time dynamic models. In this paper, we consider
state-space models in continuous time

ẋ = f(x,u) (2)

with the state x ∈ S ⊂ Rs, the control input u ∈ U ⊂ Rm,
and the state derivative ẋ. Continuous-time models allow
to naturally incorporate prior knowledge based on physics,
which will be demonstrated in Section IV. Note that we
use SR to model the individual state derivative components
independently. In the sequel, a model for a generic state
derivative component ẋ will be denoted as ˆ̇x = f (x,u). In
some cases, the state derivatives can be directly measured,

while in other cases they need to be approximated using a
difference operator on the discrete-time state measurements.

We use an adapted version of the SNGP algorithm, origi-
nally described in [11]. SNGP stores functions represented as
tree structures in a single linear array, where each element
of the array corresponds to one node. The array of nodes
represents a population. A node may be either an elementary
function, such as addition or multiplication, or a terminal,
i.e., a variable or a constant. Nodes representing functions
may only take as their arguments nodes that appear earlier
in the array.

Instead of evolving the model as a single function, we
adopt the approach presented in [23] and construct the model
as a composition of genetically evolved non-linear functions
fi, called features:

f (ξ) = β0 +
n f

∑
i=1

βi fi(ξ) , (3)

where the coefficients βi, i = 0,1, . . . ,n f are estimated by
least squares. The features fi represent mathematical expres-
sions composed of elementary functions and terminals. They
are evolved through an iterative process using a mutation
operator. The main user-defined parameters include the ele-
mentary function set F , the population size ni, the number of
generations ng, the maximum number of features n f , and the
maximum depth d of the trees representing the features. The
evolution is driven by a fitness function minimizing the root-
mean-square error (RMSE) on the training data set, denoted
etrain

d . For more details on the SNGP implementation used in
this work, please refer to [24].

B. Prior Knowledge

Prior knowledge of the model’s properties can be included
in the model construction process as a partial model or as
formal constraints. First, we describe how to represent prior
knowledge in the form of a partial model.

An approximate or partial theoretical or empirical model
of the robot is often known. This information can be included
in the model structure as prior features:

f (ξ) = β0 +
np

∑
i=1

βi f̄i(ξ)︸ ︷︷ ︸
prior features

+
n f

∑
i=np+1

βi fi(ξ)︸ ︷︷ ︸
evolved features

. (4)

Features f̄i(ξ) encode the prior knowledge in the form
of fixed functions specified by the user in advance, while
features fi(ξ) are evolved by genetic programming to com-
pensate for the prior features’ deficiency manifested by an
error in fitting the training data. All the coefficients βi,
i∈{0, . . . ,n f }, are estimated using least squares, i.e., both for
f̄i(ξ) and fi(ξ). In many cases, the apriori model information
will be stored in only one prior feature f̄1, np = 1. However,
the above formulation allows for decomposing the theoretical
or empirical model into several features. In this way, some
of its inner parameters can also be tuned.

Prior knowledge can also be given through formal con-
straints. Desired model properties, such as monotonicity



or symmetry, can be written as equality and inequality
constraints:

cE
i (ξ) = 0 ∀ ξ ∈ C E

i ⊂ X (5)

with i ∈ {1, . . . ,nE
c }, and

cI
i (ξ)≤ 0 ∀ ξ ∈ C I

i ⊂ X (6)

with i ∈ {1, . . . ,nI
c}. For each constraint, a given number of

samples is randomly drawn from a uniform distribution over
the specified constraint domain C E

i and C I
i . This yields two

sets of samples: DE
i containing samples for each equality

constraint cE
i (ξ) and DI

i with samples for each inequality
constraint cI

i (ξ). The constraint violation error, denoted ec,
takes into account both types of constraints. We refer the
interested reader to [10] for details.

The above formal constraints are incorporated in the model
search in the form of multi-objective optimization. The bi-
objective SNGP simultaneously optimizes the model with
respect to a) the RMSE on the training data set etrain

d , and b)
the RMSE on the training constraint set etrain

c .
Among the generated models, the user can select the

desired trade-off between the accuracy of fitting the data
and the constraint satisfaction. In this work, we determine
the best model as the one that minimizes the training data
error etrain

d among all the models that have the constraint
satisfaction error etrain

c below a given threshold γ.

IV. EXPERIMENTS

We have selected two robotic benchmarks to evaluate our
method: a mobile robot TurtleBot 2 and a drone Parrot
Bebop 2. These two robots were chosen to assess the per-
formance of the proposed method on systems with different
dynamics, complexity, and types of nonlinearities.

