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Abstract: Approximate Reinforcement Learning (RL) is a method to solve sequential decision-
making and dynamic control problems in an optimal way. This paper addresses RL for
continuous state spaces which derive the control policy by using an approximate value function
(V-function). The standard approach to derive a policy through the V-function is analogous to
hill climbing: at each state the RL agent chooses the control input that maximizes the right-hand
side of the Bellman equation. Although theoretically optimal, the actual control performance of
this method is heavily influenced by the local smoothness of the V-function; a lack of smoothness
results in undesired closed-loop behavior with input chattering or limit-cycles. To circumvent
these problems, this paper provides a method based on Symbolic Regression to generate a locally
smooth proxy to the V-function. The proposed method has been evaluated on two nonlinear
control benchmarks: pendulum swing-up and magnetic manipulation. The new method has been
compared with the standard policy derivation technique using the approximate V-function and
the results show that the proposed approach outperforms the standard one with respect to the
cumulative return.

Keywords: reinforcement learning, continuous state space, optimal control, policy derivation,
V-function

1. INTRODUCTION

Reinforcement learning (RL) has the potential to solve
challenging decision-making and control problems in en-
gineering and in a variety of other disciplines, such as
economics or medicine (Busoniu et al., 2010; Sahba et al.,
2006; Deng et al., 2017; Guan et al., 2015). There is a wide
variety of RL architectures, which can be broadly classi-
fied into critic-only, actor-only, and actor-critic schemes
(Konda and Tsitsiklis, 2000). In this paper, we focus on the
critic-only architecture for continuous state spaces. The
RL agent first learns an approximate value function (V-
function), based on which it then derives the optimal con-
trol policy. We restrict ourselves to the model-based sce-
nario: a nonlinear deterministic state-space system model
is used for V-function learning and policy derivation (Poly-
doros and Nalpantidis, 2017; Kuvayev and Sutton, 1996).

To derive a control policy from the V-function, the RL
agent chooses the control input that maximizes the right-
hand side of the Bellman equation. The performance of
such a control law depends on the local smoothness of
the V-function and therefore on the type of approxima-
tor used. A wide spectrum of approximation techniques
have been used in RL: local linear regression (Grondman
et al., 2012), deep neural networks (Lillicrap et al., 2015),

fixed or adaptive basis functions (Buşoniu et al., 2011),
regression trees (Ernst et al., 2005). In this paper, we
use approximation by means of triangular basis functions
(BFs) as a baseline, since the convergence of value iteration
can be guaranteed. However, approximation with basis
functions may cause chattering of the state trajectory
during transients or may render the goal state unreachable,
as illustrated in Fig. 1. The bottom plot clearly shows
that due to the odd shape of the surface (visualised as
the diamond-shaped level curves), the state trajectory is
deflected from the desired path to the goal and ends at
some distance away from the desired position.

A possible approach to alleviating the above problem is
to approximate the V-function by using a technique which
would not be affected by any interpolation artifacts be-
tween the individual basis functions. One of the methods
to construct a compact smooth approximation is sym-
bolic regression (SR). Based on genetic programming, SR
searches for an analytic expression which fits best the given
data. However, we found (Alibekov et al., 2018) that it is
difficult to directly apply SR to approximate an existing
V-function. While the symbolic approximation can achieve
a very low mean-squared error, the resulting policy can
be very different and sub-optimal. This is because subtle,
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Fig. 1. An example of a state trajectory on the magnetic
manipulation benchmark (Section 4) heavily influ-
enced by the V-function approximator. Top: the state
trajectory superimposed on the RHS of the Bellman
equation level curves. Bottom: a close-up view of the
state trajectory approaching, but not reaching the
goal state [0.01, 0].

yet important details of the V-function surface are not
represented properly by the symbolic approximator.

Our first approach to overcoming this limitation by means
of a smooth proxy function was described in (Alibekov
et al., 2016). The method relies on a binary fitness func-
tion, which leads to a non-convex optimization problem
and reduces chances of finding an accurate proxy function.
Consequently, the originally proposed symbolic approxi-
mator had to be combined with a numeric approximator.

