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Specifying Dual-Arm Robot Planning Problems
through Natural Language and Demonstration

Jan Kristof Behrens∗,1, Karla Stepanova∗,2, Ralph Lange1, and Radoslav Skoviera2

Abstract—Multi-modal robot programming with natural lan-
guage and demonstration is a promising technique for efficient
teaching of manipulation tasks in industrial environments. In
particular, with modern dual-arm robots designed to quickly take
over tasks at typical industrial workbenches, the direct teaching
of task sequences hardly utilizes the robots’ capabilities. We
therefore propose a two-staged approach that combines natural
language instructions and demonstration with simultaneous task
allocation and motion scheduling based on constraint program-
ming. Instead of providing a task description and demonstrations
that are replayed to a large extent, the user describes tasks to be
scheduled with all relevant constraints and demonstrates relevant
locations relative to workpieces and other objects.

With explicitly stated constraints on the partial ordering of
tasks, the solver allocates the tasks to the robot arms and
schedules them in time while avoiding self-collisions and reducing
the makespan in our experiment by 33%. The linguistic concepts
of naming and grouping enable systematic reuse of sub-task
ensembles. The proposed approach is evaluated with four variants
of a gluing use-case from furniture assembly in user studies with
ten participants. In these user studies, we observed a speed-up for
the task definition of more than 6 times compared to a textual
specification of the planning problems using the Python-based
planner API.

Index Terms—Task scheduling, multi-modal robot program-
ming, dual arm manipulation, learning by demonstration.

I. INTRODUCTION

MANUFACTURING tasks for dual-arm robots in indus-
trial use-cases are prime examples for the need for

integrated task and motion planning (ITAMP) due to the huge
state space spanned by the many degrees of freedom on task
and motion level. Despite the great advances in ITAMP in the
recent years (e.g., [1], [2]), relevant tools generally require
deep understanding of the underlying planning mechanisms
and they may undisputedly be referred to as expert tools.
Multi-modal methods based on natural language and demon-
stration are a promising approach to bring such advanced
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Fig. 1. Illustration of the running example of gluing bolts into a board. On
the left hand side, the instructor demonstrates poses for the application of
glue on a white board using a glue gun while explaining the corresponding
tasks and constraints in natural language. From this input, a planning problem
specification expressed by Ordered Visiting Constraints is generated [3]. After
solving this planning problem for two manipulators, the task is performed in
simulation as depicted on the right hand side.

planning techniques to the shop-floor. We hypothesize that
multi-modal methods lower the inhibition threshold for the
use of planning techniques and reduce the mental burden of
the robot programmer/instructor.

Most works in the very active research in the fields of
robot learning from demonstration and multi-modal robot
programming start with the learning/teaching of a directly
executable plan and then consider generalization and trans-
ferability to related scenarios. Only very few works (e.g., [4],
[5]) propose multi-modal techniques for the specification of
planning problems and then employ a planner – fed with
further information on the scenario – to retrieve an executable
plan. Therefore, we propose a multi-modal input method for
a subclass of ITAMP problems as explained next.
Example. As a running example, we consider a showcase from
furniture construction depicted in Figure 1: In this showcase,
glue has to be applied into the holes of a large board and then
the corresponding bolts have to be picked up and inserted.
The order in which the glue is applied and in which the
bolts are inserted can be chosen by the planner to optimize
the makespan. Also, the allocation of these tasks to the two
robot arms is subject to optimization. In such an optimization,
the working ranges of the arms have to be considered and
collision-free trajectories have to be planned.
Even this small example exhibits a huge combinatorial com-
plexity given by the Cartesian product of possible task se-
quences and task allocations to the robot arms. The complexity
is further increased by alternative joint configurations to reach
the desired poses, alternative paths between these configura-
tions and possible time-scaling of the trajectories.

At the same time, this example illustrates some typical char-
acteristics of industrial workplaces and manufacturing tasks.
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Fig. 2. Overview of the system.