A. Evaluation Scheme

We consider two scenarios: baseline SNGP and SNGP
with formal constraints. The former fits the data minimizing
the error etrain

d , while the latter performs a multi-objective op-
timization including formal constraints and also minimizing
the error etrain

c .
In both scenarios, we compare a variant of SNGP without

prior features and including prior features. This allows to
measure the benefit of including prior features, while the
total number of features as well as other SNGP parameters
remain the same, see Section IV-B.

We use the following data sets for training and evaluation:
1) Training and Test Data Sets: The training and test data

sets are two disjoint sets collected during the robot operation.
The training set is used only for learning the model, while
the test set serves to measure the error etest

d , capturing how
well the model fits previously unseen data.

2) Training and Test Constraint Sets: A set of training
constraint samples is drawn from a uniform distribution for
each of the defined constraints to evaluate the constraint
violation error etrain

c in the multi-objective model search. The
test constraint set is drawn from the same distribution to
measure how well the model satisfies the required formal
constraints on data different from the training samples.

TABLE I
MAIN SNGP PARAMETERS USED IN THE EXPERIMENTS.

Parameter Symbol Value

Elementary function set F {+, −, ×, Square,
Cube, Sine, Cosine}

Population size ni 500
Number of generations ng 60 000

Maximum number of features n f 10
Maximum tree depth d 7

We report the median errors etest
d and etest

c on the test data
set and on the test constraint set, respectively. The median
errors are calculated over 50 runs of SNGP.

A comparison of the SNGP performance with alternative
modeling methods such as neural networks or local linear
regression has been presented in our previous work [9], [25]
and is beyond the scope of this paper.

B. Method Parameters and Complexity
We use the default configuration for all experiments. The

main parameters of all variants of SNGP evaluated in the
experiments are summarized in Table I. Note that the prior
features also count towards the maximum number of features
n f to ensure a fair comparison.

We have empirically observed across various data sets that
the computational complexity of symbolic regression grows
linearly with the number of samples and with the number of
generations. A single run of SNGP takes 2–7 minutes on a
standard PC1 for the experiments described in this section,
depending on the training data set size.

C. Mobile Robot
We have recorded the training and test data sets on a real

robot TurtleBot 2, see Fig. 1.

(a) (b)

Fig. 1. Mobile robot TurtleBot 2: a) schematic, b) photograph.

1) System Description: The state of the two-wheeled
mobile robot is defined as x = (xpos,ypos,φ)

>, where xpos
and ypos are the position coordinates of the robot and φ is its
heading. The forward velocity v f and the angular velocity va
are the control inputs, forming the input vector u= (v f ,va)

>.
The theoretical continuous-time model of the robot is:

ẋpos = v f cosφ , (7)
ẏpos = v f sinφ , (8)

φ̇ = va . (9)

1CPU Intel Core i7-4610M @ 3.00 GHz, 16 GB RAM



We are interested in finding the continuous-time model of
ẋpos and ẏpos fitting the measured data:

ˆ̇xpos = fẋpos(xpos,ypos,φ,v f ,va) , (10)
ˆ̇ypos = fẏpos(xpos,ypos,φ,v f ,va) . (11)

Modeling of φ̇ is omitted from this paper for its simplicity.
We use a data set of 130 samples both for ẋpos and ẏpos.
The data set was divided in the ratio 2:1 into 87 training
samples and 43 test samples. The discrete-time data samples
were recorded with a sampling period Ts = 0.2 s while the
robot was moving along a random trajectory. Given the
samples composed of the current state xk, current input uk,
and the next state xk+1, we used the forward difference to
approximate the state derivatives.

Note that in (10) and (11), all the state and input vari-
ables are available to SR, even though they are not needed
according to the theoretical models (7), (8). SR automatically
chooses the variables that are useful to capture the properties
of the function fitting the data.

2) Prior Knowledge: The theoretical models (7) and (8)
are used as the prior features f̄1, ḡ1 in learning the models
ˆ̇xpos and ˆ̇ypos, respectively. Symbolic regression allows for
modeling imperfections that are not captured in the theoret-
ical models, such as friction, and it can also compensate for
sensor inaccuracies.

We define three formal constraints for modeling ẋpos:
1) The robot must have a zero velocity along the x-axis

if the linear velocity v f is zero: xpos ∈ [−10,10]m,
ypos ∈ [−10,10]m, φ∈ (−π,π] rad, v f = 0 m · s−1, va ∈
[−π,π] rad · s−1 → ẋpos = 0 m · s−1.