The current paper builds upon this result by resolving
these outstanding issues of the originally proposed proxy
function. In this paper, we formulate and propose an
enhanced symbolic regression approach which uses linear
programming in order to find more powerful models and
solve the above problems. Moreover, we redesign it in a
way that is applicable to any linear-in-parameters approx-
imator.

The paper is structured as follows. Section 2 presents
the necessary RL preliminaries. The proposed method for
fitting a proxy function is described in Section 3. The
description of benchmarks used and the testing procedure
can be found in Section 4. Section 5 provides results with
a detailed discussion of the benefits and drawbacks of the
proposed method. Section 6 concludes the paper.

2. PRELIMINARIES

Define an n-dimensional state space X ⊂ Rn, and m-
dimensional action space U ⊂ Rm. The system to be
controlled is described by the state transition function

xk+1 = f(xk, uk), with xk, xk+1 ∈ X and uk ∈ U . A user-
defined reward function assigns a scalar reward rk+1 ∈ R
for each transition from xk to xk+1 using action uk:

xk+1 = f(xk, uk)

rk+1 = ρ(xk, uk, f(xk, uk))
(1)

In this paper we restrict ourselves to the reward function
depending on the next state only, omitting xk and uk for
clear notation.

To solve the RL problem, we define a finite set of discrete
control input values U = {u1, u2, . . . , uM} drawn from

U . An approximate V-function denoted by V̂ (x) is then
computed by solving the Bellman equation:

V̂ (x) = max
u∈U

[
ρ
(
f(x, u)

)
+ γV̂

(
f(x, u)

)]
(2)

where γ is a user-defined discount factor. The policy is the
mapping:

h : X → U (3)

and the optimal discrete-valued policy corresponding to
V̂ (x) is given by:

ĥ(x) ∈ argmax
u∈U

[
ρ
(
f(x, u)

)
+ γV̂

(
f(x, u)

)]
,∀x . (4)

There are several algorithms to compute an approximate
V-function for a continuous state space. For the purposes
of this paper, the fuzzy V-iteration algorithm (Busoniu
et al., 2010) is used because of its guaranteed convergence.
The algorithm can be briefly described as follows. First,
the fixed structure of the approximator is defined in
terms of triangular basis (membership) functions. The V-
function approximator is described as:

V̂ (x) = θTφ(x) (5)

where φ = [φ1(x), φ2(x), . . . , φN (x)]T is the vector of fixed
triangular basis functions, with each φi(x) centered in si
such that φi(si) = 1 and φj(si) = 0, ∀j 6= i. The basis

functions are normalized so that
∑N
j=1 φj(x) = 1, ∀x ∈ X .

Finally, θ ∈ RN is the corresponding parameter vector.
The value iteration is then defined as:

θi ← max
u∈U

[
ρ
(
f(si, u)

)
+γθTφ

(
f(si, u)

)]
(6)

for i = 1, 2, . . . , N . This algorithm guaranties convergence
under certain conditions (Busoniu et al., 2010) and termi-
nates when the convergence threshold ε is reached:

||θ − θ−||∞ ≤ ε (7)

with θ− the parameter vector calculated in the previous
iteration.

3. PROPOSED METHOD

The main idea of the proxy function method (Alibekov
et al., 2016) is to find through symbolic regression a
smooth, analytically defined function P , which ∀x ∈ X
satisfies the following equation:

argmax
u∈U

P (f(x, u)) = argmax
u∈U

[
ρ
(
f(x, u)

)
+ γV̂

(
f(x, u)

)]
(8)

In order to generalize this method, assume that the proxy
function has the form:

P (x) = β1p1(x) + β2p2(x) + . . .+ βqpq(x) (9)

where p1, . . . , pq are continuous analytic functions gener-
ated by means of evolutionary programming, each of them



being defined over the whole state space and β1, . . . , βq are
real-valued coefficients.