Two key characteristics are: First, the task decomposition is
already defined with the design of the workpieces. Second, the
workspace is largely unobstructed and there exists a collision-
free subset that does not alter over time and allows to reach
all relevant locations with at least one robot arm. As a con-
sequence, ITAMP for dual-arm robots in such scenarios boils
down to simultaneous task allocation and motion scheduling
(STAAMS). Details on these characteristics and STAAMS as
well as a description of our STAAMS solver based on con-
straint optimization can be found in [3]. The solver processes
STAAMS problems formulated using an abstraction called
Ordered Visiting Constraints (OVCs). An OVC models in an
effective and robot-agnostic way a sequence of actions to be
executed by a manipulator at different locations. Ordering
and temporal constraints within and between OVCs can be
specified as well as resource constraints on tools, workpiece
holders, etc. Also, bimanual tasks can be modeled.

In this paper, we propose a multi-modal method combining
natural language and demonstration for the specification of
STAAMS problems using OVCs. Our main contributions are:

1) A flexible grammar for specifying OVCs with corre-
sponding ordering and temporal constraints. An impor-
tant feature of this grammar is the option of interleaved
teaching of task templates with the overall problem
specification, which can be even faster than one-shot
learning of a directly executable plan.

2) Integrated mechanisms based on pointing gestures and
natural language to define locations, poses and even
polygonal places.

3) Suitable abstractions for translating an OVC-based
STAAMS problem specification to a different workplace
and robot setup.

4) Lowered inhibition threshold and reduced mental burden
during task demonstration using the proposed method
compared to textual programming of STAAMS prob-
lems using a Python-based OVC API, as indicated by a
user-study.

The remainder of this paper is organized as follows: We
discuss related work in Section II, before we briefly explain
the OVC formalism and the corresponding STAAMS solver
in Section III. In Section IV, we describe how OVC-based
STAAMS problem specifications are obtained from natural
language and demonstrations, with the details on language pro-
cessing, simultaneous identification of locations, teach-in of

individual tasks and task templates and linguistic specification
of constraints. The implementation and setup of our system
is described in Section V, followed by experimental results in
Section VI. Finally, the paper is concluded in Section VII with
a summary and outlook.

II. RELATED WORK

In this section, we first give a brief overview to works on
robot learning from demonstration and natural-language-based
(NL-based) robot programming. Then, we discuss existing
works on NL-based specification of planning and scheduling
problems, from general works to robotic-specific approaches.

a) Robot learning from demonstration: This field can
roughly be divided into learning of individual motions and
skills versus learning of complex tasks. Important works in
the field of motion and skill learning are [6], [7], [8]. Works
on learning of complex tasks focus on automated segmenta-
tion (e.g., [9], [10], [11]). In the approach proposed in this
paper, we assume a predefined, extensible set of primitive
actions. Motion and skill learning is an effective technique for
teaching new actions and therefore considered as an important
foundation. However, regarding the high-level tasks we aim at
explicit task and motion planning and scheduling to use the
full capacity of dual-arm robots, as argued in Section I.

b) NL-based robot programming: Most works in this
field use a multi-modal approach, combining natural language
with pointing or teach-in techniques. For example, in an early
work in 1996, Hwang et al. [12] proposed a comprehensive
system for specifying a hierarchical task decomposition by
natural language using a fixed grammar. At the same time, the
system allows to teach primitive actions and the corresponding
poses. An overview of methods for NL-based human-robot
cooperation is provided in [13]. According to the division
in the paper, our method is a grammar model integrating
temporal, spatial, and ordering relations and allowing a wide
variability of linguistic instructions. Compared to the men-
tioned works, our system allows teaching of immediately
reusable task templates during task specification. This makes
our grammar extensible by abstract NL expressions like in em-
pirical association models and thus eliminates a limitation of
fixed grammar models. In the PRACE project, an extension to
ABB Robot Studio has been developed that allows to specify a
task skeleton – an assembly graph – in natural language, which
can then be refined using the graphical programming interface
[14]. In [15], Mohseni-Kabir et al. presented an interactive
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system for specifying hierarchical task networks (HTNs) for
manipulation tasks. The instructor explains the tasks in a top-
down manner while the system asks for unknown task names
and whether it should generalize tasks to similar objects in the
scene. A similar approach based on behavior networks instead
of HTNs is presented by Rybski et al. in [16]. In contrast to
our approach, the demonstrated order of subtasks is strictly
replicated, which neglects the chance to optimize the order of
the subtasks. Also they do not show, how ordering constraints
on individual subtasks could be specified via spoken language.

c) NL-based planning and scheduling problems: Only a
small body of work considers the NL-based specification of
planning and scheduling problems. Kirk et al. [17] show the
benefits of using visual demonstration of goal states amended
with human instructions to define diverse tasks. Lindsay et
al. [18] propose a method to generate PDDL planning domain
models from natural language. Both systems were tested on
simple riddles and games which are far from the complexity
of STAAMS or ITAMP, not involving any motion planning for
manipulators.