2) The robot must have a zero velocity along the x-axis if
it is moving in the positive direction of the y-axis and
not rotating at the same time: xpos ∈ [−10,10]m, ypos ∈
[−10,10]m, φ = π/2 rad, v f ∈ [−0.6,0.6]m · s−1, va =
0 rad · s−1 → ẋpos = 0 m · s−1.

3) The robot must have a zero velocity along the x-axis if
it is moving in the negative direction of the y-axis and
not rotating at the same time: xpos ∈ [−10,10]m, ypos ∈
[−10,10]m, φ = −π/2 rad, v f ∈ [−0.6,0.6]m · s−1,
va = 0 rad · s−1 → ẋpos = 0 m · s−1.

Similarly, we define three additional constraints for mod-
eling ẏpos, with the only difference in setting φ = 0 rad in the
second constraint and φ = π rad in the third constraint. All
three additional constraints yield zero ẏpos.

For both ẋpos and ẏpos, we have generated 50 training
constraint samples and 50 test constraint samples for each
of the three constraints.

To select the best model among the models generated by
SNGP with formal constraints, we consider models with etrain

c
below the threshold γ = 5×10−2 m · s−1 and we choose the
model with the lowest etrain

d among them. The value of γ was
chosen empirically and it serves to set the trade-off between
the two criteria of the multi-objective optimization.

3) Results and Discussion: The results for all cases are
summarized in Table II. A comparison of the error on the test
data set etest

d for a variant with the prior feature and without

TABLE II
MEDIAN ERROR OVER 50 RUNS OF SNGP ON THE TEST DATA SET etest

d

AND ON THE TEST CONSTRAINT SET etest
c FOR THE MOBILE ROBOT

EXPERIMENT.

Scenario Prior feature Median etest
d Median etest

c(
m · s−1) (

m · s−1)
ˆ̇xpos

Baseline Not included 5.920×10−3 4.015×101

Included 5.562×10−3 3.744×101

Constrained Not included 5.273×10−3 1.589×10−2

Included 4.973×10−3 1.806×10−2

ˆ̇ypos

Baseline Not included 6.414×10−3 5.464×100

Included 5.455×10−3 1.574×101

Constrained Not included 6.492×10−3 2.457×10−2

Included 6.010×10−3 2.431×10−2

it is shown in Fig. 2 for baseline SNGP and in Fig. 3 for
SNGP with formal constraints. The error of the prior feature
itself is shown as a reference.

Using the prior feature yields results superior to the
variant without the prior feature in terms of etest

d . This holds
for the baseline SNGP as well as for SNGP with formal
constraints, both for ˆ̇xpos and ˆ̇ypos. We used the Wilcoxon
rank-sum test [26] to evaluate the statistical significance of
the improvement. The improvement is statistically significant
with p = 3.798× 10−4 for the baseline method and with
p = 5.763× 10−3 for SNGP with constraints, both values
reported for ˆ̇xpos. Even a more significant improvement is
achieved for ˆ̇ypos with p = 3.671× 10−6 for the baseline
method and with p = 6.357×10−4 for constrained SNGP.

SNGP with constraints achieves a better error etest
c than the

baseline SNGP for both ˆ̇xpos and ˆ̇ypos by several orders of
magnitude. The results also demonstrate the capability of the
method to learn accurate models from very small data sets,
as the models were learned on only 87 training samples.

An example of an analytic model for ˆ̇xpos and ˆ̇ypos, found
using SNGP with formal constraints and with the prior
feature included, has been algebraically simplified using
Matlab’s Symbolic Math Toolbox to the following form:

ˆ̇xpos = 8.5×10−1v f cos(φ)−1.2×10−2 sin(sin(xpos))

+1.3×10−2 sin(xpos)
2−7.7×10−3 cos(φ)3

+3.7×10−3(φ+ va)+2.8×10−3ypos cos(φ+ va)

−3.2×10−3(v f +2)(sin(sin(φ))− cos(φ)3 cos(xpos))

−1.9×10−3(φ+ va)
2 +1.8×10−3 cos(xpos)(φ−3.1)

+5.5×10−4ypos−4.8×10−4v f −3.1×10−4 , (12)
ˆ̇ypos = 8.6×10−1v f sin(φ)−2.3×10−1 cos(1.4v f )

−9.0×10−2v f sin(cos(v2
f ))−8.3×10−3 cos(φ−2.8v f )

4

+5.5×10−3(φ+ va)+7.6×10−4xpos−1.6×10−16y18
pos

−3.0×10−3 sin(xpos)
2−5.2×10−3 cos(va)

9

−6.4×10−4(φ−2.8v f )
2(ypos− sin(xpos))

+6.1×10−5(ypos− sin(xpos))
3 +2.4×10−1 . (13)

For both variables, the first term is the prior feature
with its coefficient close to one. The coefficient is approx-
imately 15 % smaller than in the prior model, which may



Fig. 2. Comparison of models from 50 baseline SNGP runs in the mobile
robot experiment, sorted by RMSE on the test data set etest

d .