Assume that the V̂ (·) approximator is given. As described
earlier, the policy derivation process can be regarded as hill
climbing. At each time step, the agent selects the control
input which leads to the highest value of the right-hand
side of the Bellman equation:

u∗ = argmax
u∈U

[
ρ
(
f(x, u)

)
+ γV̂

(
f(x, u)

)]
(10)

The selected action u∗ is then applied to the system, which
leads to the new state:

x∗ = f(x, u∗) (11)

To find a P , or its close approximation, we generate a
set of N state samples X = {x1, x2, . . . , xN} ∈ X . By
using the already defined set of discrete control inputs
U = {u1, u2, . . . uM}, for each state xi ∈ X we construct
the following set of next states:

Xn
i =

{
xij | xij = f(xi, uj), j = 1, 2, . . .M

}
(12)

and partition it into optimal and suboptimal next states:

X̃i = xoi ∪Xs
i (13)

The optimal next state maximizes the right-hand side of
the Bellman equation:

xoi = argmax
xij∈Xn

i

[
ρ(xij) + γV̂ (xij)

]
(14)

and the suboptimal next states are all the remaining ones:

Xs
i = X̃i \ xoi (15)

For simplicity, we assume that the optimal state for each
sample in X is unique. However, the proposed method
can be trivially extended to handle multiple optimal next
states.

To define the fitness function for symbolic regression, (8)
is reformulated as follows:

P (xsik)− P (xoi ) < 0, ∀i, k (16)

This means that for each state xi, the proxy function value
for the optimal next state must be larger than the value
for the suboptimal next states. Index k runs over all L
elements inXs

i . Substituting from (9), the above inequality
becomes:

q∑
j=1

βj
(
pj(x

s
ik)− pj(xoi )

)
< 0, ∀i, k (17)

To simplify the notation, define an auxiliary variable dikj
as:

dikj = pj(x
s
ik)− pj(xoi ) (18)

To represent (17) for all the data in matrix form, define

O =



d111 d112 · · · d11q
d121 d122 · · · d12q
...

...
. . .

...
d1L1 d1L2 · · · d1Lq
d211 d212 · · · d21q
d221 d222 · · · d22q
...

...
. . .

...
dNL1 dNL2 · · · dNLq


(19)

and solve the problem by linear programming:

min
β
∅ such that

Oβ ≤ ε
(20)

where ε represents a small negative constant. 1 Note that
(17) defines a feasibility problem, rather than a minimiza-
tion problem. To guide the evolutionary process toward
a feasible solution, we introduce an infeasibility measure
of the candidate solution. Define a vector of non-positive
variables s = [s1, . . . , s[N×L]]

T . The fitness function for SR
can now be defined as:

min
β,s

N×L∑
i=1

−si such that

Oβ + s ≤ ε
−∞ ≤ s ≤ 0

(21)

This formulation adds an extra variable to every inequal-
ity, which represents the measure of infeasibility of the
resulting model, and which linear programming then min-
imizes. The β weights of the analytic expressions are de-
fined as free variables with no restriction.

In this work, we use Single Node Genetic Programming
(SNGP) (see Appendix for further details) to generate
the non-linear analytic expressions p1(·), . . . , pq(·), which
are then evaluated using (21). The whole process repeats
until a stopping criterion is satisfied, such as a prescribed
number of iterations or an improvement threshold.

4. EXPERIMENTAL EVALUATION

4.1 Benchmarks

The proposed method has been tested on two different
benchmarks: the well-known pendulum swing-up and a
nonlinear control problem called magnetic manipulation.
Both of them are explicitly discussed in (Alibekov et al.,
2018), including all necessary mathematical details. Here,
only a high-level description of these problems is presented.

The first task is the classic under-actuated pendulum
swing-up problem (abbreviated as pendulum), schemati-
cally depicted in Fig. 2a. The inverted pendulum consists
of an actuated link that rotates in a vertical plane, and
a weight of mass m attached to it. The motor torque
is not sufficient to push the pendulum up in a single
rotation. Instead, from some states, the pendulum needs
to gather energy by swinging back and forth, in order to be
pushed up and stabilized. The control goal is to stabilize
the pendulum in the upright position xdes = [0, 0] (rad,
rad/s), which is formally described by the following reward
function:

ρ(f(x, u)) = −abs(xTdes − f(x, u))Q (22)

with Q = [1, 0.1]T a weighting vector to adjust the relative
importance of the angle and angular velocity and abs(·)
function working element-wise.