In [5], Ekvall and Kragic proposed a robot learning system
for a mobile manipulator that uses a STRIPS-like planner
which obtains its input from imitation learning and a dialogue-
based approach that allows the teacher to add constraints while
demonstrating the task. In the implementation, the constraints
were hard-coded in the planner. Also, path planning was not
integrated with task planning as in our approach. Suddrey et al.
propose a similar approach based on the HTN planning in [4].
Their system uses the OpenCCG parser for natural language
processing of the user’s explanation of the task decomposition.
The system asks for the specification of unknown subtasks in a
dialogue-based manner. Grounding of arguments is performed
by transforming each argument into a first-order logic query
and matching it against the perceived world model. Precondi-
tions from the primitive tasks are propagated along the task
hierarchy, but there is no support for NL-based input of further
constraints. Again, motion planning is not integrated with task
planning.

This paper’s approach differs in several aspects from the
mentioned works: First, it is based on a planning concept and
method that deeply integrates the task level with the motion
level. Second, it allows to specify advanced temporal and
ordering constraints as well as teaching immediately reusable
task templates by natural language. Third, it combines demon-
stration techniques and natural language into an effective
multi-modal approach.

III. ORDERED VISITING CONSTRAINTS FOR STAAMS

In this section, we first describe the OVC model and solver as
a tool for modeling and solving simultaneous task allocation
and motion scheduling (STAAMS) problems in dual-arm
manipulation settings, as proposed by Behrens et al. [3]. In
the second part of this section, we explain the modeling with
OVCs in further detail and explain selected constraint types
for advanced manipulation planning problems.

A. OVC Model and Solver

Simultaneous task and motion scheduling is concerned with
scheduling and allocating of high-level actions, while taking
constraints on the motion level like collisions, robot kine-
matics, and joint limits into account simultaneously. As a
result stands a time-scaled trajectory for every robot arm
that does not violate any constraints on the task and motion
level while executing the action according to the given task
decomposition. The solver (see Fig. 3) is based on constraint
programming (CP) (programmatically utilizing Constraint Sat-
isfaction Problems) and constraint optimization (sequentially
solving constraint programming problems). A Constraint Sat-
isfaction Problem (CSP) is generally specified by a triple
(X,D,C), where X is a set of variables, D a set of domains,
and C a set of constraints. The solution of a CSP is a
complete assignment of values to variables that satisfies all
constraints C. To find such a solution, the underlying solver
performs a backtracking search over the variables with suitable
value selection heuristics. For the subsequent optimization of
the makespan, a series of CSPs with additional constraints
tend ≤ ci, where ci+1 < ci, is solved. The input for the
STAAMS solver is a CP-based task specification by one or
more Ordered Visiting Constraints (OVC) (see Fig. 3 top). An
OVC is defined as a tuple

ω = (A, [P1, ..., Pl], [L1, ..., Ll], [I1, ..., Il], Cintra). (1)

An OVC ω models a sequence of actions to be executed at
different locations by a manipulator. A is a variable represent-
ing the active component, i.e. the manipulator. The Pi define
the action type, e.g. applying glue or picking up an object,
to execute at the end-effector locations, i.e. 6-DoF poses,
denominated by the variables Li. The Ii are time interval
variables (with variables for start time, end time and duration)
modeling the time windows for the action execution. Cintra is
a set of constraints to model arbitrary relations between OVC
interval variables.

The time-scaled trajectories representing the robot’s motions
are represented as a series of n joint configurations, n intervals
modeling the time spent in these configurations, and n − 1
intervals modeling the traveling time between the configura-
tions (see Fig. 3 bottom). Precomputed roadmaps [19] are used
to discretize the configuration space per arm. Therefore, the
domain of the configuration variables is the set of all roadmap
nodes of the corresponding arm. Path planning is performed by
graph search on these roadmaps. A collision table lists all pairs
of roadmap nodes of the two arms that preclude each other,
which is used to cast disjunctive constraints on conflicting time
intervals.