Fig. 3. Comparison of models from 50 runs of SNGP with constraints in
the mobile robot experiment, sorted by RMSE on the test data set etest

d .

be explained by the following two reasons. First, the actual
forward velocity achieved by the robot is lower than the
command velocity v f . Second, other terms in the model,
evolved by combining elementary functions, compensate for
inaccuracies of the prior model. This result confirms our
hypothesis that the method uses the prior feature as the main
building block and constructs the remaining components in
the final model to fit the training data.

D. Drone

We have performed experiments with the Parrot Bebop 2
drone, see Fig. 4.

vx







vz vy

(a) (b)

Fig. 4. Parrot Bebop 2 drone: a) schematic, b) photograph.

1) System Description: The state vector of the drone
is x = (x,y,z,vx,vy,vz,θ,ϕ,ψ)

>, where x, y, and z denote
its position, vx, vy, and vz are the translational velocities
measured by the OptiTrack motion-capture system in the
fixed world frame, and θ, ϕ, and ψ are the body angles,
denoting the pitch, roll, and yaw, respectively. The drone
is controlled by the input vector u = (θc, ϕc, ωc, ωzc)

>,
where its components correspond to the desired pitch, roll,
and yaw rates and the vertical velocity, respectively. The most
complex empirical models are given for v̇x and v̇y:

v̇x = gcosψ
tanθ

cosϕ
+gsinψ tanϕ− kDvx , (14)

v̇y = gsinψ
tanθ

cosϕ
−gcosψ tanϕ− kDvy , (15)

where the gravitational acceleration g = 9.81 m · s−2 and the
drag constant kD = 0.28 s have been estimated empirically.
Therefore, we will evaluate our method on modeling these
two most challenging variables. We employ SR to build the
models of v̇x and v̇y from the data in the following form:

ˆ̇vx = fv̇x(vx,θ,ϕ,ψ) , (16)
ˆ̇vy = fv̇y(vy,θ,ϕ,ψ) . (17)

We have recorded the training data set of 160 samples by
steering the real drone to follow an eight-shaped trajec-
tory. The test data set of 251 samples was captured on a
square-shaped trajectory. The discrete-time data set for both
variables v̇x and v̇y was recorded with a sampling period
Ts = 0.05 s. Same as for the mobile robot, we used the
forward difference to approximate the derivatives.



2) Prior Knowledge: The theoretical models (14) and (15)
are used as the prior features f̄1, ḡ1 in learning the models ˆ̇vx
and ˆ̇vy, respectively. As the empirical models are composed
of three separate terms, alternatively, three prior features can
be formulated for v̇x:

f̄1 = gcosψ tanθ/cosϕ ,

f̄2 = gsinψ tanϕ , (18)
f̄3 =−kDvx

and analogously for v̇y:

ḡ1 = gsinψ tanθ/cosϕ ,

ḡ2 =−gcosψ tanϕ , (19)
ḡ3 =−kDvy .

This enables the method to tune also the coefficients of
the empirical model components through least squares, see
Section III-B.

We define four formal constraints for modeling v̇x:

1) Given a zero velocity along the x-axis, zero pitch,
yaw orienting the drone in the positive direction of
the x-axis, and a non-zero roll, the acceleration in the
direction of the x-axis has to be zero: vx = 0 m · s−1,
θ = 0 rad, ϕ ∈ [−π/15,π/15] rad, ψ = 0 rad → v̇x =
0 m · s−2.

2) Given a zero velocity along the x-axis, zero pitch,
yaw orienting the drone in the negative direction of
the x-axis, and a non-zero roll, the acceleration in the
direction of the x-axis has to be zero: vx = 0 m · s−1,
θ = 0 rad, ϕ ∈ [−π/15,π/15] rad, ψ = π rad → v̇x =
0 m · s−2.

3) With a zero velocity along the x-axis, zero roll, yaw
orienting the drone in the positive direction of the
y-axis, and a non-zero pitch, the acceleration in the
direction of the x-axis has to be zero: vx = 0 m · s−1,
θ ∈ [−π/15,π/15] rad, ϕ = 0 rad, ψ = π/2 rad → v̇x =
0 m · s−2.