Magnetic manipulation (abbreviated as magman) is a
benchmark of contactless manipulation with applications
at micro scale. Our magnetic manipulation setup (see

1 The purpose of ε is to make Oβ strictly smaller than zero. From
the practical point of view we recommend to choose the value with
respect to the constraint tolerance the particular solver supports. In
this paper, we have chosen ε = 0.001.



(a) Pendulum task

(b) Magnetic manipulation task

Fig. 2. In the pendulum swing-up benchmark, pendulum
needs to gather energy by swinging back and forth,
in order to be pushed up and stabilized by controlling
the torque applied by a motor. The goal of magnetic
manipulation benchmark is to accurately position a
steel ball on a 1-D track by dynamically shape the
magnetic field above the magnets using current.

Table 1. Experiment parameters

Fuzzy V-iteration parameters: pendulum

State space, X [−π, π]× [−30, 30]
Input space, U [−2, 2]
State samples per dimension, BX [21, 21]
Action samples per dimension, BU 11
Discount factor, γ 0.95
Convergence threshold, ε 10−4

Desired state, xdes [0, 0]T

Sampling period, Ts [s] 0.02
Simulation time, Tsim [s] 3

Fuzzy V-iteration parameters: magman

State space, X [0, 0.05]×
[−0.4, 0.4]

Input space, U [0, 0.6]
State samples per dimension, BX [21, 21]
Action samples per dimension, BU [3, 3]
Discount factor, γ 0.99
Convergence threshold, ε 10−8

Desired state, xdes [0.01, 0]T

Sampling period, Ts [s] 0.01
Simulation time, Tsim [s] 3

SNGP parameters

Population size 1000
Elementary functions +, -, ×, x2, x3,

BentGeneral,
Logistic3

Maximal depth of features 5
Maximal number of features 30
Epoch length 500
Local search iterations 500
Number of epochs 1
Number of threads 1

Fig. 2b) consists of four electromagnets in a line, but in
this work only two of them have been used. The goal
is to accurately position a steel ball on a 1-D track by
dynamically shape the magnetic field above the magnets
using current. This goal is formally described by the
following reward function:

ρ(f(x, u)) = −abs(xTdes − f(x, u))Q (23)

with Q = [10, 5]T where the desired position xdes is set
to [0.01, 0] (m, m/s), Q is again a weighting vector and
function abs(·) again works element-wise.

4.2 Testing procedure

For each benchmark, 30 different proxy functions have
been constructed in 30 independent SNGP runs. Each
function has been tested on each benchmark with N = 100
randomly chosen initial states via simulations. It should be
noted that all the functions are presented “as is”, which
means that there is no selection procedure w.r.t. to some
criterion.

Each result is compared with the baseline solution (4) (us-
ing the same initial states), which is computed beforehand
by means of the fuzzy V-iteration algorithm. To evaluate
each of proxy functions, the following criteria are defined:

• Improvement percentage

I =

 1

N

N∑
j=1

[
pjbaseline/p

j
method

]
· 100

− 100%

where pmethod =
∑Tsim/Ts

k=1 ρ(f(xk, uk)), with Tsim
stands for the total simulation time, Ts is the sam-
pling period, and method represents either baseline
or proxy solution. The reward functions are defined
to have maximum value zero in the goal state and to
be negative otherwise. Therefore I equals 0% for the
baseline and it is bigger than 0% if the proxy function
outperforms the baseline approach.

• Mean distance between the last state (at the end of
simulation) xend and the desired goal state xdes

D =
1

N
‖xdes − xend‖

where ‖ · ‖ is the Mahalanobis norm.

The sampling parameters for both benchmarks, as well as
SNGP parameters, are listed in Table 1.