B. Modeling with OVCs

OVCs provide a lot of modeling flexibility as the robot
arms, the locations to visit and their order are modeled by
CSP variables and generic constraints among them. Similarly,
constraints among OVCs may be defined using propositional
logic, Allen’s interval algebra, and set-theoretic expressions.

Specifying a task with OVCs means to create for each seg-
mentable subtask or series of subtasks an OVC and constrain
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Fig. 3. CP model for task and motion scheduling.

its variables. To create an OVC, a set of suitable arms (i.e.,
arms with the appropriate end-effector) and a set of actions
should be specified. Then, a set of locations per Li is used to
constrain location variables. Lastly, we have lower and upper
bounds on the action durations and the action type for every
action. In Eq. 2, an exemplary function call to create an OVC
for a pick-and-place task is presented.

addOVC((r1, r2), (pick, place), ((loc23, loc17), (loc2)),
((2.0, 7.0), (1.5, 10.0)))

(2)

Here, a pick action shall be performed either at loc23 or at
loc17 and a place action at location loc2. As OVCs provide the
flexibility to specify a set of possible locations for a location
variable, we can – in the case that multiple equivalent pieces
to be picked are available – leave the final assignment to the
solver. To relate multiple OVCs, various constraints can be
added. For example, the interval relation

addOvcCt(StartsAfterEnd, (OVCi,OVCj)) (3)

can be used to prescribe an order among two OVCs. Yet, it
is also possible to synchronize two OVCs for different arms
to perform a joint action with both arms. In this manner, the
task model (see upper half in Fig. 3, left) is declared.

IV. SPECIFYING OVC SCHEDULING PROBLEMS BY
LINGUISTIC INPUT AND DEMONSTRATION

In the proposed architecture, the set of OVCs for a specific
use-case – and thus scheduling problem – is specified using
natural language and simultaneous demonstration. From the
natural language input, we extract action types and constraints
to subsequently transform them to an OVC task definition. To
process linguistic input we make use of a custom context-free
grammar. The grammar contains production rules (see Fig. 4)
for multiple syntactic categories (e.g., noun phrases, verb
phrases, prepositions, constraint relations, etc.). We first parse
each sentence using a recursive descent parser to retain the
tree structure and abstract meaning of the sentence according
to the production rules of the grammar.

By analysis on this tree, we extract information about
tasks and constraints (e.g., temporal constraints, temporal
intervals, types of actions, etc.). Each sentence can be: (1.)
a definition of new task template (AG), (2.) a definition of

Fig. 4. A sample of our grammar including multiple production rules.

locations (a storage (HS)), (3.) a grouped task (GO), or (4.)
multiple grouped tasks joined by relations (e.g., first, then,
before, after). Relations (REL) can contain additional temporal
constraints (e.g., within 5 seconds). Using relations we extract
relevant ordering constraints. Task templates are defined in a
hierarchical way so they can cover either an unordered set of
subtasks, or ordered set of subtasks joined by relations. Each
of the individual task (O) is describing a task performed in a
given location with the possibility of adding time constraints
on the length of the task.

A. Locations

Locations are 6-DoF poses of an appropriate end-effector in
the reference system of the workpiece. Their unique names
are either given during the linguistic instructions or created
automatically, when no name is provided. Locations can be
added to the system in two ways: First, by implicit definition
during task demonstration using a location denominator like
here. For example, the instruction “Glue a point [here]” will
lead to adding a location with values extracted from the
current glue gun pose. Implicit poses are stored relative to
the workpiece. Second, locations can be added by explicit
definition for later use. It is possible to define reference frames
during the location definition to enable different arrangements
of parts in the final robot setup.

A storage S is a set of locations relative to its own
coordinate frame. Individual locations l ∈ S are obtained
from demonstration. The name of the storage is defined
in the corresponding utterance after the keyword showing.
The origin o of the coordinate frame is evaluated from n
edge points (ei) coordinates which are also extracted from
demonstration: o =

∑n
1 ei/n. The corresponding utterance

in natural language is: “Showing [Small bolt storage] corner
[here] corner [here]... location [here] location [here]...”