4) With a zero velocity along the x-axis, zero roll, yaw
orienting the drone in the negative direction of the
y-axis, and a non-zero pitch, the acceleration in the
direction of the x-axis has to be zero: vx = 0 m · s−1,
θ ∈ [−π/15,π/15] rad, ϕ = 0 rad, ψ = −π/2 rad →
v̇x = 0 m · s−2.

Analogously, we define four formal constraints for mod-
eling v̇y, with the exception that the roles of θ and ϕ are
swapped. All four constraints are then expected to yield zero
v̇y.

For both v̇x and v̇y, we have generated 50 training con-
straint samples and 50 test constraint samples for each of
the four constraints.

To select the best model among the models generated by
SNGP with formal constraints, we consider models with etrain

c
below γ = 5× 10−2 m · s−2 and we choose the model with
the lowest etrain

d .

TABLE III
MEDIAN ERROR OVER 50 RUNS OF SNGP ON THE TEST DATA SET etest

d

AND ON THE TEST CONSTRAINT SET etest
c FOR THE DRONE EXPERIMENT.

Scenario Empirical model Median etest
d Median etest

c(
m · s−2) (

m · s−2)

ˆ̇vx

Baseline
Not included 7.508×10−1 2.309×103

1 prior feature 6.877×10−1 2.804×103

3 prior features 7.237×10−1 8.125×102

Constrained
Not included 1.153×100 3.207×10−2

1 prior feature 2.245×10−1 4.385×10−2

3 prior features 1.980×10−1 4.269×10−2

ˆ̇vy

Baseline
Not included 6.803×10−1 2.266×102

1 prior feature 8.536×10−1 1.899×103

3 prior features 8.260×10−1 5.282×102

Constrained
Not included 1.987×10−1 3.986×10−2

1 prior feature 1.727×10−1 4.643×10−2

3 prior features 1.639×10−1 4.439×10−2

3) Results and Discussion: The results for zero, one,
and three prior features for SR without and with formal
constraints and for both modeled variables are summarized
in Table III. In three of four scenarios, the variants with prior
features outperform the variant with no prior feature in terms
of the median etest

d . In the baseline SNGP for ˆ̇vy, the variants
with prior features perform slightly worse than the variant
without the prior feature. However, the constrained SNGP
clearly benefits from including the prior features. The variant
with three prior features outperforms all other variants in the
constrained SNGP scenarios for both variables. This result
indicates that splitting the empirical model into more prior
features is beneficial in certain cases.

There is no statistical difference at the significance level
of 5 % between the data fitting performance etest

d of the
baseline SNGP with prior features and without them. How-
ever, incorporating the prior features into SNGP with formal
constraints leads to significantly better results. In the case of
ˆ̇vx, the improvement is substantial: the Wilcoxon rank-sum
test returns p = 2.383× 10−9 for the case with one prior
feature and p = 1.520×10−10 for the case with three prior
features, both compared to the case without any prior feature.
Also for ˆ̇vy, a significant improvement is achieved with
p = 2.284×10−3 for one prior feature and p = 1.040×10−5

for three prior features, compared to the case with no prior
feature.

Similarly as for the mobile robot, it can be clearly seen
that the constraint satisfaction error etest

c on the test constraint
samples is by several orders of magnitude better for the
models learned by SNGP with formal constraints.

V. CONCLUSIONS

We have proposed a method for robot model learning
based on symbolic regression that allows to incorporate prior
knowledge to the model search and use it along with the
training data to evolve an accurate robot model in the form
of analytic equations. The prior knowledge is given to the
method by specifying partially known model components,



such as theoretical or empirical models, in the form of prior
features. An advantage is the ability to learn from small
batches of data and combining the prior features with formal
constraints.

The experimental evaluation on two systems from the
robotics domain has shown that including the prior knowl-
edge improves the model accuracy and the compliance with
the physical limitations of the robot, as compared to the
baseline SNGP. An overall improvement in data fitting
accuracy was achieved by including the prior features both
for the baseline SNGP and for SNGP with constraints.

In the future work, we will evaluate the method on higher-
dimensional problems and test the performance of the models
in a control loop. We will also evaluate the impact of the
training set size on the method performance. Further research
will also involve structure and parameter tuning within the
prior features. In addition, we aim at conducting a thorough
comparison of the proposed approach with alternative model
learning methods.
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