5. RESULTS AND DISCUSSION

The simulation results for both tasks are listed in Table 2.
The proposed method shows the potential to significantly
outperform the baseline solution. According to the exper-
iments, proxy functions demonstrate significant improve-
ment in a range of 5%-82% w.r.t. the baseline. In the vast
majority of cases, it is caused by alleviating of numerical
artifacts. An example of it is depicted in Fig. 3a. The
example demonstrates the comparison of derived policies
for the magman task. The left column corresponds to the
baseline value function, computed by fuzzy V-iteration al-
gorithm, while the right column stands for one of the proxy
functions. It can be seen that proxy function significantly
alleviates steady-state error caused by artifacts. Another
interesting note is that proxy function remarkably violates
Lyapunov stability condition, as shown by the bottom row
of Fig. 3a. The reason is that proxy function considers
solely local properties of its surface, neglecting global
geometry. However, for the pendulum task, the proposed
method demonstrates a modest improvement percentage
ratio. The reason for it is a small influence of the numerical
artifacts on the policy. The comparison between derived
policies using policy and baseline methods, respectively,
is depicted in Fig. 3b. It can be seen, that, e.g., the
steady-state error for both methods is relatively small (in
comparison with magman task), which means that there
is a small room for improvement for the proxy method.
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Fig. 3. Example of the transient response using the original V-function V̂ (x) and one of the proxy functions. The first
row represents the position of the ball for the magman task and the angle for the pendulum task; the second stands
for the control inputs; the last row shows changing a value of either value function or proxy function.

Table 2. Experimental study statistics

Median D Median I

Pendulum
Baseline 0.003 0%
Proxy 0.002 5%

Magman
Baseline 0.038 0%
Proxy 0.007 82%

The proposed method has several limitations. First of all,
with the proposed design it is not possible to penalize input
chattering. Input chattering can usually be reduced by
penalizing the control input in the reward function, which
is, however, not possible here due to the choice of the proxy
function structure as P (f(x, u)). One way to overcome this
limitation is to reformulate the proxy function as P (x, u)
and then use it in policy derivation in the same way as a
Q-function. Another possible way is to combine MSE-like
fitness and proxy function fitness in order to represent a
trade-off between global V-function geometry and proxy
local properties. This may be a part of our future work.

6. CONCLUSION

The proposed method offers an alternative way for the
policy derivation. Instead of using V-function directly, the
proposed approach build a smooth proxy function on top
of it, from which the better policy can be derived. The
proposed method may be combined with any kind of value
function approximation. Moreover, due to the analytic
nature of the proxy function, it can be combined with
policy derivation methods (Alibekov et al., 2018) to further
policy improvement.
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APPENDIX - SINGLE NODE GENETIC
PROGRAMMING

This paper introduces an enhanced variant of Single Node
Genetic Programming (SNGP) (Kubalk et al., 2017) to
implement the symbolic regression. SNGP is a graph-based
GP method that evolves a population of individuals, each
consisting of a single program node. Our implementation
differs from the above paper in the following aspects:

The following operators and functions are used to build
analytic expressions:

F = {×, +, −, x2, x3, BentGeneral, Logistic3 } where

BentGeneral(x1, . . . , xN ) =

N∏
i=1

[
xi + (

√
x2i + 1.0− 1)/2

]
(24)

and
Logistic3(x1, x2, x3) = x1(1−(1/(1 + e−x3))))+

+x2(1/(1 + e−x3))
(25)

and N is the arity of input.

Recalling that the result symbolic model P (x) is composed
from the linear combination of possibly non-linear analytic
expressions p1, . . . , pq, as:

P (x) = β0 + β1p1(x) + β2p2(x) + . . .+ βqpq(x)

the following restrictions are applied in order to control
overfitting:

• For every point in the dataset the result of an analytic
expression lies within [−108, 108] interval.



• Difference between the maximum and minimum val-
ues of an analytic expression computed on the given
dataset lies within [10−5, 103] interval.
• Weights β1, . . . , βq lie within [−1, 1] interval.
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