All locations (L) and storages (S) are stored in dictionaries
with a unique names as key. This allows later referencing to
the locations and storages using their names. Additionally, we
use a last-in-first-out data structure to track the order of added
locations. This enables for example linguistic references to
previously added locations without knowing their name like
“First glue a point [here] and then place a bolt to [the same
location” leads to the creation of a location loc1, which is, after
the insertion in our bookkeeping, recalled for a place action
by using the order of insertion. Future references to locations
and storages are more naturally performed using the name



BEHRENS et al.: SPECIFYING DUAL-ARM ROBOT PLANNING PROBLEMS THROUGH NATURAL LANGUAGE AND DEMONSTRATION 5

– e.g. “Pick a bolt from the small bolt storage” corresponds
to the action pick(bolt, l) (see Section IV-B) which can be
executed on any location l ∈ Si, where Si represents a small
bolt storage.

B. Teach-in of new tasks

We allow teaching of two types of tasks:
a) Simple task: A task a is a tuple: a = (name, type,

object, location, time constraint), where name is a unique
name of the task, type represents an action primitive or a
simple/single task such as {glue, pick, place, make, ...} , object
∈ {ADJ + [point, it, bolt,...]}, location ∈ L and time con-
straints T = (min,max). The utterance describing a task has
the following format “<Type><Object><Location><Time
constraints>” (e.g., “Glue a small bolt here within 5 seconds”
or “Pick up a big bolt from the big bolt storage.”), see Fig. 5.
Each single task or a sequence of tasks which requires to be
performed by the same arm (e.g., a Pick and Place action) is
represented by a single OVC (see Eq. 1).

O
LV NP

DET N P DET POSmake
a point at the border

Fig. 5. A simple task: gluing a point in a given location.

b) Task template: A task template AG is a set of OVCs
and constraints saved as a template for future reuse. The
creation of such a template is triggered whenever a set of
demonstrated tasks (e.g., “Glue a point here then pick up a
small bolt from a small bolt storage and place it to the same
location.”) is followed by “This task is called [glue a small
bolt]”. After the task template is created and named, it can be
reused by using its name in the same way as a simple types of
tasks (e.g. “First [glue a small bolt] then glue a point here.”)
(see Fig. 8 (top)). When the task is reused, the template is
copied, filled with the location parameters from the current
demonstration, and appended to the task description.

C. Ordering and Temporal constraints

Our approach supports voice entry for ordering constraints
(Allen interval relations) of OVCs as well as quantitative
temporal constraints between OVCs. (Note that the actions
within an OVC are always ordered sequentially.)

a) Inter-OVC ordering constraint: Ordering constraints
are indicated in the abstract representation of a sentence by a
subtree ‘REL’ (REL = {first, then, before, after}) or ‘RELP’
(RELP = <REL><Time constraint>). An example is: “First
glue a point [here] then within 5 seconds first glue a point
[here] then pick a small bolt and place it to the same location.”
These constraints are transferred to the OVC planner as a set
of StartsAfterEnd Constraint (see Eq. 3 and Section VI-A).
As can be seen, our system can also handle nested (ad-
ditional constraints within an already open constraint) and
join ordering constraints. A join constraint First [X] then
[Y] then [Z] (e.g., “First glue a big bolt [here] then glue a

small bolt [here] then make a point [here].”) is transfered to
two StartsAfterEnd constraint: StartsAfterEnd(OV C1, OV C2)
and StartsAfterEnd(OV C2, OV C3), where OV C1, OV C2 and
OV C3 correspond to task X, Y and Z, respectively.

b) Intra-OVC ordering constraint: The constraint on or-
dering of two or more successive tasks that must be processed
by the same resource Typical application example is pick and
place, where pick task induces that place task of the same
object will be performed with the same resource, creating an
OVC of two consecutive locations. An example for an OVC
with such a constraint is the sentence “First pick a bolt from
[L] and then place it to [L].”, which will be represented as
an OVC shown in Eq. 2). Please note, that location L can
correspond to a single location as well as to a set of possible
locations (e.g., a storage).

c) Intra-OVC temporal constraints: Time constraint cor-
responding to parameter I in an OVC (see Eq. 1) defining
a maximum length of the action (e.g., gluing a point has to
be performed in approximately 2 seconds to apply a correct
amount of glue). These are indicated within an action as an
optional time constraint - e.g., “Glue a point [here] for 2
seconds.” (resulting duration for I will be 2 s).

d) Inter-OVC temporal constraints: These constraints are
in the sentence indicated as an additional time parameter
within a relation ‘RELP’ and are passed to the OVC planner
as a parameter T in StartsAfterEnd constraint (see Eq. 3) -
e.g., “First pick a small bolt then within 5 seconds place a
big bolt.”.

D. Ease of use
To enable convenient usage of our system, we implemented
several features which add to the flexibility of the speech. First,
we enable to specify sets of homophones and synonyms of
words or phrases, e.g., then:[them], then:[and then, afterwards,
after that, and later]. The synonyms allow the user to use richer
vocabulary to express the same concept. The homophones
are used to correct errors of the voice recognition software.
Knowledge of the task and therefore the words likely to be
used is utilized when constructing the sets of homophonous
and synonymous words. Second, our system is robust to filling
words such that “Pick a big bolt from the big bolt storage
and then place it here” leads to the same interpretation as
“Just take that big bolt from hmm the big bolt storage and
afterwards place it directly here.”. Third, common variations in
the sentences stem from the use of articles (a/the/one), which
is recognized and handled directly in the grammar.1

E. Editing of OVC-based STAAMS Problem Specifications
The linguistic instructions from the input are processed to
retain a list of named locations, a list of named storages, a
list of named task templates, a named list of OVCs, and a
list of temporal constraints. The algorithm’s output is tailored
for the OVC-solver, but is also saved as a formatted text file.
This file is parsed by the solver. Before that, advanced users
can edit this file to add further or more complex constraints,
which were impossible to explain by natural language.

1see http://imitrob.ciirc.cvut.cz/planning.html for the audio to sentence
converter, user-study tutorials and editable template

http://imitrob.ciirc.cvut.cz/planning.html
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V. IMPLEMENTATION AND SETUP

Figure 2 gives an overview of the system. As the OVC planner
has been described in Section III already, we focus in this
section on the acquisition of voice and demonstration data, its
processing and the extraction of OVCs, and the execution of
the task and motion plan (currently simulated).

A. Setup for data acquisition

The setup consists of a table top with a calibration
checkerboard, two Asus Xtion 3D sensors, an HTC Vive
VR set, and a microphone for audio recording. The data
from all sensors are broadcasted via the Robot Operating
System2 (ROS). The HTC Vive supplies the 6DoF positions
of the two controllers at 60 Hz, both Asus Xtion cameras
produce 640x400 RGBD images at 30 Hz. To capture the
demonstration of the gluing tasks, one of the HTC Vive
controller is attached to a gluegun, while the second HTC Vive
controller is used to indicate the ground truth segmentation
of the demonstrated tasks. In the experiments, we assumed
the workpiece to be fixed to the checkerboard, but in order
to define auxiliary coordinate frames, we included special
language commands and demonstrations. All sensor data is
synchronized using ROS timestamps.

For each showcase (see Section VI), a separate data file
is recorded. Besides the RGBD data from the ASUS Xtion
and the 6DoF poses from the HTC Vive controller, each
recording contains the button press information of both HTC
Vive controllers, speech-to-text transcripts acquired through
Google Speech API and the necessary coordinate transforma-
tions. Although, the captured motions are synchronized with
the recorded speech, the human demonstration is likely to
be imperfect, i.e. the demonstration of a location will not
appear in the exact same time as the location denominator
in the linguistic input. Hence, our system has to match
the demonstrated locations with the closest appearance of a
location denominator. Furthermore, we check for mismatches
between demonstration and linguistic input (e.g., in a case of
more denominators than demonstrated locations, an error is
reported). As ground truth, the pose of the glue application
is recorded based on the glue gun button press. Sentence-
wise separated files with a transcript are provided.3 To process
linguistic input we make use of the Python library NLTK 3.3
(Natural language processing toolkit) [20].

B. Setup for simulation-based execution

We consider a setup consisting of two KUKA LBR iiwa robots
mounted on a table with largely overlapping workspaces (see
Fig. 3). While we evaluate this paper in simulation, we have
the real robotic system available for future experiments. The
robots are simulated and visualized using ROS and RVIZ.
The OVC solver uses services provided by MoveIt! to make
kinematic queries, collision checks, and path planning, but

2http://www.ros.org/
3see our web page http://imitrob.ciirc.cvut.cz/planning.html for source

bag files, visual demo of our system and detailed description of showcases
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Fig. 6. Makespan vs. solving time for showcase 2 (gluing action in given
locations with constraints on the the ordering) compared to the showcase
1 (dropping the ordering constraints), single-arm execution, and single-arm
execution in the demonstrated order.

since the planner outputs a trajectory for every arm, the
execution of plans is implemented using the joint-trajectory
action.
The setup of the two arms is defined in an URDF file. In
the simulation, we add the workpiece and storage frames for
the task using a custom management interface for the scene
graph. In a real-robot setup, the user would place the parts (i.e.
storages and workpieces) directly in the robot’s workspace.
Their reference frames might be detected for instance by an
on-top 3D sensor.

VI. EXPERIMENTAL RESULTS

For the evaluation, we defined four showcases illustrated in
Fig. 7 based on the running example introduced in Section I.
The complexity of the STAAMS problem is increasing with
each showcase and thus the difficulty of the linguistic con-
structs to be used by the instructor. In detail, the showcases
are: (1.) Demonstration of the points for the application of
glue without any constraints. (2.) Introduction of ordering con-
straints between some of these glue points. (3.) Introduction
of task templates for the insertion of the bolts and temporal
constraint between glue application and the bolt insertion. (4.)
Combination of ordering constraints between glue points and
temporal constraint on bolt insertion.3

Figure. 6 illustrates the significant benefits of STAAMS
optimization in this example. In the showcases 1 and 2, the
OVC-based STAAMS solver reduces the makespan by 41%
and 33%, respectively, compared to a typical fixed task order
given by an instructor - namely the order used for multi-
modal problem specification. Even for a single-arm robot,
the STAAMS solver reduces the makespan by 9%. This
optimization is only legitimate, because the constraints are
explicitly specified in the verbal instructions. In the following,
we explain a typical OVC representation of the showcase 4
(see Fig. 7), present the results of our user-study conducted
on 10 participants (7 novice and 3 trained), and finally discuss
the translation to different workspaces.

A. OVC problem representation example

Type of the task: Group of ordered simple tasks and tasks
templates a1, ..., an (showcase 4, see Fig. 7)
Sentence: First glue a small bolt here [showing location/pose]
and then within 20 seconds make a point here [showing

http://www.ros.org/
http://imitrob.ciirc.cvut.cz/planning.html
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a) b) c) d)

Fig. 7. Showcases: (a) demonstration and (b) abstract visualizations of showcase 2 and (c,d) showcase 4: Showcase 2 is a partially ordered set of point
tasks (gluing a point), Showcase 4 represents a partially ordered set of ‘gluing a point’ tasks, ‘gluing a small bolt’ task (green circle) and ‘gluing a big bolt’
task(orange squares). The task templates ‘gluing a small bolt’ is visualized in Fig. 8 (top).
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Fig. 8. (a) A task template “glue a small bolt” described by a sentence “First
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same location”. (b) Resulting tree (abstract representation of sentence) gained
from parsing the sentence “First glue a small bolt here then within 5 seconds
make a point here for 2 seconds.” The task template “glue a small bolt” is
reused in this sentence.

location] and then make a point here [showing location] in 2
seconds.
OVC representation:

O1 = [[LA,RA], (gluepoint), [loc11]]

O2 = [[LA,RA], (pick, place), [[loc5, ..., loc10], loc11]]

O3 = [[LA,RA], (gluepoint), [loc12], (1.7, 2.3)]

StartsAfterEnd(O1, O2)

StartsAfterEnd([O1, O2], 20)

L = {’loc1’ : poseStamped, ..., ’loc12’ : poseStamped}
HS = {’small bolt storage’ :

{corners = [loc1, ..., loc4],

locations = [loc5, ..., loc10]}}
AG = {’glue a small bolt’ :

[Ot, Ot+1], StartsAfterEnd(Ot, Ot+1)}
L - location dictionary
HS - storage dictionary
AG - tasks templates dictionary

B. User-studies: Ease of use and benefits of multimodality

To evaluate the ease of use of our system conveyed by the
features described in Section IV-D, we conducted a user-study
on 7 novice users. We provided them with an instructional

TABLE I
EASE OF USE EVALUATION ON 4 SHOWCASES (7 NOVICE USERS).

Showcase SC1 SC2 SC3 SC4
# of actions 23 29 61 68

# Trials to success 1 2.4 2 1
Time (novice) [s] 37± 13 70 ± 7 158± 34 173 ± 5

Time per action [s] 1.6 2.4 2.59 2.54

TABLE II
BENEFITS OF MULTI-MODALITY (7 NOVICE, 3 TRAINED USERS).

SC3 Multi-modal spec. (our) Textual spec. speed-up
Time [s] Templates No templates
Novice 158 ± 34 186 ± 23 911 ± 242 (6.4±3.1)x
Trained 59 ± 4 113 ± 12 540 ± 36 (9.2±0.2)x

video (8 min. in duration) of our system and a list of
linguistic constructs they can use. We explained to them that
their linguistic input has to be accompanied by a physical
demonstration and that the location references should roughly
occur at the same time and in the same order as the linguistic
description. As a part of the instructional video, we showed
three simple examples with an increasing complexity. Users
then had to fulfill all given tasks and were corrected on each
mistake. We measured the number of trials until success and
time of performance for individual showcases (see Table I).
Average time per defining a single OVC or Constraint for all
showcases was between 1-3 s.

To compare teaching using our multi-modal input method
to the conventional textual specification, we performed user
studies on 7 novice users and 3 trained users, who had to
specify the showcase 3 using the simplified textual notation
similar to the STAAMS solver’s python API. We provided the
users with a visual diagram of the showcase (see Fig 7) in-
cluding the location names necessary to specify the task. Thus,
assuming the locations are already known to the system. This
enables the user to concentrate on the task of specifying OVCs
and constraints, solely. The experiment with this simplification
was used to find a lower bound on the time needed for the
textual specification of the showcase (see results in Table II).

The usage of templates reduced the time for the multi-modal
task specification by 17% and 48% (novice and trained users)
compared to the specification without templates. Overall, the
proposed multi-modal method was approximately 8x quicker
than textual specification. As can be seen in Fig. 9, the
definition of task templates takes significant time for novice
users in the beginning of the demonstration, but allows more
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seen, that using task templates significantly reduces the time for the overall
task specification for all users alike.

than 25% reduction of the time for item definition. Trained
users specify new templates very effectively. All users reported
that using templates was very convenient and they wouldn’t
like to use a system without this feature.

C. Translation to different workspaces

The demonstration of the tasks is generally not executed in
the robot’s workspace and should be transferable to other
workspaces. To solve and execute a previously given task with
a robot on a different workplace setup, the reference frames
of the workpieces and storages have to be detected (e.g.,
by an RGBD sensor overlooking the workspace) or defined
manually.

VII. CONCLUSION AND DISCUSSION

In this paper, we demonstrated and evaluated a system to
program robots using natural language and simultaneous
demonstration. Instead of translating those inputs directly into
a definite robot plan, we compile a Simultaneous Task Alloca-
tion and Motion Scheduling problem using Ordered Visiting
Constraints as introduced by Behrens et al. [3]. Through a
user-study on 10 users, we proof that our system is easy and
efficient to use. Our untrained participants were able to specify
a task using the Python-OVC API in 911± 242 s. Using the
proposed system, they were 6.4±3.1 times faster (158±34 s).
The explicit definition of ordering constraints allows the solver
to deviate from the demonstrated action sequence and thus
optimize the makespan, which leads in our example to a 9%
speed-up for a single-arm robot and to a 33% speed-up for a
dual-arm robot.

In our future work, we want to further investigate the
following aspects. First, we would like to extend the amount
of actions, tasks and constraints, which are teachable through
our system (e.g., gluing lines or welding along an edge). Also,
referencing tasks with spatial qualifiers (e.g., all tasks right
of a location) or using the definition order (e.g., the last 5
subtasks) could further increase the usability of our system.
Closing the feedback-loop to the user by a visual user interface
and a dialogue system, would enable the user to recognize and
correct errors directly during demonstration. Third, we would
like to include hand and finger gestures and detect the tools

from RGBD data to make the demonstrations more natural
and avoid the usage of an external tracking system.
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